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Gut metabolites predict Clostridioides difficile 
recurrence
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Abstract 

Background:  Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the USA, with 
recurrence rates > 15%. Although primary CDI has been extensively linked to gut microbial dysbiosis, less is known 
about the factors that promote or mitigate recurrence. Moreover, previous studies have not shown that microbial 
abundances in the gut measured by 16S rRNA amplicon sequencing alone can accurately predict CDI recurrence.

Results:  We conducted a prospective, longitudinal study of 53 non-immunocompromised participants with pri-
mary CDI. Stool sample collection began pre-CDI antibiotic treatment at the time of diagnosis, and continued up 
to 8 weeks post-antibiotic treatment, with weekly or twice weekly collections. Samples were analyzed using (1) 16S 
rRNA amplicon sequencing, (2) liquid chromatography/mass-spectrometry metabolomics measuring 1387 annotated 
metabolites, and (3) short-chain fatty acid profiling. The amplicon sequencing data showed significantly delayed 
recovery of microbial diversity in recurrent participants, and depletion of key anaerobic taxa at multiple time-points, 
including Clostridium cluster XIVa and IV taxa. The metabolomic data also showed delayed recovery in recurrent 
participants, and moreover mapped to pathways suggesting distinct functional abnormalities in the microbiome or 
host, such as decreased microbial deconjugation activity, lowered levels of endocannabinoids, and elevated markers 
of host cell damage. Further, using predictive statistical/machine learning models, we demonstrated that the metabo-
lomic data, but not the other data sources, can accurately predict future recurrence at 1 week (AUC 0.77 [0.71, 0.86; 
95% interval]) and 2 weeks (AUC 0.77 [0.69, 0.85; 95% interval]) post-treatment for primary CDI.

Conclusions:  The prospective, longitudinal, and multi-omic nature of our CDI recurrence study allowed us to 
uncover previously unrecognized dynamics in the microbiome and host presaging recurrence, and, in particular, to 
elucidate changes in the understudied gut metabolome. Moreover, we demonstrated that a small set of metabolites 
can accurately predict future recurrence. Our findings have implications for development of diagnostic tests and 
treatments that could ultimately short-circuit the cycle of CDI recurrence, by providing candidate metabolic biomark-
ers for diagnostics development, as well as offering insights into the complex microbial and metabolic alterations that 
are protective or permissive for recurrence.

Keywords:  Human infection, Longitudinal, Metabolomics, Gastrointestinal, Predictive model, C. difficile

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Clostridioides difficile infection (CDI) is the most com-
mon cause of healthcare associated infection in the 
USA, with symptoms ranging from diarrhea to life-
threating fulminant colitis [1]. Annually in the USA, 
there are > 460 K CDI cases and > 30 K deaths, with 
costs to the health care system estimated at > $4.8 
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billion [2]. CDI recurrence after initial infection is 
common, with an estimated overall 15.5% rate of first 
recurrence, and escalating recurrence risk with each 
subsequent episode [2, 3]. Clostridioides difficile is a 
Gram positive, anaerobic spore-forming bacteria that 
can colonize the gut asymptomatically, with estimates 
of asymptomatic colonization up to 17% of healthy 
adults in the community and 50% of hospital patients 
[1, 4]. Toxigenic strains of C. difficile can release endo-
toxins that bind to intestinal epithelial cells to cause cell 
death and severe inflammation [4, 5]. However, even 
toxigenic strains have been found to colonize asympto-
matically, and dysbiosis of the microbiome is critical for 
CDI to occur [4]. Indeed, antibiotic exposure, particu-
larly with drugs that deplete gut anaerobes, is a major 
risk factor for development of CDI [6, 7].

The mechanisms through which gut microbial dysbio-
sis drives CDI remain incompletely understood, but there 
is mounting evidence that the gut metabolome plays an 
important role. C. difficile is capable of metabolizing 
a variety of carbon sources, including proline, glycine, 
and branched-chain amino acids via Stickland fermenta-
tion [8]. Murine studies have shown that CDI decreases 
amino acid Stickland substrates and increases Stickland 
products such as 5-aminovalerate, indicating a utili-
zation of Stickland substrates by C. difficile [9, 10]. In 
recent work in gnotobiotic mice, the commensal bacteria 
Paraclostridium bifermentans, which preferentially uses 
Stickland fermentation for energy and depletes Stickland 
substrates in the gut, provides strong protection against 
CDI infection [11]. Certain cholate-derived primary bile 
acids, which are depleted in a healthy gut microbiome 
due to microbial metabolism, have been shown to be co-
germinants for C. difficile in  vitro. However, the role of 
these metabolites in vivo is less clear, and recent stud-
ies have shown that the mechanism by which microbes 
such as Clostridium scindens provide protection in  vivo 
may be due to their utilization of C. difficile’s preferred 
carbon sources, rather than through primary bile acid 
depletion [11–13]. Short chain fatty acids (SCFAs) have 
also been associated with CDI, although their role is 
less clear. Acetate and butyrate, gut microbial products 
of dietary fiber fermentation, have been associated with 
general gut health in some studies; butyrate, in particular, 
is a primary energy source for colonocytes and thus may 
help maintain intestinal barrier integrity [14]. However, 
Clostridium sardiniense, which significantly increases 
butyrate in the gut, was not protective against CDI in 
gnotobiotic animal studies, and in fact worsened infec-
tion [11]. Taken together, evidence drawn from in  vitro 
or murine studies suggests that CDI may be driven by a 
multifactorial gut metabolic dysbiosis, which includes 
alterations in carbon sources.

Despite compelling evidence for the importance of gut 
metabolomic dysbiosis in CDI, to our knowledge, there 
have only been three studies that analyzed metabolic fac-
tors of CDI in reasonably sized (> 20 subjects) human 
cohorts. Allegretti et  al. performed a cross-sectional 
comparison of bile acid profiles of participants with first-
time CDI (n = 20), recurrent CDI (n = 19), and no CDI 
(n = 21), and found higher primary bile acids and lower 
secondary bile acids in those with CDI versus those with-
out CDI [15]. Robinson et al performed a cross-sectional 
analysis of untargeted metabolomes of participants (n = 
186) with CDI versus with non-CDI diarrhea, and found 
higher Stickland fermentation products and lower fruc-
tose in CDI participants [16]. Bushman et  al. compared 
the metabolomes of children with IBD (n = 27), children 
with IBD and CDI (n = 23), and healthy controls (n = 38) 
at CDI diagnosis, 4 weeks, and 8 weeks later, and found 
higher primary bile acids, sphingomyelins, and intracel-
lular fatty acids in children with CDI + IBD and in chil-
dren with IBD and no CDI [17].

CDI recurrence has also been relatively understud-
ied, and it remains unclear whether the metabolic fac-
tors described above for primary CDI play similar roles 
in recurrent disease. A few studies have investigated the 
role of gut microbiome composition in CDI recurrence. 
Khanna et  al. used 16S rRNA gene amplicon sequenc-
ing to analyze the fecal microbiomes of 88 participants 
at initial CDI diagnosis, and did not find any significant 
difference in alpha or beta diversity between recurrers 
and non-recurrers [18]. Seekatz et  al. followed 93 par-
ticipants with initial CDI longitudinally over a range of 
1–800 days (to assess both recurrence and re-infection), 
performed 16S rRNA gene sequencing on samples, and 
found that alpha diversity trended lower in recurrers [19]. 
Pakpour et  al. formally assessed whether the composi-
tion of the gut microbiome could predict recurrence, but 
found only a weak relationship (area under the receiver-
operator curve [AUC] of 0.61) [20]. Four other stud-
ies have investigated predicting recurrence solely using 
electronic health record (EHR) data, and have achieved 
AUCs ranging from 0.67 to 0.82 [21–24]. Three of these 
studies found proton-pump inhibitor use to be predictive 
of recurrence, and two of the studies found higher age to 
be predictive of recurrence; however, there were no other 
predictive features common among the studies. Moreo-
ver, validation of  two of these studies on independent 
cohorts was attempted and found poor predictive accu-
racy [25].

To address the gaps in prior studies, including cross-
sectional analyses, lack of metabolomic data, and poten-
tially confounding comorbidities or antibiotic use, we 
conducted a prospective, longitudinal study of partici-
pants recruited consecutively from the inpatient service at 
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the Brigham and Women’s Hospital (BWH) and two affili-
ated hospitals. Exclusion criteria included inflammatory 
bowel disease, inherited or acquired immunodeficiencies, 
severe or fulminant CDI, or ongoing non-CDI antibiotic 
use that continued past the CDI antibiotic course. Par-
ticipants were followed for up to 8 weeks after comple-
tion of their CDI antibiotic treatment or until recurrence. 
We previously reported an analysis of the clinical and 
demographic characteristics of the full cohort of 75 par-
ticipants, 22 of whom experienced recurrent CDI [23]. In 
the present study, we report on detailed multi-omic analy-
ses of serial stool samples from 53 participants (with 19 
recurrences) from the parent study, using broad LC/MS 
metabolomic profiling, 16S rRNA amplicon sequencing, 
and targeted short-chain-fatty-acid (SCFA) analysis. We 
use univariate and multivariate statistical techniques to 
investigate how microbial composition and metabolomes 
of recurrers vs. non-recurrers changed and diverged over 
time. Further, we use cross-validated machine learning/
statistical methods to quantify the capability of the data 
sources to predict future recurrences.

Results
Longitudinal study of recurrent CDI measuring gut 
microbial composition and metabolome
We performed multi-omic analyses on serial fecal sam-
ples (Fig. 1) from 53 subjects who had participated in a 

parent prospective, longitudinal study of CDI at Brigham 
and  Women’s Hospital (BWH) and two affiliated hospi-
tals [23]. In the parent study, fecal samples were collected 
at the time of diagnosis (if available), 1 week after antibi-
otic treatment, and every week or half week for up to 8 
weeks. Participants for the multi-omic study were chosen 
from the parent study based on the availability of a week 
1 stool sample, a desired ratio of approximately 2:1 non-
recurrers to recurrers to sufficiently power predictive 
analyses while maximizing study resources, and age and 
sex matching between non-recurrers and recurrers. This 
yielded a cohort of 34 non-recurrent and 19 recurrent 
participants for the multi-omic study. Table  1 provides 
demographic and clinical data for this cohort. Comor-
bidities for participants are provided in Additional file 1. 
The only demographic or clinical variable found to be 
significantly associated with CDI recurrence was the use 
of enzyme immunoassay (EIA) testing vs. PCR for initial 
CDI diagnosis (p = 0.046). This finding is consistent with 
analyses of the parent study, and may be due to higher-
false positive rates or detection of non-toxin elaborating 
C. difficile strains with the PCR test. The parent study 
also found treatment of initial CDI with metronidazole 
versus vancomycin to be associated with recurrence; this 
association was only borderline significant (p = 0.12) in 
the subset of patients analyzed for our multi-omic study, 
likely due to the smaller sample size. Note that while the 

Fig. 1  Prospective Clostridioides difficile infection (CDI) study measuring gut microbes and metabolites to develop recurrence predictors. 
Fifty-three participants with first-time CDI were followed for up to 8 weeks after initial CDI antibiotic treatment. Fecal samples were collected 
prior to CDI antibiotic treatment, 1 week post-treatment, and then weekly or bi-weekly until recurrence or end of the study period. Microbial 
composition within fecal samples was analyzed with 16s rRNA gene amplicon sequencing. Metabolites in fecal samples were measured with liquid 
chromatography/mass spectrometry (LC/MS) broad metabolomics and targeted short chain fatty acid profiling
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parent study found a significant association between 
platelet count and CDI recurrence, we were not able to 
analyze this variable for the subset of participants in our 
multi-omic study, due to missing blood work data in > 
25% of these participants.

Table 2 provides a summary of the fecal samples ana-
lyzed. Because all participants who recurred did so 
within the first 3 weeks after initial treatment, we focused 
our subsequent analyses primarily on data-points prior 
to week 3. This time window provides a sufficient num-
ber of recurrent samples for statistical testing and also, in 
the context of developing diagnostic testing in the future, 
represents a relevant time period for clinically actionable 
decision-making. Each sample was analyzed with (1) 16S 
rRNA amplicon sequencing, (2) liquid-chromatography/
mass-spectrometry (LC/MS) untargeted metabolomics, 
and (3) targeted short chain fatty acid (SCFA) analy-
ses. For amplicon analyses, this yielded 4,605,740 total 
sequencing reads (average of ~ 10 K/reads per sample) 

and subsequent bioinformatic processing with dada2 
produced 2509 unique amplicon sequence variants 
(ASVs). The LC/MS untargeted metabolomics platform 
quantified 1387 unique and annotated metabolites. SCFA 
analyses quantified nine metabolites: acetate, propion-
ate, isobutyrate, butyrate, isovalerate/2-methylbutyrate 
(indistinguishable by the platform used), valerate, iso-
caproate, caproate, and heptanoate. However, heptanoate 
and caproate were only present in one or two samples, 
respectively, and were thus removed from subsequent 
analyses.

Participants who recurred exhibited slower recovery of gut 
microbiome diversity and composition post‑CDI antibiotic 
treatment
To gain high-level insights into the structure of microbi-
omes, we assessed their overall ecological diversity using 
alpha [26] and beta diversity measures [27]. For more 
detailed understanding of microbiomes, we analyzed 
taxonomic composition at the level of amplicon sequence 
variants (ASVs). After filtering low abundance/rare taxa, 
we obtained 237 ASVs, which we used for subsequent 
DESeq2 fold-change analyses [28]. Because participants 
received treatment for initial CDI with either vancomy-
cin or metronidazole, and these antibiotics are known 
to have differential effects on the gut microbiome, we 
included terms in DESeq regression models to account 
for the antibiotic type used, and report only changes that 
remained significant when controlling for the antibiotic 
type. For analyses at both the level of ecological diver-
sity and at the level of ASVs, we performed both intra-
group (i.e., differences in diversity or abundance of ASVs 
between time-points within the same group, either non-
recurrers or recurrers) and inter-group (differences in 
diversity or abundance of ASVs between non-recurrers 
and recurrers).

We first investigated intra-group diversity changes, 
comparing pre- versus 1 week post-CDI antibiotic 

Table 1  Participant demographic and clinical data

Statistical testing was performed using Fisher’s exact test for binary variables, 
the chi-squared test for categorical variables, and the Wilcoxon rank-sum test for 
continuous variables

PCR Polymerase chain reaction, GDH Glutamate dehydrogenase, PPI Proton-
pump inhibitor

Recurrers
N = 19

Non-recurrers
N = 34

P value

Demographic data
  Race
    Black 1 7 0.36

    Hispanic 3 2

    White 15 25

  Sex
    Male 5 13 0.55

    Female 14 21

  Age
    Mean 57.2 ± 17.2 58.4 ± 14.3 0.7

    Range (22, 93) (30, 87)

Clinical data
  Body-mass index (BMI)
    Mean 28.3 ± 6.9 29.2 ± 9.3 0.87

    Range (20.1, 45.1) (19.4, 66.7)

  Test used for diagnosis
    PCR 4 17 0.046

    EIA toxin 15 17

  Initial treatment antibiotic used
    Vancomycin 11 27 0.12

    Metronidazole 8 7

  Prior PPI use
    No 11 17 0.77

    Yes 8 17

Table 2  Number of samples analyzed for each time-point

Note that five participants recurred during week 1, so their samples were not 
included in week 1 analyses

Week Non-recurrers Recurrers

Pre-antibiotics 18 8

1 34 14

1.5 10 3

2 34 6

2.5 10 2

3 33 3

3.5 4 0

4 34 0
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diversity in either recurrers or non-recurrers. For these 
comparisons, alpha diversity significantly decreased 
within both recurrent (p = 0.04) and non-recurrent (p 
= 2 × 10−4) groups (Fig. 2; Additional file 2), consistent 
with depletion of gut microbes during antibiotic treat-
ment for CDI. We evaluated intra-group beta diversity 
using the Bray-Curtis dissimilarity measure and found 
a similar pattern (Fig. S1): significant changes were seen 
in both recurrers (p = 5 × 10−3) and non-recurrers (p 
= 10−3). We next evaluated intra-group diversity from 
week 1 to week 2, and interestingly found that both alpha 
and beta diversity recovered significantly only within the 
non-recurrent group (p = 3 × 10−5, and p = 10−3 respec-
tively (Additional file 2).

Comparing inter-group alpha between the recurrent 
and non-recurrent groups at each time-point, we found 
a significant difference in alpha diversity at week 2 post-
CDI antibiotic treatment, with higher diversity in the 
non-recurrent group (p = 9 × 10−4) (Fig.  2, Additional 
file  2). We did not find significant inter-group differ-
ences in beta diversity. Taken together, these intra- and 
inter-group diversity analyses suggest that recurrent and 
non-recurrent participants both had expected declines in 
gut microbiome ecological diversity with antibiotic treat-
ment for CDI, but recurrent subjects exhibited delayed 
recovery of microbial diversity.

We next examined intra-group differences in ASV 
abundances over time using differential abundance 
analysis. In non-recurrers, 30 ASVs significantly dif-
fered in abundance between week 1 to week 2. Among 
these 30 ASVs, 25 exhibited significant increases 
(Additional file  3). Of these ASVs, 15 were in the 
Lachnospiraceae family, representing a significant 
enrichment for this bacterial family (FDR = 0.003, 
Additional file 4), which are generally strict anaerobes 

with specialized niches and associated with normal 
microbiome function. In recurrers, 13 ASVs were sig-
nificantly different in abundance from week 1 to week 
2, with 8 of these exhibiting significant increases. This 
set of ASVs did not demonstrate significant enrich-
ment for any particular taxa, and, in contrast to 
changes seen in non-recurrers, only one ASV exhib-
iting significant increases from week 1 to week 2 was 
from the Lachnospiraceae family (ASV 76) (Additional 
file 3).

Finally, we assessed inter-group differences in ASV 
composition, comparing between non-recurrers and 
recurrers at pre-CDI treatment, week 1, or week 2 post-
CDI treatment. This analysis showed that non-recurrers 
had significantly higher abundances of 10 ASVs pre-
CDI treatment, 15 ASVs at week 1 post-CDI treatment, 
and 35 ASVs at week 2 (Fig. 3A; Additional file 3). The 
set of ASVs at increased abundance at week 2 was sig-
nificantly enriched for taxa in the Bacteroidaceae (FDR 
= 0.03), Ruminococcaceae (FDR = 0.03), and Lach-
nospiraceae (FDR = 0.03) families (Additional file  4). 
Many of the taxa in these families found to be signifi-
cantly increased in non-recurrers have been associated 
with normal microbiome function, including Clostrid-
ium cluster XIVa taxa (ASVs 90, 97, 99, 198, 214) within 
the Lachnospiraceae family and Clostridium cluster IV 
taxa (ASVs 59, 60, 62, 66) within the Ruminococcaceae 
family [29] (Additional file 3). Interestingly, one of the 
Clostridium cluster XIVa taxa at higher abundance in 
non-recurrers (significant at week 2 and with a trend 
toward higher abundance at other time-points) was 
Clostridium scindens (ASV 99), which has been shown 
to provide host resistance to C. difficile [12, 13]. A 
number of the other genera found to be at higher abun-
dance in non-recurrers have been previously linked to 

Fig. 2  Ecological diversity of recurrers’ gut microbiomes recovered significantly more slowly than non-recurrers’. Alpha diversity (Chao index), a 
measure of species richness, significantly decreased pre- to 1 week post-CDI antibiotic treatment within both recurrent and non-recurrent groups. 
From one week to two weeks post-CDI treatment, alpha diversity recovered significantly only within the non-recurrent group. Alpha diversity 
only differed significantly between the recurrent and non-recurrent groups at 2 weeks post-CDI antibiotic treatment, with higher diversity in the 
non-recurrent group. R = recurrers, NR = non-recurrers
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protection against CDI in human studies, including 
Bacteroides (ASVs 26, 28, 29, 32, 33, 34) and Veillonella 
(ASV 154) [20, 30]. Taken together, these intra- and 
inter-group comparisons of taxa abundances suggest 

a picture of broader depletions of the normal micro-
biome in recurrers, evident even pre-CDI antibiotic 
treatment, but with increasingly more pronounced dif-
ferences over time, consistent with slower recovery of 
recurrers’ microbiomes.

Fig. 3  Gut microbiome taxa and metabolite levels differed significantly between CDI recurrent and non-recurrent participants. A Univariate 
analyses of 16S rRNA gene amplicon sequencing data found 51 out of 237 amplicon sequencing variants (ASVs) (post-filtering to remove 
rare or low-variance taxa), were significantly differentially abundant between recurrers versus non-recurrers. B Univariate analyses of LC/MS 
untargeted metabolomics found 22 out of 1387 metabolites (post-filtering to remove rare or low-variance metabolites), were significantly 
differentially abundant between recurrers versus non-recurrers. Metabolite levels shown are log-transformed and standardized. R = recurrers, NR 
= non-recurrers. Arrows denote the direction of the statistically significant effect. Participants (columns) were ordered in the figure via hierarchical 
clustering



Page 7 of 18Dawkins et al. Microbiome           (2022) 10:87 	

Participants who recurred exhibited an altered gut 
metabolome indicative of reduced gut microbiome 
function, and host inflammation and reduced immune 
modulatory capabilities
We first performed ordination analyses to evaluate over-
all changes and differences in broad gut metabolomic 
profiles between recurrers and non-recurrers (Fig. S2). 
Paralleling our findings on changes in microbial diversity, 
ordination analyses on metabolomic data (760 metabo-
lites after filtering) showed that the metabolomes of 
non-recurrers changed significantly from pre-CDI treat-
ment to week 1 post-CDI treatment (p = 10−3), and from 
week 1 to week 2 post-CDI treatment (p = 10−3), but 
the metabolomes of recurrers only changed significantly 
from pre-CDI treatment to week 1 post-CDI treatment 
(p = 10−3) (Additional file  2). Comparing recurrers to 
non-recurrers at each time-point, differences were only 
significant at week 2 (p = 0.001), which recapitulated our 
findings in microbiome alpha diversity (Additional file 2). 
Taken together, we saw parallel patterns for overall gut 
metabolomic profiles and microbial diversity, with recur-
rers and non-recurrers initially exhibiting similar gut 
metabolomes that only significantly diverged by week 2 
post-CDI antibiotic treatment, due to a slower recovery 
in the recurrent group.

To determine which gut metabolites contributed to 
these overall patterns of metabolome recovery or non-
recovery, we performed univariate analyses (controlling 
for the antibiotic used for CDI treatment, as described 
above), both across time and between recurrers and non-
recurrers on broad metabolomic data (Fig. 3B, Additional 
file 3) and targeted SCFA data (Fig. S3, Additional file 3). 
Changes in metabolites from week 1 to week 2 were sig-
nificant only for non-recurrers, with 131 metabolites 
significantly changing over the week. These metabolites 
were borderline significantly enriched for secondary bile 
acids (FDR = 0.06), primary bile acids (FDR = 0.06), 
and hydroxy acyl carnitines (FDR = 0.06), corticoster-
oids (FDR = 0.07), food components (FDR = 0.07), and 
disaccharides/oligosaccharides (FDR = 0.10) (Additional 
file 4). Changes in SCFAs from week 1 to week 2 (Addi-
tional file 3) were similarly only significant for non-recur-
rers, with six SCFAs significantly higher in week 2: acetate 
(FDR = 6 × 10−5), isovalerate/2-methylbutyrate (FDR = 
4 × 10−4), butyrate (FDR = 10−3), valerate (FDR = 0.03), 
and isobutyrate (FDR = 0.03). Comparison between lev-
els of gut metabolites in recurrers versus non-recurrers 
showed increasing differences over the study. At pre-
treatment, no metabolites were found to be significantly 
different between recurrers and non-recurrers. However, 
at week 1 post-CDI treatment, vanillylmandelate (FDR 
= 0.05) was found to be significantly higher in recur-
rers. At week 2, abundances of 21 metabolites differed 

significantly between recurrers and non-recurrers (Addi-
tional file 3), with 18 of these metabolites showing higher 
levels in recurrers. This pattern of increasing divergence 
over time between gut metabolomes of recurrers and 
non-recurrers parallels the pattern seen with microbi-
ome composition, suggesting slower recovery of the gut 
metabolome in recurrers.

The specific changes or differences in metabolites 
observed can generally be organized into three catego-
ries indicative of (1) host inflammation or intestinal dam-
age, (2) lack of microbial deconjugation activity, (3) host 
alterations in immune and inflammatory capabilities. 
Vanillylmandelate (VMA), higher in recurrers at week 1 
post-CDI treatment, is an end product of catecholamine 
metabolism and has been previously reported as a bio-
marker of inflammation [31]. By week 2 post-CDI treat-
ment, biomarkers of cell death were significantly elevated 
in recurrers. The overall set of metabolites differentiat-
ing recurrers and non-recurrers at week 2 was signifi-
cantly enriched for sphingomyelins (FDR = 7 × 10−4, 
Additional file  4), including lignoceroyl sphingomyelin 
d18:1/24:0, sphingomyelin d18:2/24:1, d18:1/24:2, sphin-
gomyelin d18:1/20:0, d16:1/22:0, and behenoyl sphingo-
myelin d18:1/22:0. In additional to sphingomyelins, the 
phospholipid palmitoyl-2-stearoyl-GPC 16:0/18:0 was 
also significantly higher in recurrers. Elevated sphingo-
myelin and phospholipid metabolites have previously 
been associated with active intestinal epithelial damage, 
such as in murine models of CDI and in humans with 
CDI or IBD [10, 17].

At week 2, evidence of impaired microbial function 
in the gut was also present in recurrers’ metabolomes. 
Glucuronide and sulfate conjugates were significantly 
higher in recurrers, including five steroid conjugates 
(pregnanediol-3-glucorinide, estrone 3-sulfate, 11 beta-
hydroxyetiocholanolone glucuronide, etiocholanolone 
glucuronide, and tetrahydrocorticosterone glucuronide) 
and four additional glucuronidated compounds (three 
glucuronides of piperine metabolite C17H21NO3 and 
salicyluric glucuronide). Gut microbes are critical for 
deconjugation activities [32, 33]; thus, elevated levels of 
conjugated metabolites in recurrers may indicate signifi-
cantly blunted recovery of this normal microbiome func-
tion. The microbiome is also critical for transforming bile 
acids. Indeed, two bile acids, taurocholate (FDR = 0.006) 
(a primary bile acid) and taurochenodeoxycholic acid 
3-sulfate (FDR = 0.03) (a primary bile acid conjugate), 
were significantly higher in recurrers, again suggesting 
delayed recovery of microbiome function. Interestingly, 
taurocholate and other cholate derivatives have been 
demonstrated to promote C. difficile germination in vivo, 
although their role in pathogenesis in  vitro is less clear 
[1, 11, 13, 34, 35]. Bilirubin metabolism is another major 
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function of the gut microbiota [36]. D-urobilin, the end 
product of bilirubin metabolism, was significantly lower 
in recurrers, also suggesting a lack of recovery of micro-
biome function [FDR = 0.01]. Higher levels of SCFAs 
indicate active microbiota metabolism in the gut [14]. 
Consistent with the picture of gut microbial dysbiosis 
seen with the other metabolites discussed above, levels 
of acetate (FDR = 0.07) and isovalerate/2-methylbutyrate 
(FDR = 0.07) were borderline significant for being lower 
in recurrers.

At week 2, levels of metabolites involved in host 
immune or inflammatory modulation, predominately 
conjugated anti-inflammatory compounds and endo-
cannabinoids, also differed significantly between recur-
rers and non-recurrers. The observed lower levels of 
conjugated corticosteroids in non-recurrers not only 
indicates greater microbial deconjugation activities, but 
may also indicate increased host anti-inflammatory activ-
ity: unconjugated corticosteroids, such as tetrahydro-
corticosterone, are key anti-inflammatory compounds, 
and unconjugated sex steroids have also been shown to 
act as important modulators of inflammation in the gut 
[33, 37]. Other conjugated compounds found to be sig-
nificantly higher in recurrers, specifically glucuronides 
of piperine, salicyluric glucuronide, and apigenin sulfate, 
have also been shown to have unconjugated forms with 
anti-inflammatory effects [38–41]. Levels of the endo-
cannabinoids behenoyl ethanolamide (FDR = 5×10−4) 
and lignoceroyl ethanolamide (FDR = 0.04) were signifi-
cantly lower in recurrers. Endocannabinoids have been 
shown to maintain gut homeostasis through modulating 
the immune system and gut motility; additionally, endo-
cannabinoids have been found to increase in the pres-
ence of Akkermansia muciniphila, a taxa we found to be 
significantly more abundant in non-recurrers at week 2 
(ASV 9, FDR = 2 × 10−19) [42–44]. Taken together, these 
results suggest a picture of reduced capability to modu-
late inflammation in recurrers.

Predictive models of recurrence achieved highest accuracy 
using metabolomic data
To estimate how well our data can predict CDI recur-
rence in patients, we built supervised machine learning/
statistical models and evaluated them using cross-valida-
tion. This approach fundamentally differs from the uni-
variate statistical tests presented in the previous sections 
in two ways: (1) univariate approaches evaluate one varia-
ble at a time, and thus cannot find combined effects (e.g., 
increased risk if multiple metabolites are elevated), and 
(2) statistical testing approaches cannot provide an esti-
mate of predictive accuracy, or how well the model might 
perform on unseen data. Both these capabilities are nec-
essary for developing a clinically useful diagnostic, which 

is an important objective in the field. For prediction 
tasks, we evaluated three standard methods: lasso-logis-
tic regression (LR), random forests (RF), and lasso-Cox 
regression (CR). The first two methods predict binary 
outcomes (recurrence or non-recurrence), whereas CR 
predicts the time to recurrence. We evaluated these 
methods based on their ability to predict outcomes using 
a cross-validation methodology (training the models on 
subsets of the data and predicting on held-out data). For 
the two methods predicting binary outcomes, we used 
the area under the receiver operator curve (AUC) score 
as the evaluation metric, and for CR we used the con-
cordance index (CI).

We applied LR, RF, and CR to participants’ pre-CDI 
treatment, week 1, and week 2 samples, using the fol-
lowing information: (1) clinical variables found to be 
associated with recurrence in prior studies (age [22, 24], 
previous PPI use [21, 22, 24], treatment regimen [23], and 
diagnosis method [23]), (2) ASVs from 16S rRNA ampli-
con sequencing, (3) LC/MS untargeted metabolomics, (4) 
SCFAs, and, (5) all sources of data (1–4) combined. Over-
all, we found that the LC/MS metabolomic data at weeks 
1 and 2 had the highest predictive accuracy (Fig. 4; Addi-
tional file  5). For predicting recurrence/non-recurrence, 
at week 1, LR on metabolomic data achieved the highest 
AUC (0.77; [0.71, 0.86] 95% interval), and at week 2, RF on 
metabolomic data achieved the highest AUC (0.77; [0.69, 
0.85] 95% interval). None of the other data sources or 
time-points achieved AUC scores greater than 0.7, which 
is generally considered the threshold for an acceptable 
clinical test (with 0.8 to 0.9 considered excellent). Mod-
els predicting recurrence using all available data sources 
combined achieved essentially equivalent AUCs to mod-
els using only metabolomics data (Fig. 4); moreover, these 
models only consistently selected metabolites as the sig-
nificant features needed to make predictions (Additional 
file 6). Prediction of survival time using CR followed simi-
lar trends, as all models that achieved CIs > 0.7 selected 
only metabolites to make predictions. Both ASVs and 
SCFAs at pre-CDI treatment achieved median AUCs 
close to 0.7 (0.68 using LR for ASVs, and 0.68 using RF for 
SCFAs). However, the 95% cross-validated intervals for 
these AUCs were large, with their lower ranges extend-
ing toward values near 0.5 (random chance). Thus, these 
predictors lack robustness or generalizability. The lack of 
accurate pre-treatment predictors may have been limited 
by sample sizes in our study, as fewer samples were avail-
able pre-CDI treatment (N = 26), compared to weeks 1 
and 2 (N = 48 and N = 40, respectively).

To determine which metabolites were predic-
tive in models with median AUCs > 0.7, we assessed 
cross-validated odds ratios and Gini feature impor-
tance measures. At week 1, LR, RF, and CR all selected 
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N-carbamoylaspartate and vanillylmandelate as the top 
predictors, both of which favored recurrence when at 
higher levels (Fig.  5). Of note, these metabolites were 
also found in univariate analysis to be borderline-sig-
nificantly increased in recurrers at week 1. At week 2, 
RF robustly identified lignoceroyl sphingomyelin as an 
important feature; this metabolite was also found to be 
significantly more abundant in recurrers in univari-
ate analyses. RF also identified features with borderline 
significance that were found in the univariate analy-
ses, including sphingomyelins, primary bile acids, and a 
phosphorylated lipid (Fig. 5). The predictive models also 
identified features that were not detected in univariate 
analyses: 4-hydroxyhippurate and bilirubin in the week 

1 LR model were identified as predictive of recurrence 
when at higher levels. 4-hydroxyhippurate is a product 
of microbial degradation of polyphenols found in fruits 
and other plant-based foods [45]. Bilirubin is the prod-
uct of host heme catabolism and is further reduced to 
urobilinoids/urobilinogens by the gut microbiome, so its 
higher levels in recurrers’ gut metabolomes is consist-
ent with subpar microbiome function [36]. Because the 
predictive methods employed make different underlying 
assumptions (e.g., logistic regression is a generalized lin-
ear model whereas random forests is a nonlinear model), 
metabolites selected by multiple models are more likely 
to be robust [46]. Thus, the set of predictive metabo-
lites identified by multiple methods (Fig. 5) may serve as 

Fig. 4  Predictive modeling of CDI recurrence achieved the highest accuracy using metabolomic data. The performance of predictive models was 
assessed using leave-one-out cross-validation (N = 26 at pre-CDI treatment, N = 48 at week 1, and N = 40 at week 2). Data sources input to models 
were (1) clinical variables associated with recurrence in prior studies (age, previous PPI use, antibiotic treatment regimen, and CDI diagnostic test 
used), (2) untargeted gut metabolomics, (3) amplicon sequencing variants (ASVs) of the gut microbiome, (4) gut short-chain fatty acids (SCFAs), 
(5) data sources 1–4 combined. Performance of A logistic regression with lasso and B random forests, which predict binary labels (recurrence/
no recurrence), were assessed with the area-under-the-curve (AUC) metric. C Cox regression, which predicts survival time, was assessed with the 
concordance index (CI). Models achieving median ≥ 0.70 AUC or CI scores (adequate performance) are denoted with red dashed rectangles. The “All 
Data” models with ≥ 0.70 AUC or CI were found to select only metabolomic features
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Fig. 5  Multiple predictive methods revealed pre-recurrence metabolic alterations mapping to host or microbiome-associated processes. 
Thirty-seven metabolites were significant in at least one analysis method for distinguishing CDI recurrent versus non-current status. These 
metabolites fell into one of three categories, reflecting altered host or microbiome activities. Dark orange or green colors indicate significance (FDR 
< 0.05 in univariate analyses; 95% cross-validated log-odds/feature importance interval not containing 1.0 for predictive models). Light orange or 
green colors indicate borderline significance (0.05 < FDR ≤ 0.10 in univariate analyses; 75% log-odds/feature importance cross-validated interval 
not containing 1.0 for predictive models)
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strong candidates for future trials to validate biomarkers 
for recurrence prediction in larger, independent cohorts.

Discussion
To our knowledge, our work represents the largest 
prospective study of CDI recurrence employing both 
microbiome sequencing and untargeted metabolomics 
analyses. Although prior studies have investigated some 
aspects of the relationship between the microbiome and 
CDI, our study design and analysis methods allowed us 
to probe further. The longitudinal nature of our study 
allowed us to investigate how rates of microbiome recov-
ery relate to recurrence. Past studies investigating CDI 
recurrence were unable to observe the marked diver-
gence of microbial diversity between recurrers and non-
recurrers shortly after antibiotic treatment due to either 
a cross-sectional study design or a lack of systematic 
longitudinal sampling [15, 18–20]. Seekatz et al., though 
longitudinal, did not sample at the same timepoints for 
all participants; thus, although they noted that the alpha 
diversity of recurrers’ microbiomes trended lower than 
that of non-recurrers, they could not evaluate dynamic 
changes in alpha diversity within each group during the 
specific time-windows of interest [19]. Additionally, the 
prospective nature of our study allowed us to build pre-
dictive models of CDI recurrence, which are not possible 
with cross-sectional designs.

Moreover, by collecting broad gut metabolomic data, 
we were able to establish that this data can predict CDI 
recurrence more accurately than microbial composi-
tion data. The limited predictive capability of microbial 
sequencing data could be due to several factors, includ-
ing lack of data about the status of host processes, poor 
sensitivity for detecting important low abundance organ-
isms, and the inability to find common signal from 
diverse bacterial species that perform similar functional 
roles in the gut. However, it is also possible that predic-
tive computational models specifically tailored to com-
bining microbial compositional and metabolomic data 
could yield additional information and improve predic-
tive accuracy.

Our findings have implications for design of diagnostic 
tests and therapeutic interventions for recurrent CDI. We 
did not find clear differences between recurrers and non-
recurrers at the time of CDI diagnosis. Rather, we found 
that the rate of recovery from dysbiosis was substantially 
slower in recurrers, with incomplete recovery still evi-
dent at 2 weeks post-CDI antibiotic treatment. Further, 
we found that at 1 week post-CDI antibiotic treatment, 
increased levels of specific metabolite biomarkers associ-
ated with host inflammation accurately predicted future 
recurrence. Taken together, these findings suggest that 
diagnostic tests targeting specific metabolites in the first 

one to 2 weeks post-CDI treatment may be most accu-
rate and clinically useful. Moreover, by identifying a small 
set of metabolites that accurately predict recurrence, we 
have laid the groundwork for developing a feasible clini-
cal test based on a limited biomarker panel that could be 
cost-effectively measured through targeted LC/MS or 
other platforms that already exist in clinical laboratories.

Our study also uncovered complex and dynamic differ-
ences in gut metabolomes, both across time and between 
recurrers and non-recurrers, which could suggest new 
avenues for preventing or treating recurrent CDI. For 
example, we found increased levels of sphingomyelins, 
sphingolipids, and phospholipids in recurrers prior to the 
onset of symptoms. These lipids have been found in the 
guts of late-stage acute CDI in mice, as well as in children 
with IBD and CDI+IBD [10, 17], and may indicate early 
biomarkers of gut inflammation, as C. difficile begins to 
exert pathogenic effects that do not yet cause frank diar-
rhea. Interestingly, these lipids have recently been shown 
to be synthesized by common gut bacteria and affect vas-
cular endothelium function and inflammatory responses 
[47, 48]. Thus, it is possible that rises in these metabolites 
seen in recurrers at least partially reflect metabolic activ-
ity of the microbiome, which could exacerbate develop-
ment of CDI through modulation of host inflammatory 
and immune processes. Reduced endocannabinoids in 
recurrers could similarly involve an interplay between 
the host and microbiome, as recent evidence suggests 
that gut microbes regulate endocannabinoids in order to 
control energy metabolism and intestinal functions in the 
host [42].

While our study design and analysis methods produced 
results that have implications for better diagnostics and 
more effective treatments for recurrent CDI, our study 
did have several limitations that suggest opportunities 
for further research. Our study was conducted primar-
ily within one hospital, and most participants were inpa-
tients at the time the study commenced. These factors 
may partially explain why the recurrence rate in our par-
ent study was 29%, which is higher than rates reported by 
some other studies, such as Guh et al. [3], which reported 
a 15% recurrence rate. However, other studies have 
reported higher or similar rates to our study. For exam-
ple, Seekatz et al. [19] reported a 34% rate of recurrence 
among the 93 participants in their cohort, and Khanna 
et al. [18] reported a 28.5% rate of recurrence in their 88 
participant cohort. The reasons for differences in CDI 
rates across studies is likely multifactorial, including dif-
ferences in participant demographics and comorbidities. 
Another factor in differing CDI recurrence rates may be 
spatial-temporal trends possibly involving circulation of 
hypervirulent C. difficile strains within institutions and 
surrounding communities. Our study was conducted 
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over approximately three years, a relatively short period 
of time, and did not assess C. difficile genetics.

An additional factor to be considered is that partici-
pants in our study received either vancomycin or met-
ronidazole for initial CDI treatment. In our cohort, 
approximately 42% of recurrers received metronidazole 
versus 21% of non-recurrers. Although this difference 
was not statistically significant in our cohort, it was in 
the larger parent cohort [23], suggesting this effect was 
also present in our smaller cohort but failed to rise to the 
level of statistical significance due to the limited sample 
size. Indeed, metronidazole has previously been identi-
fied as a risk factor for CDI recurrence, and the updated 
Infectious Disease Society of America [49] clinical guide-
lines have removed metronidazole as a recommended 
first-line treatment for CDI for this reason. Additionally, 
vancomycin and metronidazole have entirely different 
mechanisms of action with known differential effects on 
the microbiome. When we controlled for antibiotic type 
used to treat initial CDI in statistical models, we still 
found many bacterial taxa and metabolites were signifi-
cantly associated with recurrence/non-recurrence status. 
Further, we found that gut metabolites, but not antibiotic 
type used for initial CDI treatment, could significantly 
predict future CDI recurrence in statistical and machine 
learning models that accessed cross-validated perfor-
mance. These findings suggest that there are significant 
differences between microbiomes of recurrers and non-
recurrers that are not driven solely by differences in 
the antibiotic used for initial CDI treatment. However, 
higher order confounding between antibiotics, the gut 
environment and CDI recurrence are still a distinct pos-
sibility, and further studies will be important to clarify 
these effects.

Thus, follow up, multi-institutional studies that assess 
larger and more diverse cohorts receiving uniform van-
comycin treatment for initial CDI, as well as integration 
of C. difficile genome analysis data will be important to 
generalize our findings. Another interesting question, 
which could not be addressed with our study design, is 
whether metabolite biomarkers reflect gut pathology that 
is permissive for CDI versus very early damage caused by 
CDI prior to the onset of symptoms. Ultimately, the true 
clinical value of CDI predictors, such as the metabolite 
biomarkers found in our study, will need to be assessed 
in the context of their utility for informing early interven-
tions that significantly lower recurrence rates.

Conclusions
We found in our prospective, longitudinal, multi-omic 
study of CDI recurrence that the gut microbial compo-
sitions  and metabolomes of participants, while similar 
immediately before and after initial treatment, diverged 

rapidly as non-recurrers recovered normal microbiota 
and metabolic functions and recurrers remained dysbi-
otic. Our analyses uncovered specific metabolic derange-
ments in participants who experienced subsequent 
recurrence, including evidence of loss of normal meta-
bolic activities of the gut microbiome, host gut inflamma-
tion and cell death, and decreases in anti-inflammatory 
and immune-modulating compounds. Moreover, we 
found that differences in specific metabolites in the first 2 
weeks post-CDI antibiotic treatment accurately predicted 
future recurrence, while microbiome sequencing data did 
not yield high predictive accuracy. These results suggest 
that metabolomics may be the more robust modality for 
evaluating recovery of microbial function. By providing 
specific candidate predictive biomarkers and expand-
ing our knowledge of the complex metabolic changes 
preceding recurrence, our findings have implications for 
development of diagnostic tests and treatments for CDI 
recurrence.

Methods
Study design
Fecal samples analyzed for the present multi-omic study 
were collected as part of a larger prospective parent study 
that was conducted to assess predictors of CDI recur-
rence [23]. Participants with primary, uncomplicated 
CDI were identified by positive test results from the 
Brigham and Women’s Hospital (BWH) Clinical Micro-
biology Laboratory and recruited consecutively from 
BWH’s inpatient service, as well as two affiliated hospi-
tals, between August 1, 2015 and September 1, 2018. 
Participants who were being treated for primary CDI, 
diagnosed with diarrhea symptoms and a positive C. dif-
ficile test by either glutamate dehydrogenase (GDH) or 
enzyme immunoassay (EIA) toxin or polymerase chain 
reaction (PCR), were eligible for inclusion. Primary 
CDI was defined as no episodes of CDI within the past 
6 months. Exclusion criteria included inflammatory 
bowel disease, inherited or acquired immunodeficiencies, 
severe or fulminant CDI as defined by [49], or ongoing 
non-CDI antibiotic use that continued past the CDI anti-
biotic course.

The parent study followed 75 participants, 22 of whom 
recurred, from initial diagnosis until recurrence, or for 8 
weeks post-treatment if they did not recur. Three partici-
pants were lost to follow-up. Samples were collected at 
diagnosis (if available), weekly or bi-weekly for 2 weeks 
after completion of anti-CDI antibiotics and then weekly 
for another 6 weeks, or until recurrence. Samples at diag-
nosis (before initiation of antibiotic treatment for CDI) 
were only available for some participants, because of 
the difficulty in obtaining viable fecal samples from the 
clinical laboratory workflow. Recurrence was defined 
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as diarrhea (Bristol stool scale 6 or 7), at least 3 bowel 
movements daily for 3 days, and a positive GDH and EIA 
test, in keeping with current guidelines.

Participants for the multi-omic study were chosen 
from the parent study based on the availability of a week 
1 stool sample, a desired ratio of approximately 2:1 non-
recurrers to recurrers to sufficiently power predictive 
analyses while maximizing study resources, and age and 
sex matching between non-recurrers and recurrers. This 
yielded a cohort of 34 non-recurrent and 19 recurrent 
participants for the multi-omic study. Because all partici-
pants recurred before week 4, samples after week 4 were 
not analyzed.

Participant demographic and clinical data
Weight and height were collected individually and used 
to calculate participants’ BMI. Significance testing for 
demographic and clinical variables was conducted using 
Fisher’s exact test for binary variables, the chi-squared 
test for categorical variables, and the Wilcoxon-rank-
sum test for continuous variables. To ensure a sufficient 
number of participants for valid statistical inference, sig-
nificance testing was only performed on demographic/
clinical variables if greater than 3 participants had the 
characteristic of interest.

16S rRNA gene amplicon sequencing
For DNA extraction, all fecal samples were processed 
with the Zymo Research ZymoBIOMICS DNA 96-well 
kit according to manufacturer instructions with the addi-
tion of bead beating for 20 min. The extracted DNA was 
used for 16S rRNA gene Amplicon sequencing and 16S 
rRNA qPCR for total bacterial concentration estimation. 
Amplicon sequencing of the v4 region of the 16S rRNA 
gene was performed using the previously described pro-
tocol in [50] using 515F and 806R primers for PCR along 
with:

5′-[Illumina adaptor]-[unique bar code]-[sequencing 
primer pad]-[linker]-[primer]
Read 1 (forward primer): AAT​GAT​ACG​GCG​ACC​
ACC​GAG​ATC​TACAC-NNNNNNNN-TAT​GGT​
AATT-GT-GTG​CCA​GCMGCC​GCG​GTAA​
Read 2 (reverse primer): CAA​GCA​GAA​GAC​GGC​
ATA​CGA​GAT​-NNNNNNNN-AGT​CAG​TCAG-
CC-GGA​CTA​CHVGGG​TWT​CTAAT​

LC‑MS untargeted metabolomics
LC-MS untargeted metabolomics was performed 
by Metabolon (Durham, NC USA). After delivery to 
Metabolon, samples were homogenized in methanol to 
extract metabolites and then centrifuged to separate the 

supernatant from debris and precipitates. The superna-
tant was divided into five aliquots for four analyses plus 
one extra and then dried using a TurboVap (Zymark). 
Dried samples were stored overnight under nitrogen gas. 
Samples were reconstituted and measured with Waters 
ACQUITY ultra-performance liquid chromatography 
(UPLC) and Thermo Scientific Q-Exactive high reso-
lution/accurate mass spectrometry (MS), heated elec-
trospray ionization source (HESI-II) and Orbitrap pass 
analyzer (35,000 mass resolution). Samples were ana-
lyzed in the following four different ways: (1) elution 
with C18 column (Waters UPLC BEH C18-2.1 × 100 
mm, 1.7 μm) in positive-ion mode with water/methanol 
gradient mobile phase containing 0.05% perfluorpenta-
noic acid (PFPA) and 0.1% formic acid (FA), (2) as in (1), 
except with water/acetonitrile/methanol gradient mobile 
phase containing 0.05% PFPA and 0.01% FA, (3) elution 
with a separate C18 column in negative-ion mode with 
water/methanol gradient mobile phase containing 6.5 
mM ammonium bicarbonate, pH 8, and (4) elution with 
HILIC column (Waters UPLC BEH amide 2.1 × 150 
mm, 1.7 μm) in negative-ion mode with water/acetoni-
trile gradient mobile phase containing 10 mM ammo-
nium formate, pH 10.8. The MS analysis was performed 
as dynamic exclusion, altering between MS and data-
dependent MSn scans with a scan range of 70–1000 m/z. 
Data extraction, peak identification, quality control, and 
annotation were performed by Metabolon’s proprietary 
software.

Short chain fatty acid profiling
Volatile SCFAs were quantified as described in [51]. 
Acidified internal standards with 100uL of either ethyl 
anhydrous or boron trifluoride-methanol was added 
to 100 μL of supernatant from homogenized cecal con-
tents. Chromatographic analyses were carried out on an 
Agilent 7890B system with a flame ionization detector 
(FID). Chromatogram and data integration were done 
using the OpenLab ChemStation software (Agilent Tech-
nologies, Santa Clara, CA). SCFAs were identified by 
comparing their specific retention times relative to the 
retention time in the standard mix. Concentrations were 
determined as mM of each SCFA per gram of sample for 
the raw cecal/fecal material. The Agilent platform cannot 
discriminate between isovalerate and 2-methylbutyrate, 
and so these are reported as a single peak value.

16S rRNA gene amplicon data analysis
Bioinformatics
Sequencing generated 4,605,740 total reads and 97,994 
average reads per sample. The paired-end Fastq files were 
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truncated, filtered, denoised, and merged using the dada2 
pipeline and filtering parameters identical to the dada2 
tutorial [52]. Our analysis found 2509 unique amplicon 
sequencing variants (ASVs) in the dataset, and taxonomy 
was assigned using the dada2 RDP and Silva reference 
databases [53, 54]. If taxa assignments between the two 
databases disagreed, the taxa assignment from the RDP 
database was used.

Alpha and beta diversity
Prior to calculating alpha and beta diversity, relative 
ASV abundance was calculated by dividing each ASV’s 
counts by the total number of counts in a sample. Using 
ASV relative abundance, we calculated the alpha diversity 
(Chao1) at pre-treatment, week 1, week 2, week 3, and 
week 4 using scikit-bio (skbio.diversity.alpha.chao1) [26]. 
Significant differences in intra-group alpha diversity over 
time and inter-group alpha diversity at pre-treatment, 
week 1, and week 2 were tested using the Mann-Whitney 
U test. A one-sided test was used to test the hypothesis 
that alpha diversity of both groups decreased during anti-
biotic treatment and then recovered, and the hypothesis 
that non-recurrent participants would have higher alpha 
diversity. Beta diversity was calculated at pre-treatment, 
week 1, week 2, week 3, and week 4 from the Bray-Cur-
tis dissimilarities (calculated using scipy.spatial.distance.
pdist) of relative ASV abundances between each sub-
ject. To visualize the dissimilarity of outcome groups at 
each timepoint and the intra-group dissimilarity between 
timepoints, we performed multi-dimensional scaling 
(using scikit-learn.manifold.MDS) on the Bray-Curtis 
dissimilarities. We used permutational multivariate anal-
ysis of variance (PERMANOVA) (skbio.stats.distance.
permanova) with 999 permutations to assess the sig-
nificance of inter- and intra-group dissimilarities at pre-
treatment, week 1, and week 2.

Filtering
Prior to differential abundance analysis, ASVs were fil-
tered to remove rare taxa. We included ASVs present 
with > 10 counts and in ≥ 10% of participants in either 
pre-treatment, week 1, or week 2. This resulted in 237 
ASVs post-filtering.

Differential abundance analysis
After filtering, differential abundance analyses between 
recurrers and non-recurrers at pre-treatment, week 1, 
and week 2 were performed using the DESeq function 
within the DESeq2 package [55]. To control for effects of 
CDI treatment with either vancomycin or metronidazole, 
antibiotic treatment type was included as a covariate in 
the regression equation for inter-group analyses at week 1 

and week 2. Because every ASV in the dataset contained 
zeros, we pre-computed the geometric means and then 
the size factors using the estimateSizeFactors function 
within DESeq2. Intra-group differential abundance anal-
ysis was also performed between pre-treatment and week 
1, and between week 1 and week 2, for both recurrers 
and non-recurrers using the same procedure in DESeq2, 
including controlling for the antibiotic treatment type. 
All differential abundance analyses were followed by the 
Benjamini-Hochberg correction for multiple hypotheses 
[56]. The relative abundances of ASVs that were signifi-
cantly different between recurrers and non-recurrers at 
pre-treatment, week 1, or week 2 are shown in Fig. 2 on 
a logarithmic scale, along with the phylogenetic relation-
ships of these ASVs (found with methods detailed below). 
In this figure, recurrers and non-recurrers at each time-
point are clustered hierarchically using scipy.cluster.hier-
archy with optimal ordering and ‘average’ distance.

Phylogenetic placement
To further clarify phylogenetic relationships between 
ASVs of interest, we built a reference tree and then per-
formed phylogenetic placement of ASVs. For the refer-
ence tree, all typed, isolated strains of good quality that 
were longer than 1200 base pairs were downloaded from 
the RDP bacteria and archaea datasets [53]. Reference 
sequences were then aligned using the RDP aligner. The 
reference sequences were then filtered to remove: (1) 
sequences with unaligned lengths ≥ 1600 bp and, (2) 
sequences with rare insertions (defined as a base pair 
in a position where there were 5 or less sequences with 
un-gapped base pairs in that position). Filtered refer-
ence sequences were then realigned using the same RDP 
aligner. A reference tree was constructed using FastTree 
version 2.1.7 SSE3 with the general-time-reversible maxi-
mum likelihood option [57]. Pplacer v1.1.alpha19 with 
default settings [58] was then used to place query ASVs 
onto the reference tree.

Enrichment analysis
Enrichment analyses were performed on the ASVs found 
in each differential abundance analysis with FDRs < 0.05 
(Additional file 5). For a given family A, we tested if the 
family was significantly overrepresented in differentially 
abundant ASVs using the hypergeometric probability 
distribution:
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Here, N is the total number of (post-filtering) ASVs, K 
is the subset of N in family A, n is the number of differ-
entially abundant ASVs, and k is the subset of n in family 
A. To prevent false positives due to small family sizes, we 
did not test (1) families that had too few ASVs in the total 
post-filtering set (K ≤ 3) or (2) families that had too few 
ASVs in the differentially abundant subset (k ≤ 2). For 
all families large enough to pass the filter, p values were 
computed using the hypergeometric test, and the Benja-
mini-Hochberg procedure was using to correct for multi-
ple hypothesis testing [56].

LC‑MS untargeted metabolomics data analysis
“OrigScale” data returned by Metabolon was used in all 
analyses described in this manuscript; these data repre-
sent values normalized in terms of raw area counts.

Ordination analyses
To assess inter-group dissimilarity at each timepoint and 
intra-group dissimilarity between timepoints, we com-
puted matrices using Spearman rank correlation on the 
unfiltered and untransformed metabolomic data. We 
used PERMANOVA (skbio.stats.distance.permanova) 
with 999 permutations to test the significance of differ-
ences (Additional file 3).

Filtering
LC-MS untargeted metabolomics measured 1387 
metabolites. To retain only metabolites with sufficient 
prevalence and variance across time or participants, we 
included metabolites with: (1) non-zero values in ≥ 25% 
of participants in either pre-treatment, week 1, or week 
2 samples, and (2) co-efficient of variations in the top 
50th percentile in either pre-treatment, week 1, or week 
2 samples. These criteria resulted in 760 metabolites 
post-filtering.

Univariate analysis
Before univariate analyses, metabolite values were log 
transformed (after adding a small positive number, 10% 
of the minimum non-zero value in the dataset) to all val-
ues, and standardized to have a mean of 0 and a stand-
ard deviation of 1. After filtering and transforming the 
metabolic data, we performed ordinary least squares 
linear regression using the statsmodels (v0.14.0) package 
in python, with both antibiotic treatment type (metroni-
dazole or vancomycin) and recurrence/non-recurrence 
as covariates. To control for the effect of antibiotic type 
on the level of each metabolite, hypothesis testing was 
performed using the t-test on the coefficient of the 
recurrence/non-recurrence variable. The Benjamini-
Hochberg procedure was applied to correct for multiple 
hypothesis testing [56].

Enrichment analysis
Enrichment analyses were performed on the metabo-
lites found in univariate analysis with FDRs < 0.05, with 
an analogous method as used for enrichment analysis of 
the ASVs. We used the hypergeometric test with Benja-
mini-Hochberg [56] multiple hypothesis correction to 
assess whether pre-specified groups (super pathways 
and sub-pathways) were significantly over-represented in 
the differentially abundant metabolites. As with the ASV 
enrichment analysis, we did not perform hypothesis test-
ing on super and sub-pathways with (1) too few metabo-
lites in the total post-filtering set (K ≤ 3) or, (2) too few 
metabolites in the differentially abundant subset (k ≤ 2).

Short‑chain fatty acid data analysis
SCFA profiling found eight SCFAs in the analyzed 
samples: acetate, propionate, isobutyrate, butyrate, 
isovalerate/2-methylbutyrate, valerate, heptanoate, iso-
caproate, and caproate. Heptanoate was removed from 
subsequent analyses due to only being present in one 
sample. Caproate was present in only two samples and 
was also removed from further analyses. The remain-
ing seven SCFAs were log transformed and standardized 
analogously to the untargeted metabolomics data prior 
to univariate analysis; univariate analyses were also per-
formed analogously to those on the untargeted metabo-
lomics data.

Predictive modeling
The following data sources were used as input to predic-
tive modeling methods: (1) clinical variables found to be 
associated with recurrence in prior studies (age, previous 
PPI use, antibiotic treatment regiment, and CDI diagnos-
tic test), (2) 16S rRNA amplicon sequencing (ASVs) from 
pre-treatment, week 1, or week 2 samples, (3) untargeted 
metabolomics data from pre-treatment, week 1, or week 
2 samples, (4) SCFA profiles from pre-treatment, week 1, 
or week 2 samples, and (5) data sources 1–4 combined. 
In each predictive model, training datasets were filtered 
with the same criteria described for univariate analyses. 
Metabolites and SCFAs were log-transformed and stand-
ardized, and ASV relative abundances were transformed 
with the centered log ratio and then standardized. Con-
tinuous clinical variables (i.e., age) were log-transformed 
and standardized.

Relevant predictive features were identified through 
a nested leave-one-out cross-validation procedure 
(described in detail below for each method). To sum-
marize the results for each feature, we report the 
median and 95% interval over the folds (i.e., regres-
sion coefficients for logistic and cox regression, feature 
importances for random forests). We deem features 
significant if the 95% cross-validated odds-ratio/
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feature-importance intervals did not contain 1.0, and 
marginally significant if the 75% cross-validated interval 
did not contain 1.0. The code to reproduce these analy-
ses can be found in https://​github.​com/​gerbe​rlab/​cdiff_​
paper_​analy​ses.

Logistic regression
Logistic regression models were fit using scikit-learn’s 
(v0.24.2) logistic regression function with L1 lasso regu-
larization, balanced classes, and a liblinear solver. We used 
nested leave-one-out cross validation to find the optimal L1 
lambda  hyperparameter, performing a grid search over a 
range of 200 values from the maximum lambda value (i.e., 
the value that resulted in all zero coefficients) to 0.1% of the 
maximum lambda value. Performance in the inner loop was 
evaluated by area under the receiver operator curve (AUC) 
score calculated from the predictions of all the held-out sam-
ples. To reduce overfitting, the inner loop performances were 
smoothed using a n = 5 moving average, and the optimal L1 
hyperparameter was that which resulted in the highest value 
on the smoothed performance curve. After choosing the best 
L1 hyperparameter, the model’s predictive capability was 
evaluated by its leave-one-out cross validated AUC score. 
Variance estimates of model performance and regression 
coefficients were calculated from the cross-validation folds.

Random forest
Random forest models were fit using scikit-learn’s (v0.24.2) 
random forest classifier. We performed a nested leave-one-
out cross validation procedure with grid search, to deter-
mine the number of estimators (50 or 100), the maximum 
features to subsample at each split (the total number of 
features or the square root of the number of features), the 
minimum samples required to split an internal node (2 or 
9) and the minimum samples required to split a leaf node 
(1 or 5). All other parameters were set to their default val-
ues except for class weight (‘balanced’) and out of box score 
(True). The feature importances were calculated with the 
impurity-based feature importance, or the Gini impor-
tance, using the feature_importance attribute of the fitted 
model. Model performance and feature importance statis-
tics were calculated from the cross-validation folds.

Cox regression
Cox regression models were fit using scikit-survival’s 
(v0.15.0) Coxnet Survival Analysis function with L1 regu-
larization. We used a similar nested cross validation as 
described for our logistic regression analyses to optimize 
the L1 lambda  parameter, searching over a range of 200 
values from the maximum lambda value (i.e., the value 
that resulted in all zero coefficients) to 0.01% of the maxi-
mum lambda value. We evaluated both the inner and outer 
loops of the survival analysis using the concordance index 

(CI). Rather than leave-one-out cross validation, we used a 
leave-two-out method, where all left out pairs had at least 
one recurrer, to calculate the CI. In this formulation (math-
ematically equivalent to the standard definition of CI), CI 
is computed by dividing the number of times a pair was 
ordered correctly by the number of times a pair ordering 
was attempted. Variance estimates of model performance 
were calculated from the cross-validation folds.
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org/​10.​1186/​s40168-​022-​01284-1.

Additional file 1. Participant co-morbidities: provides sufficient statistics 
and statistical testing for co-morbidities experienced by more than 3 
participants.

Additional file 2. Ecological diversity analyses for 16S rRNA gene amplicon 
sequencing data, and ordination analyses for metabolomic data: provides the 
sufficient statistics and statistical testing for alpha and beta diversity analyses 
for 16S rRNA gene sequencing data, as well as analogous information for the 
ordination analyses of the metabolomics data.

Additional file 3. Univariate statistical analyses for 16S rRNA gene amplicon 
sequencing, short-chain fatty acids, and metabolomic data: provides the 
results of univariates statistical analyses on ASVs, metabolites, and SCFAs.

Additional file 4. Taxonomic enrichment analyses for sequencing data, and 
pathway enrichment analyses for metabolomic data: provides the results 
of enrichment analyses done to determine if the set of features found to be 
significant in univariate analysis were significantly enriched for a bacterial 
family or metabolite category.

Additional file 5. Predictive modeling results: provides the results of the 
predictive analyses run for each data source at pre-treatment, week 1, and 
week 2.

Additional file 6. Predictive modeling feature analysis: provides the features 
identified in predictive analyses that were found to affect the odds of recurrence 
in logistic regression or cox regression, or to be identified as important features 
in random forest analyses.

Additional file 7: Figure S1. Microbiome community structure signifi-
cantly changed within groups and significantly differed between groups 
at week two. Beta diversity with the Bray-Curtis dissimilarity measure was 
used to assess overall gut microbiome community structure; Princi-
pal Coordinate Analysis (PCoA) was used to visualize results. (A) Beta 
diversity changed significantly over time within groups. Differences were 
significant for non-recurrers from pre-treatment to week one (p = 10-3) 
and from week one to week two (p = 10-3). For recurrers, differences were 
significant from pre-treatment to week one (p = 3x10-3). (B) Beta diversity 
was significantly different between recurrers and non-recurrers at week 
two (p = 10-2); differences at other time-points were not significant.

Additional file 8: Figure S2. Gut metabolome structure significantly 
changed within groups and significantly differed between groups at 
week two. Ordination analysis using Spearman rank correlation was used 
to assess overall metabolome structure; Principal Coordinate Analysis 
(PCoA) was used to visualize results. (A) Metabolome structure changed 
significantly over time within groups. Differences were significant for 
non-recurrers from pre-treatment to week one (p = 10-3) and from week 
one to week two (p = 10-3). For recurrers, differences were significant 
from pre-treatment to week one (p = 10-3). (B) Metabolome structure was 
significantly different between recurrers and non-recurrers at week two 
(p=10-3); differences at other time-points were not significant.

Additional file 9: Figure S3. Borderline significantly higher fecal acetate 
and isovalerate SCFAs were observed at week two in non-recurrers. Log-
transformed and standardized concentrations of the short-chain fatty 
acids (SCFAs) measured in fecal samples are shown. Levels of acetate (FDR 
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= 0.07) and isovalerate/2-ME butyrate (FDR = 0.07) were higher in non-
recurrent (NR) versus recurrent (R) participants.
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