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Abstract 

Background:  For many environments, biome-specific microbial gene catalogues are being recovered using shotgun 
metagenomics followed by assembly and gene calling on the assembled contigs. The assembly is typically conducted 
either by individually assembling each sample or by co-assembling reads from all the samples. The co-assembly 
approach can potentially recover genes that display too low abundance to be assembled from individual samples. On 
the other hand, combining samples increases the risk of mixing data from closely related strains, which can hamper 
the assembly process. In this respect, assembly on individual samples followed by clustering of (near) identical genes 
is preferable. Thus, both approaches have potential pros and cons, but it remains to be evaluated which assembly 
strategy is most effective. Here, we have evaluated three assembly strategies for generating gene catalogues from 
metagenomes using a dataset of 124 samples from the Baltic Sea: (1) assembly on individual samples followed by 
clustering of the resulting genes, (2) co-assembly on all samples, and (3) mix assembly, combining individual and 
co-assembly.

Results:  The mix-assembly approach resulted in a more extensive nonredundant gene set than the other approaches 
and with more genes predicted to be complete and that could be functionally annotated. The mix assembly consists 
of 67 million genes (Baltic Sea gene set, BAGS) that have been functionally and taxonomically annotated. The major-
ity of the BAGS genes are dissimilar (< 95% amino acid identity) to the Tara Oceans gene dataset, and hence, BAGS 
represents a valuable resource for brackish water research.

Conclusion:  The mix-assembly approach represents a feasible approach to increase the information obtained from 
metagenomic samples.
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Background
High-throughput sequencing has led to the establishment 
of the field of metagenomics, allowing the direct analysis 
of genetic material contained within an environmental 
sample [1]. This approach offers a detailed characteriza-
tion of complex microbial communities without the need 
for cultivation. It can be used to address questions like 
which microorganisms are present, what are they capable 

of doing, and how do they interact. Metagenomics has 
been used for studying several ecosystem types, such as 
soils, human guts, and oceans [2–4].

For many environments, biome-specific gene cata-
logues have been recovered using shotgun metagen-
omics, followed by assembly and gene calling on the 
assembled contigs. Examples are the integrated refer-
ence catalogue of the human microbiome [4] and the 
Tara Oceans gene catalogue [2]. Gene catalogues facili-
tate the discovery of novel gene functions and gene 
variants. Annotated gene catalogues can also serve 
as genomic backbones onto which sequencing reads 
from metagenomes and metatranscriptomes, as well as 
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mass-spectrometry spectra from metaproteomics, can be 
mapped, which enables fast and accurate taxonomic and 
functional profiling with such datasets.

The assembly can be carried out either by co-assem-
bling reads from all the samples (or groups of samples) 
or individually assembling reads from each sample. The 
co-assembly approach has the advantage that some genes 
displaying too low abundance to be assembled from indi-
vidual samples may reach enough coverage to be recov-
ered. However, combining data from many samples often 
means mixing data from a diversity of closely related 
strains (from the same species). This fine-scale genomic 
variation can compromise the assembly process because 
the de Bruijn graph will include many alternative paths. 
Consequently, the assembler may decide to break the 
graph into smaller pieces, which can result in fragmenta-
tion of genes.

An alternative approach is to perform assembly on 
each sample individually. The individually assembled 
samples approach will minimize the mixing of data from 
different strains and therefore potentially result in more 
completely assembled genes, at least for fairly abundant 
genomes. However, another problem arises, which is that 
(more or less) identical genes from multiple samples will 
be reconstructed. To serve as a reference dataset, it is 
desirable to have a nonredundant set of genes. Sequence 
redundancy removal can be achieved by clustering the 
gene sequences (or their protein translations [5]) result-
ing from the different assemblies based on sequence sim-
ilarity, using some cutoff criteria. For each gene cluster, 
a representative sequence is then chosen based on, e.g. 
gene completeness, centrality in the cluster, or abun-
dance in the dataset.

Recently, a Baltic Sea specific gene catalogue with 6.8 
million genes was constructed based on the metagenomic 
data from 81 water samples spanning the spatiotempo-
ral gradients of the Baltic Sea [6]. For the construction 
of the Baltic Sea specific gene catalogue, all the 2.6 bil-
lion (i.e. 109) reads were co-assembled, and genes called 
on all contigs > 1000 bp. While this gene catalogue 
has established itself as a useful resource for analys-
ing metagenome and metatranscriptome datasets from 
brackish environments [7–11], only ca 10% of the shot-
gun reads from a typical Baltic Sea metagenome sample 
are mapping to genes with a functional annotation [6]. 
A reason for the seemingly low coverage could be that 
the co-assembly approach has resulted in a fragmented 
assembly. A more comprehensive reference gene cata-
logue would hence be desirable for this environment. In 
this study, we conduct an extensive comparison of three 
assembly approaches on an expanded set of metagenome 
samples from the Baltic Sea and present an updated gene 
catalogue for the Baltic Sea microbiome.

Methods
Metagenome samples
Five previously published sample sets [6, 7, 12] were used 
in this study. The sampling locations are shown in Addi-
tional file  1, and a brief description of sample retrieval 
and sequencing is given in Additional file  2; for further 
details, we refer to the original publications. Sequencing 
of all sample sets was conducted using Illumina HiSeq 
2500.

Preprocessing of reads
Removal of low-quality bases was performed earlier [7] 
using Cutadapt [13] (parameters-q 15, 15) followed by 
adapter removal (parameters-n 3 — minimum length 31). 
The resulting read files were thereafter screened for PCR 
duplicates using FastUniq [14] with default parameters.

Assembly
Individual assemblies on the 124 samples were per-
formed earlier [7], using MEGAHIT [15] v.1.1.2 with the 
“--presets meta-sensitive” option. For the co-assembly 
conducted here, all preprocessed reads were first com-
bined and normalized using BBnorm of BBmap v.38.08 
(https://​sourc​eforge.​net/​proje​cts/​bbmap/) with the fol-
lowing parameters: target = 70, mindepth = 2, and pre-
filter = t. Also, the normalized read set was too extensive 
to allow co-assembly with the tag “presets –meta-sensi-
tive” with MEGAHIT. Therefore, they were assembled 
with “--presets meta-large” (using MEGAHIT v.1.1.2), as 
recommended for complex metagenomes in the MEGA-
HIT documentation.

Gene prediction
Genes were predicted on contigs (from the co-assembly 
and from the individual assemblies) using Prodigal [16] 
v.2.6.3 with the -p meta option. Gene completeness is 
based on Prodigal gene prediction. Complete genes refer 
to predicted genes having a predicted start and a stop 
codon (Prodigal indicator “00”); partial genes are pre-
dicted genes with either no start or stop codon (Prodigal 
indicator “01” or “10”), typically due to that the gene runs 
off the edge of a contig; and incomplete genes are pre-
dicted genes without a start and a stop codon (Prodigal 
indicator “11”).

Protein clustering
Clustering of the proteins stemming from the different 
samples for the individual assembly, and from the co-
assembly for the mix-assembly strategy, was performed 
using MMseqs2 [17] v9.d36de  using the cascaded clus-
tering mode (MMseqs2 cluster, https://​mmseqs.​com/​
latest/​userg​uide.​pdf ). Clustering was first performed 
on the proteins from the individual assemblies, and 
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the cluster-representative proteins were subsequently 
clustered with the co-assembly proteins. The following 
parameters were used in the two MMseqs2 runs: -c 0.95, 
--min-seq-id 0.95, --cov-mod 1, and --clust-mod 2. This 
means proteins displaying ≥ 95% amino acid identity 
were clustered. Strains belonging to the same prokary-
otic species generally display > 95% average amino acid 
identity [18]. As recommended in the MMseq2 user 
guide, -cov-mod 1 was used, since it allows clustering 
of fragmented proteins (as often occurs in metagenomic 
datasets). With --cov-mode 1 only, sequences are clus-
tered that have a sequence length overlap greater than 
the percentage specified by -c (i.e. 95% with -c 0.95) of 
the target sequence. In MMseqs2, the query is seen as 
the representative sequence, and the target is a mem-
ber sequence. To lower the risk for fragmented proteins 
becoming cluster-representative sequences, -cluster-
mode 2 was used, again following the recommendations 
of the MMseq2 user guide. It sorts sequences by length 
and in each clustering step forms a cluster containing the 
longest sequence and the sequences that it matches.

Read mapping and counting
To reduce the computational burden of the read map-
ping, random subsets of 10,000 non-normalized forward 
reads per sample were created using seqtk v.1.2-r101-
dirty (https://github.com/lh3/seqtk), with seed 100 (-s 
100). These reads (12.4 million in total) were mapped 
to the representative gene sequences from the individ-
ual, co-, and mix assembly, respectively, using Bowtie2 
v.2.3.4.3 [19], with the parameter “--local.” The resulting 
SAM files were converted to BAM with SAMtools v.1.9 
[20]. The htseq-count script from HTSeq [21] v.0.11.2 
was used to obtain raw counts per gene, with the parame-
ters “-f bam -r pos -t CDS -i ID -s no -a 0”. For the count-
ing, GFF input files were used, created using the script 
create_gff.py available at https://​github.​com/​EnvGen/​
toolb​ox/​tree/​master/​scrip​ts. In order to estimate read 
depth coverage of the genes in the total metagenome, we 
multiplied the counts per gene by the average read-pair 
length divided by the length of the gene and multiplied 
this number with the total number of read pairs in the 
whole dataset divided by the total number of randomly 
sampled forward reads. This is a rough estimation of the 
coverage of each gene in the total metagenome; however, 
after normalisation with BBnorm, high coverage genes 
will get a lower coverage.

Functional annotations
Functional annotation of proteins was conducted using 
EggNOG [22], Pfam [23], and dbCAN [24]. Annota-
tions against Pfam v.31.0 and dbCAN v.5.0 were con-
ducted with hmmsearch and hmmscan [25], respectively, 

in HMMER v.3.2.1, selecting hits with E-value < 0.001. 
Annotations against EggNOG v.4.5.1 were performed 
using eggNOG-mapper v.1.0.3 [26], using accelerated 
profile HMM searches [27], following the recommenda-
tion for setting up large annotation jobs.

Taxonomic affiliation
MMseqs2 (v13.45111) taxonomy [28], with parameters 
“--orf-filter 0 --tax-lineage 1”, was used to assign taxo-
nomic labels to contigs from which representative genes 
were predicted. MMseqs2 taxonomy uses an approxi-
mate 2bLCA (lowest common ancestor, LCA) approach. 
GTDB [29, 30] v.202 was used as a reference database for 
bacteria and archaea and Uniprot90 [31] (downloaded on 
June 4, 2021) for eukaryotes and viruses. An interactive 
chart for the gene set’s taxonomic information was gen-
erated using Krona (Ondov​ et  al.​ 2011) (see Additional 
file 3).

RNA gene screening
Barrnap v.0.9 [32], using default parameters, was used 
to identify potential rRNA genes, and identification of 
rRNA and other potential RNA genes in the mix-assem-
bly gene set was conducted using the Rfam v.14.6 [33] 
database, with hmmsearch [25], in HMMER v.3.3.2, with 
flag “--cut_ga”. The union of genes identified as rRNA by 
Barnap and Rfam/hmmsearch was removed from the 
final gene set.

Results
We used a set of 124 metagenome samples from the Bal-
tic Sea ([6, 7, 12]; see Additional file 1) to evaluate three 
assembly approaches for generating a nonredundant gene 
catalogue: co-assembly on all samples (“co-assembly”), 
assembly on individual samples (“individual assembly”), 
and a combination of the previous two (“mix assembly”). 
For the co-assembly, due to the complexity of the dataset, 
direct co-assembly of all reads was not possible, even on 
a server with 1 TB of memory. Therefore, the reads were 
first normalized such that reads stemming from highly 
abundant genomes (with high-frequency k-mers) were 
downsampled (to a depth of 70× coverage), and those 
presumably derived from errors (with a depth below 2×) 
were removed. This reduced the total number of read 
pairs from 5.4 to 2.9 billion.

Since the contigs of the co-assembly are derived from 
reads from all samples, it will result in a nonredun-
dant set of genes. In contrast, genes from the individu-
ally assembled samples may overlap between samples. 
To reduce this redundancy, clustering was conducted 
on the encoded proteins [17]. We used a cutoff of 95% 
amino acid identity, conforming to that strains belong-
ing to the same species typically display more than 95% 

https://github.com/lh3/seqtk
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Table 1  Summary statistics for the different assembly approaches

Assembly approach Total bps Number of genes Num. of genes 
≥ 100 bp

Num. of 
complete 
genes

Num. of partial genes No. of 
incompletegenes

Individual 18,770,879,205 50,045,582 45,859,319 6,258,868 27,073,554 16,713,160

Co 20,347,887,912 45,455,222 42,278,556 11,443,584 23,815,733 10,195,905

Mix 27,043,772,505 67,583,055 61,576,531 12,690,647 37,345,617 17,546,791

Fig. 1  Gene length distributions of the three assembly approaches. a Co-assembly. b Individual assembly. c Mix assembly. Only genes ≤ 2500 bp 
are included in the histograms
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Fig. 2  Cumulative distribution of gene lengths for the three assembly approaches. a All genes. b Complete genes. c Partial genes. d Incomplete 
genes. Complete genes refers to genes predicted to be complete (having a predicted start codon and a stop codon), partial genes to genes that 
lack either a start or a stop, and incomplete genes to genes that lack both start and stop. Gene length is given in logarithmic scale

Table 2  Pfam annotation statistics for the different assembly approaches

Assembly approach Total number of 
annotated genes

Number of annotated 
complete genes

Number of annotated 
partial genes

Number of 
annotated 
incomplete genes

Individual 11,930,617 2,422,526 4,751,188 4,756,903

Co 13,343,858 4,514,607 5,128,252 3,700,999

Mix 15,566,195 4,584,290 5,751,705 5,230,200
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average amino acid identity [18]. This reduced the num-
ber of individual-assembly genes from 134 to 50 million. 
Likewise, clustering was conducted on the co-assembly 
proteins together with the nonredundant set of individ-
ual-assembly proteins, to generate the mix-assembly 
gene set.

The mix-assembly approach resulted in the larg-
est number of nonredundant genes (67 M), followed 
by individual assembly (50 M) and co-assembly (45 M; 
Table  1). Mix assembly also had the largest number of 
genes predicted to be complete (12 M) followed closely 
by co-assembly (11 M) but twice as many as individual 
assembly (6 M; Table 1).

The gene length distributions were fairly similar for the 
three approaches (Fig. 1), with peaks in the distributions 
between 300 and 350 bp. Co-assembly had the largest 
median gene length (336 bp), although mix assembly had 
the largest number of genes along the full range of gene 
lengths (Fig. 2).

Annotating the proteins against Pfam [23] gave the 
largest number of annotated genes for mix assembly 
(15 M) followed by co-assembly (13 M) and individual 
assembly (12 M), despite that co-assembly had a higher 
proportion of genes with annotation (29.4%) compared 
to the other two (23.0% for mix assembly, 23.8% for indi-
vidual assembly; Table 2).

Since biome-specific gene catalogues are often used 
as reference sequences for mapping of shotgun reads 
from metagenomes or transcriptomes, we further evalu-
ated the gene sets by mapping reads from the metagen-
ome samples to them. The average mapping rates for the 
124 samples were 83.9, 84.7, and 87.7% for individual-, 
co-, and mix assembly, respectively, with numbers rang-
ing from 47.5, 49.2, and 53.2% to 96.2, 96.1, and 97.3% 
for individual-, co-, and mix assembly. The mix-assem-
bly read-mapping rate was significantly higher than the 
individual- (Wilcoxon signed-rank test, P < 10−21) and 
co-assembly (P < 10−21) rates (Fig. 3a). Figure 4 presents 

Fig. 3  Read mapping rates to genes from the three assembly approaches. The boxplots show the distribution of mapping rate (% of reads) for the 
124 samples, based on a random subset of 10,000 forward reads per sample. a When mapping to all genes. b When mapping to genes with Pfam 
annotation
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the cumulative mapping rate by gene length, showing the 
proportion of reads mapping at different gene length cut-
offs. For all three assembly strategies, the highest fraction 
of reads mapping corresponds to complete genes, fol-
lowed by partial genes. Of the three, mix assembly had 
the highest fraction of mapping reads mapping to com-
plete genes (42.6%) and the lowest to partial (32.0%) and 
incomplete (13.1%) genes (see ‘Methods’ for definitions 

of partial and incomplete genes). Mix assembly also 
had the highest proportion of reads mapping to genes 
with a Pfam annotation (56.9%, P < 10−21), followed by 
co-assembly (54.0%) and individual assembly (54.0%) 
(Fig. 3b).

The contribution of genes from the individual- and 
co-assembly to the mix-assembly set of genes is shown 
in Fig.  5. A majority (52%) of the mix-assembly genes 

Fig. 4  Read mapping rate as a function of gene length cutoff. The plots show the proportion of reads mapping at different cutoffs on minimum 
gene length. a All genes. b Complete genes. c Partial genes. d Incomplete genes. Complete genes refer to genes predicted to be complete (having 
a predicted start codon and a stop codon), partial genes to genes that lack either a start or a stop, and incomplete genes to genes that lack both 
start and stop. Gene lengths are given in logarithmic scale
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originates from co-assembly genes (Fig.  5a), represent-
ing 67% of the complete and 50% and 45% of the partial 
and incomplete genes, respectively (data not shown). 
However, among the reads that map to the mix-assem-
bly genes, a larger fraction of reads map to genes derived 
from the individual assembly than to genes derived from 
the co-assembly (Fig.  5b). These seemingly conflicting 

results may reflect that mix-assembly genes derived 
from the individual assembly tend to be of higher abun-
dance in the microbial communities than those from the 
co-assembly. This was confirmed by grouping the mix-
assembly genes in low, median, and high coverage genes, 
where the majority of mapping reads mapped to genes 
derived from co-assembly for low coverage genes, but to 

Fig. 5  Contribution of genes from individual assembly and co-assembly to the mix-assembly gene set. a Cumulative distribution of gene lengths 
for the mix-assembly genes: for all (“All mix”) and for those derived from individual-assembly (“from Ind”) and co-assembly (“from Co”). Gene length 
is given in logarithmic scale. b Read mapping rate as a function of gene length cutoff. c Total number of reads mapping to mix-assembly genes 
derived from either individual assembly or co-assembly, for four bins of genes binned by their estimated coverage in the total metagenome (see 
“Methods”): low (0–50 ×), median (50–500 ×), high (500–5000 ×), and very high (5000–250,000 ×) read depth coverage
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genes derived from individual assembly for high coverage 
genes (Fig. 5c).

The mix-assembly gene set is significantly more 
extensive than the previously published Baltic Sea gene 
catalogue (BARM [6];) and may serve as a valuable 
resource for brackish water research. We compared the 
mix-assembly protein set with the Tara Ocean Micro-
bial Reference Gene Catalog (OM-RGC.v2 [34]). Of the 
67.5 M mix-assembly proteins, only 1.4 M were > 95% 
identical to Tara proteins, and, vice versa, of the 46.7 M 
Tara proteins, 1.3 M were > 95% identical to the mix-
assembly proteins. Hence, the vast majority of the mix-
assembly gene sequences are distinct from Tara genes. 
To increase the usefulness of the mix-assembly gene 
set, we removed genes potentially encoding ribosomal 
RNA and thus falsely predicted as protein coding (n = 
16,804) and conducted taxonomic and functional anno-
tation on the remaining genes. A subset of the genes (n 
= 70,223) was predicted to include encodings of other 
structural RNAs (in Rfam [33]), but we decided to keep 
these since they may also encode important protein-
coding regions. The resulting gene set, which we call 
BAltic Gene Set (BAGS.v1), encompasses 67,566,251 
genes, of which 31.0 M have a taxonomic affiliation (see 
Additional file 3) and 23.4 M have at least one type of 
functional annotation: 15.5 M with Pfam, 21.5 M with 
EggNOG [22], and 1.5 M with dbCAN [24] annotation 
(Table 3).

Twenty-seven percent of the BAGS.v1 genes were 
predicted to be of eukaryotic origin. It should however 
be noted that the gene predictions were conducted 
with a gene caller for prokaryotic genes (Prodigal), and 
that a fraction of the eukaryotic genes has likely been 
imperfectly predicted.

Discussion
Metagenome assembly is commonly carried out either 
by individually assembling reads from each sample [35] 
or by co-assembling reads from all the samples of a 
dataset [2, 6]. Here, the performance of these assem-
bly approaches was compared. Although the number of 
genes was lower for the co-assembly, the total length (in 
number of base pairs) was higher than for the individual 

assembly. The two gene sets reported a similar mapping 
rate, although the co-assembly set had a higher number 
of genes predicted to be complete and a lower number of 
partial and incomplete genes than the individual-assem-
bly set. In this study, we also proposed a new approach 
for assembly, aiming to combine the advantages of the 
individual- and co-assembly approaches, referred to as 
mix assembly. The mix-assembly strategy resulted in sig-
nificantly more genes than the other approaches and also 
in the largest number of complete genes. It further gave 
the highest mapping rates and the greatest number of 
genes with a Pfam annotation. The reason why not only 
the number of genes but also the number of complete 
genes increased compared to the other approaches is 
likely because in the protein clustering process, the long-
est proteins were selected to form cluster seeds. Thus, if 
for example, an incomplete or partial protein from the 
co-assembly set forms a cluster with a complete protein 
from the individual assembly, the complete protein will 
likely represent this cluster in the mix assembly, since it 
is longer. Thereby, the clustering step that combines the 
two gene sets enriches for complete proteins. However, 
it may also to some extent enrich for artificially long pro-
teins that may stem from sequencing, assembly or gene 
calling errors.

Analysing the contribution of individual- and co-
assembly genes in the set of mix-assembly genes 
showed that genes with relatively low coverage (low 
number of mapping reads) in the samples were mainly 
stemming from the co-assembly. This likely reflects 
that co-assembly sometimes is able to recover genes 
that display too low coverage to be assembled from 
individual samples. On the other hand, genes with 
relatively high coverage were mostly originating from 
the individual assembly, which may be caused by the 
co-assembly sometimes breaking in such genes due to 
strain variation. If strain variation for such a gene is less 
pronounced in at least one of the individual samples, 
a longer fraction of the gene could be recovered in the 
individual assembly.

The 67 million genes of the mix assembly are based on 
124 metagenome samples that span the salinity and oxy-
gen gradients of the Baltic Sea and also capture seasonal 
dynamics at two locations [7]. This dataset (BAGS.v1) is a 
tenfold expansion compared to our previous gene set [6] 
and has the potential to serve as an important resource 
for exploring gene functions and serve as a backbone 
for mapping of meta-omics data from brackish environ-
ments. Consistent with our earlier study showing that 
the prokaryotes of the Baltic Sea are closely related to but 
genetically distinct from freshwater and marine relatives 
[35], only a small fraction of the mix-assembly genes dis-
played > 95% amino acid similarity to genes of the Tara 

Table 3  Number of mix-assembly representative genes 
annotated using different databases

Gene completeness dbCAN EggNOG Pfam

Complete 420,422 5,354,169 4,582,506

Partial 562,445 8,374,034 5,751,622

Incomplete 603,580 7,865,395 5,230,173

Total 1,586,447 21,593,598 15,564,301



Page 10 of 11Delgado and Andersson ﻿Microbiome           (2022) 10:72 

Ocean gene catalogue. This implies that the Tara Ocean 
catalogue is not suitable for mapping of meta-omics 
data from the Baltic Sea and emphasizes the need for a 
brackish water microbiome reference gene catalogue. 
The gene catalogue BAGS.v1, including gene and protein 
sequences, and taxonomic and functional annotations, 
is publicly available at the SciLifeLab Data Repository, 
https://​doi.​org/​10.​17044/​scili​felab.​16677​252.

Conclusion
In this study, we have evaluated three metagenome 
assembly approaches for biome-specific gene catalogues. 
The mix-assembly approach, which combines assembly 
on individual samples with co-assembly on all samples, 
outperformed the other two approaches in terms of num-
ber of nonredundant genes, number of complete genes, 
mapping rates, and number of genes with a Pfam annota-
tion. Hence, the mix-assembly approach represents a fea-
sible approach to increase the information gained from 
metagenomic samples.

Abbreviations
BAGS: Baltic Sea gene set; LCA: Lowest common ancestor.
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