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Abstract 

Background:  Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that 
underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in 
adults with excess weight (BMI: 25–35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/
day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible micro‑
crystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interac‑
tions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures 
of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by 
fecal microbiota features or mechanistic biomarkers.

Results:  AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance 
(HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined 
that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-
canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, 
but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid 
pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermenta‑
tion (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC.

Conclusion:  This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests 
that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. 
Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic appli‑
cations and their personalization.

Trial registration:  Clinicaltrials.gov, NCT02​322112, registered on July 3, 2015.
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Background
Obesity and its comorbidities such as type II diabe-
tes have reached epidemic proportions worldwide [1]. 
Observational research has linked dietary fiber with 
reduced prevalence of chronic diseases [2, 3], and mech-
anisms by which fibers exert their benefits have been 
established in animal models [4, 5]. The health effects of 
fibers are dependent on their physicochemical properties 
[6, 7]. Viscous fibers show efficacy in improving lipid and 
glucose metabolism [8, 9], which is reflected in a health 
claim by the European Food Safety Authority for moder-
ately viscous wheat endosperm arabinoxylans (AXs) and 
postprandial glycemic control [10]. Given that average 
fiber consumption remains low in industrialized societies 
[11], fiber supplementation could be an effective treat-
ment or preventive strategy for obesity-related chronic 
diseases [12].

Clinical evidence for the health effects of fiber supple-
ments remains highly inconsistent [13], and it has been 
questioned whether purified (isolated) forms of fiber 
maintain their physiological effects once removed from 
the three-dimensional plant cell wall matrix [2, 14]. In 
this context, the mechanistic foundations for the ben-
eficial effects of purified fibers remain insufficiently 
understood in humans. The strongest evidence exists 
for viscous fibers, which likely prolong satiety and lower 
postprandial metabolic responses by delaying gastric 
emptying and intestinal nutrient absorption [7]. Ferment-
able fibers are hypothesized to favorably modulate the 
gut microbiota [4, 15] in a manner that mitigates obesity 
and related comorbidities [16, 17]. For example, selective 
fermentation of fibers can alter compositional features of 
the gut microbiota in a structure-dependent manner [18, 
19], selecting for bacterial taxa associated with metabolic 
effects (e.g., Prevotella copri [20] and Eubacterium rectale 
[21]). Moreover, fiber fermentation generates metabo-
lites such as short-chain fatty acids (SCFAs), which act 
as signaling molecules that may maintain intestinal bar-
rier integrity and immune homeostasis, and induce hor-
mones that regulate satiety and glucose metabolism [5, 
22]. Some fiber structures can also bind bile acids, which 
display immunomodulatory and metabolic properties 
[23, 24]. The reconfiguration of the bile acid pool might, 
therefore, constitute another mechanism for the physi-
ological effects of fiber [15].

Although the role of the gut microbiome in the health 
effects of dietary fiber has received tremendous attention 
[15, 25], studies in humans have so far only established 

correlations between physiological effects and shifts in 
specific bacterial taxa [26, 27] or metabolites [28, 29] that 
cannot assign causality [30]. A causal role of the micro-
biome has been established in animal models [31], but 
experiments in conventional and germ-free mice have 
demonstrated that the effects of fiber can also be com-
pletely independent of the gut microbiota [32]. Therefore, 
it remains unclear whether the gut microbiota is mecha-
nistically implicated in the physiological effects of fiber, 
and if so, which effects are microbiome-dependent and 
which microbes are involved. Although causality is dif-
ficult to establish in humans [30], comparisons of phys-
icochemically distinct fibers that differ in their degree 
of fermentability could be used to determine whether 
health outcomes are predictable through compositional 
and functional responses of the gut microbiota.

In a previous study [33], we compared the effects of 
high doses of two purified fibers—a moderately viscous 
[34] and fermentable [35] AX with an insoluble, non-
accessible [33] large-particle microcrystalline cellulose 
(MCC)—on compositional and functional features of 
fecal microbiota in adults with excess weight (body mass 
index [BMI]: 25–35 kg/m2). This study showed that AX, 
but not MCC, induced global shifts in the fecal micro-
biota, and enriched, although with a substantial degree 
of inter-individual variation, bacterial taxa (e.g., P. copri) 
[20, 36] and metabolic functions (propionate) [36–38] 
implicated in host metabolic features linked to obesity 
and satiety. Here, we extended this research and assessed 
the effects of the purified fibers on perceived satiety and 
obesity-related surrogate endpoints in the same individu-
als. We hypothesized that administration of a fermentable 
AX would induce physiological effects that were linked to 
compositional and functional changes in fecal microbiota 
(e.g., fermentation), as well as molecular markers of bio-
logical processes induced through microbiome metabo-
lites (e.g., SCFAs). To test this hypothesis, we compared 
the physiological effects of AX with non-accessible MCC 
and explored associations with fecal microbiota compo-
sitional (fiber-responsive taxa and ecological variables of 
the broader community [33]) and functional (SCFAs and 
bile acids) features. To gain insight into potential mech-
anisms, we assessed biomarkers of host-microbiome 
interactions implicated in the pathophysiology of obesity 
(i.e., trimethylamine N-oxide [TMAO], gut hormones, 
cytokines, and measures of intestinal barrier integrity). 
To determine the role of fiber fermentation, we analyzed 
the fecal microbiota from participants that consumed AX 
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to identify bacterial taxa that were involved in the utili-
zation of AX by employing an approach that combined 
ex vivo anaerobic fermentations with bioorthogonal non-
canonical amino acid tagging (BONCAT) and fluores-
cence-activated cell sorting (FACS) [39]. We integrated 
the data using a machine learning approach to determine 
whether effects on satiety or surrogate endpoints could 
be predicted by fecal microbiota features or biomarkers 
of host-microbiome interactions.

Results
Baseline characteristics of study participants
2To compare the effects of AX and MCC supple-
ments at high doses (females: 25 g/day; males: 35 g/
day) and high purity (> 80% fiber) on human health, we 
performed a single-blind, parallel-arm, 6-week, rand-
omized controlled exploratory trial in adults with excess 
weight (Fig.  1). A total of 31 participants (AX: 10F and 
5M; MCC: 11F and 5M) aged 32.9 ± 8.5 years with a 
BMI of 28.7 ± 2.3 kg/m2 completed the study protocol 
and were included in statistical analyses. Mean protocol 
adherence to AX and MCC supplementation was 94.7 ± 
6.5% and 95.0 ± 5.6%, respectively (Additional file 1: Fig-
ure S1). No differences in age, sex, surrogate endpoints, 
or other study variables were detected between groups 
at baseline (see Additional file  2: Table  S1 for baseline 
characteristics).

Dietary intake
Dietary fiber intake increased by 142% and 171% during 
fiber supplementation of AX and MCC, respectively, as 
compared to baseline (p = 0.0002 for both AX and MCC, 
permutational t-test) with no difference between groups. 
This corresponded to an increase from 21 ± 6 and 19 ± 
8 g/day to 46 ± 12 and 44 ± 8 g/day for AX and MCC, 
respectively (Additional file  3: Table  S2). Interestingly, 
sugar consumption also increased by 35% during AX (p 
= 0.04) and 46% during MCC (p = 0.03) supplementa-
tion, likely due to participants incorporating the pow-
dered supplements into foods and drinks that contained 
sugar, such as yogurt and fruit smoothies. No differences 
were detected between groups (p > 0.1), suggesting simi-
lar dietary changes were made by participants in both 
groups.

AX and MCC differ markedly in their physiological effects
Principal component analysis ordination of perceived 
satiety and surrogate endpoints revealed no differences 
at baseline between the AX and MCC groups (p = 0.77, 
permutational multivariate analysis of variance; Fig. 2A). 
In contrast, shifts in the variables from baseline to week 6 
showed strong clustering by treatment group (p = 0.006; 
Fig.  2B), indicating that the two fibers differed in their 
overall physiological effects.

Fig. 1  Study design of the randomized controlled trial. ASA24-Canada, Canadian version of the web-based Automated Self-Administered 24-hour 
Dietary Assessment Tool; stool characteristics, self-reported stool consistency and bowel movement frequency
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Effects of AX and MCC on perceived satiety
AX resulted in higher satiety scores, assessed by the Sati-
ety Labeled Intensity Magnitude (SLIM) scale, 30–60 
min after consuming a meal (referred to as ‘satiety after 
a meal’) compared to MCC (p = 0.035, permutational 
t-test), with between-group differences detected dur-
ing weeks 2 (p = 0.04), 4 (p = 0.007), and 6 (p = 0.03) 
(Fig.  2C). Further evaluation of satiety scores revealed 
that after AX consumption, individuals perceived feel-
ing between “moderately full” and “very full”, while those 
consuming MCC remained between “slightly full” and 
“moderately full”. After participants awoke, AX also con-
sistently increased satiety scores towards feeling “slightly 
full” over the entire treatment period, while MCC tended 
to reduce satiety scores towards feeling “slightly hungry,” 
with between-group differences reaching significance 
during week 5 (p = 0.03) (Fig. 2D).

Effects of AX and MCC on obesity‑related surrogate endpoints 
and biomarkers of host‑microbiome interactions
Among the surrogate endpoints, AX consumption 
reduced homeostatic model assessment of insulin resist-
ance (HOMA-IR; insulin resistance index; p = 0.006; 
Fig.  2E) and increased quantitative insulin sensitiv-
ity check index (QUICKI; insulin sensitivity index, p = 
0.008; Fig.  2F) compared to the MCC group. Effects of 
AX on HOMA-IR showed a 36% difference relative to 
MCC, which is comparable to those reported for other 
microbiome-targeted strategies, such as fecal microbi-
ota transplantation (FMT) [40–42]. MCC reduced fecal 
calprotectin (a surrogate endpoint of intestinal inflam-
mation) when compared to the AX group (p = 0.002), 
and by 39% relative to baseline (p = 0.004) (Fig. 2G). No 
effects of AX or MCC were detected for any other surro-
gate endpoint (Additional file 4: Table S3).

Evaluating biomarkers of host-microbiome interactions 
revealed a 7% reduction from baseline in tumor necrosis 
factor-α (TNF-α) by MCC (p = 0.004; Fig. 2H). No other 
effects of AX or MCC were detected for the remaining 
biomarkers of host-microbiome interactions (Additional 
file  4: Table  S3), despite the fact that the production of 

gut hormones and intestinal barrier integrity have been 
previously linked to fiber fermentation [5, 16].

To confirm significant effects were independent of 
potential confounders, analysis of covariance (ANCOVA) 
models were performed using age, sex, and changes in 
total fiber and sugar consumption as covariates (Addi-
tional file 5: Table S4). Stool characteristic variables were 
also included since obesity has been associated with 
altered bowel habits [43] and, in our preceding study [33], 
AX and MCC promoted more frequent bowel move-
ments (p < 0.05), while AX promoted softer stool con-
sistencies compared to MCC (p < 0.05) (Additional file 4: 
Table  S3). ANCOVA models showed that the observed 
effects were not confounded by host factors, dietary 
changes, or stool characteristics (p < 0.05).

Effects of AX and MCC on functional features of the fecal 
microbiota
As previously shown [33], AX consumption directed 
microbial output of SCFAs in favor of propionate, while 
MCC did not alter fecal SCFAs. Since bile acid deriva-
tives also possess immunomodulatory and metabolic 
properties [23, 24], we applied targeted metabolomics to 
determine the effects of AX and MCC on fecal bile acids. 
This analysis showed that MCC decreased concentra-
tions of apocholic acid (p = 0.009, permutational t-test) 
and hyodeoxycholic acid (p = 0.009) relative to baseline. 
Reductions in total fecal concentrations of bile acids and 
five secondary bile acids—deoxycholic acid, isolitho-
cholic acid (ILCA), taurolithocholic acid (TLCA), tau-
rodeoxycholic acid (TDCA), and glycodeoxycholic acid 
(GDCA)—also approached significance (0.01 < p < 0.05; 
Table 1 and Additional file 6: Table S5). By contrast, AX 
did not reduce bile acid concentrations relative to base-
line but, when compared to MCC, increased concentra-
tions of 7αOH-3-oxo-4-cholestenoic acid (p = 0.0096). 
Changes induced by both treatments also showed large 
standard deviations, indicating that bile acid shifts 
were highly individualized. Overall, our findings sug-
gest that consumption of large-particle MCC alters the 
fecal bile acid profile by reducing secondary bile acid 
concentrations.

Fig. 2  Effects of AX and MCC supplementation on satiety and surrogate endpoints. Principal component analysis plots show A perceived satiety 
and surrogate endpoints at baseline and B their percentage change from baseline per AX and MCC groups. Line graphs show weekly SLIM scale 
ratings C 30–60 min after consuming a meal with AX or MCC and D upon awakening. Bars (insets) represent the area under the SLIM score curve 
(AUC​BL–W6). Scatter plots show E HOMA-IR, F QUICKI, G fecal calprotectin, and H TNF-α at baseline and week 6 of AX or MCC supplementation, 
respectively. Bars (insets) represent the percent change from baseline values per group. To assess within-group changes relative to baseline, data 
were analyzed for C and D using repeated measures one-way ANOVA with permutations and for E to H using paired permutational t-tests. To assess 
between-group differences, data were analyzed for A and B using permutational multivariate analysis of variance based on Manhattan distance 
and for C to H using unpaired permutational t-tests. Statistical significance was set for A to D at p < 0.05 and for E to H at p < 0.01. Data for C to 
H presented as mean ± SD; for E to H symbols represent individual samples. AX, arabinoxylan; HOMA-IR, homeostatic model assessment of insulin 
resistance; MCC, microcrystalline cellulose; QUICKI, quantitative insulin sensitivity check index; SLIM, Satiety Labeled Intensity Magnitude; TNF-α, 
tumor necrosis factor-α

(See figure on next page.)



Page 5 of 22Deehan et al. Microbiome           (2022) 10:77 	

Fig. 2  (See legend on previous page.)
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Identification of bacterial consortia involved in AX 
degradation
Considering that bacteria involved in fiber fermenta-
tion dictate the production of health-related metabo-
lites [44], we aimed to identify the bacterial taxa within 
participants’ fecal microbiota that were involved in the 
fermentation of AX and utilization of breakdown prod-
ucts released during fermentation. We used BONCAT 
to fluorescently label metabolically active bacterial cells 
within the fecal microbiota [39], then sorted and pro-
filed the active cells by FACS and 16S rRNA gene ampli-
con sequencing, respectively (Fig.  3 and Additional 
file  7: Figure S2). Initial comparison of fluorescent cells 
in incubations that contained the cellular activity marker 
L-azidohomoalanine (AHA) plus Cy5-dye, but differed by 
AX amendment, revealed no basal cellular activity in the 
absence of AX; thus, demonstrating that BONCAT was 
highly specific and only detected AX-induced cellular 
activity (Fig. 3).

Compared to the total bacterial community prior 
to incubation with AX, the active consortia had lower 
α-diversity (Shannon index: p = 0.0008, one-way 
ANOVA with permutations) and richness (Chao1 
index: p < 0.0001) with, on average, 31% fewer amplicon 
sequence variant (ASV) numbers (p = 0.0001) (Addi-
tional file  8: Table  S6). Several bacterial taxa previously 
shown to utilize AX were represented among the 31 
dominant ASVs (mean relative abundance > 1%) in the 
active consortia (Additional file  8: Table  S6), including 
ASVs related to Bifidobacterium longum, Blautia obeum, 
Bacteroides ovatus, Bacteroides cellulosilyticus, and E. 
rectale [33, 45]. Overall, these findings suggest that AX 
fermentation is not limited to a few cooperative species 
but extends to numerous members of the broader bacte-
rial community, and involves several primary degraders 
as well as secondary fermenters.

To compare the abundance of individual taxa between 
the active consortia and fecal bacterial community, a 
differential abundance test (DESeq2) was applied. This 
analysis revealed the families Bacteroidaceae, Lactobacil-
laceae, and Enterobacteriaceae were more abundant in 
the active consortia, while Rikenellaceae, Ruminococ-
caceae, and Streptococcaceae were underrepresented. 

Fourteen ASVs were identified to differ between the 
active consortia and fecal bacterial communities prior to 
incubation with AX. Bacteroides koreensis, Bacteroides 
plebeius, Bacteroides xylanisolvens, Lactobacillus spp., 
and Escherichia/Shigella spp. were more abundant in the 
active consortia (p < 0.01). ASVs related to Coprococ-
cus eutactus, Faecalibacterium prausnitzii, and Dialister 
invisus [46], which might be utilizing sugars and meta-
bolic by-products (e.g., acetate and lactate) released dur-
ing AX degradation [5, 33], were also metabolically active 
during incubation with AX but less abundant in the 
active consortia (p < 0.01).

Identification of microbiota‑related predictors of satiety 
and surrogate endpoints
To gain insight into the role of the gut microbiota in the 
physiological effects of fiber, we used a machine learning 
approach to determine predictors for the physiological 
effects of the fibers on perceived satiety and surrogate 
endpoints. Variables related to microbiota compositional 
(fiber-responsive taxa in feces [33], BONCAT identi-
fied active taxa [differentially abundant bacterial ASVs 
and all metabolically active bacterial ASVs with average 
relative abundances ≥ 0.15%] and ecological character-
istics [α-diversity and principal components] [33]) and 
functional (SCFAs and bile acids) features, biomarkers 
of host-microbiome interactions (TMAO, gut hormone, 
cytokine, and barrier function measures), and calorie-
adjusted macronutrient intake data were included in the 
models. For each endpoint affected by fiber consumption, 
high- and low-responders were first identified accord-
ing to the study cohort median (Additional file  9: Fig-
ures S3A and S3B), and datasets were used as predictor 
variables for the training of independent random forest 
classifiers (RFCs) to rank microbiota-related predictors 
that discriminate high-responders from low-responders 
(Additional file 9: Figures S3C and S3D).

For the effect of AX on satiety after a meal, only RFCs 
trained on the metabolically active taxa identified by 
BONCAT resulted in models with significant predic-
tive ability. The best model was obtained with the 14 
differentially abundant ASVs (receiver operating char-
acteristic curves [AUC-ROC] = 0.95; Fig.  4A), but the 

(See figure on next page.)
Fig. 3  Schematic representation of the ex vivo detection assay based on BONCAT. Stool samples stored frozen were thawed, filtered, and washed in 
PBS and then incubated in the presence of AX and the cellular activity marker L-azidohomoalanine (AHA) to detect AX-stimulated bacterial cells. A 
no-amendment control, containing only AHA, was incubated to detect possible basal activity in the absence of AX. Microscopic inspection showed 
no BONCAT signal for all controls; thus, no basal activity was detected. AX-incubated samples were then fixed in ethanol and active cells were 
stained using a Cu(I)-catalyzed click reaction using a Cy5 dye solution. A and B A representative picture of fecal microbiota incubated for 6 h A with 
AX and B without AX (BONCAT control). Stimulated cells, shown in pink as a Cy5-positive BONCAT signal, were sorted by FACS, with all microbial 
cells shown in blue (DAPI stained). DNA was extracted from both sorted cells and samples at 0-h and 6-h anaerobic incubations. The 16S rRNA gene 
was amplified by PCR and amplicons were sequenced using the Illumina Miseq platform. AX, arabinoxylan; BONCAT, bioorthogonal non-canonical 
amino acid tagging; FACS, fluorescence-activated cell sorting
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Fig. 3  (See legend on previous page.)
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model that was based on the 90 active ASVs still showed 
a high prediction accuracy (AUC-ROC = 0.84; Fig. 4B). 
A weak positive correlation that approached signifi-
cance was detected between propionate-producing D. 
invisus  (ASV6pygnt) and satiety (rs = 0.63, q = 0.08, 
Spearman’s correlation; Fig.  4A). Satiety was also nega-
tively correlated with formate-producing Dorea formi-
cigenerans (ASV2xmw96; rs = − 0.81, q = 0.007), with 
butyrate producers Eubacterium ramulus (ASV56kx74; 
rs = − 0.60, q = 0.08) and F. prausnitzii (ASV; rs = − 
0.56, q = 0.098) also showing weak negative correlations 
(Fig.  4B). F. prausnitzii and D. formicigenerans further 
showed increases only in low-responders (p < 0.01). 
Although AX induced fecal propionate [33], which is the 
SCFA with the strongest evidence for satietogenic effects 
[22, 37], RFCs based on fecal SCFA shifts could not pre-
dict satiety after a meal (OOB error > 0.6) (Additional 
file 9: Figure S3C).

The only RFC that predicted HOMA-IR was AX-
induced shifts in secondary bile acids (AUC-ROC = 0.70; 
Fig. 4C). MCC-induced fecal calprotectin responses were 
also predicted by MCC-induced shifts in secondary bile 
acids (AUC-ROC = 0.72; Fig. 4D), but different second-
ary bile acids were predictors. Improvements in HOMA-
IR showed weak inverse correlations with reductions in 
the concentrations of lithocholic acid (LCA) (rs = − 0.62, 
q = 0.08) and its derivative ILCA (rs = − 0.60, q = 0.08) 
(Fig.  4C), while calprotectin responses were negatively 
correlated with reductions in conjugated bile acids TLCA 
(rs = − 0.68, q = 0.03), TDCA (rs = − 0.70, q = 0.03), 
and GDCA (rs = − 0.63, q = 0.05) (Fig. 4D). A compari-
son of fiber-induced bile acid shifts revealed significant 
differences between high-responders and low-respond-
ers, with shifts only being detected in low-responders 
(Fig. 4C and D). For the TNF-α response, only the RFC 
based on calorie-adjusted intakes of macronutrients at 

baseline could predict the effect of MCC (AUC-ROC = 
0.73; Fig. 4E). While the most discriminative nutrient was 
saturated fat, consumption at baseline did not associate 
with TNF-α responses (rs = 0.46, q = 0.17).

To determine whether associations between surrogate 
endpoints and microbiome features were independent 
of confounders shown to impact microbiome composi-
tion [47], we used multivariate generalized linear models 
(GLMs) to control for age, sex, changes in total fiber and 
sugar intake, stool consistency, and bowel movement fre-
quency as covariates (Additional file 10: Table S7). These 
analyses showed that the observed associations were 
not confounded by host or dietary factors (p < 0.1). As 
dietary fibers may indirectly influence the intestinal bile 
acid pool by altering environmental conditions such as 
pH and water availability [6, 48], links to fecal pH and 
moisture content were also evaluated (Additional file 11: 
Figure S4). Though values were not changed by either 
fiber (p > 0.1) [33], positive associations were detected 
between the shifts in fecal pH (q = 0.06) and moisture 
content (q < 0.05) and the bile acid shifts predictive of 
AX- and MCC-induced effects, respectively.

Our study was specifically designed to evaluate mecha-
nistic associations between fiber-responsive bacterial 
taxa [33] and mechanistic biomarkers of host-micro-
biome interactions that relate to fiber fermentation. 
Although SCFAs, barrier function, and the dominant 
AX-responsive taxa (P. copri and B. longum) have been 
implicated in satiety, insulin resistance, and inflammation 
[16, 33], significant predictions were not detected (AUC-
ROCs < 0.70). Additional univariate GLMs reaffirmed 
that the dominant fiber-induced shifts in fecal microbiota 
composition, propionate, and bile acids were not linked 
to the physiological benefits of fiber supplementation (q 
> 0.05; Additional file 12: Figure S5).

Fig. 4  Identification of gut microbiota compositional features and biomarkers of host-microbiome interactions that predict satiety and surrogate 
endpoint responses by machine learning. (left) AUC-ROC curves show the performance accuracy of random forest classifiers trained to predict 
high-vs-low responders for: A and B perceived satiety after a meal with AX using the relative abundance of bacterial taxa activated during ex vivo 
incubation with AX; C HOMA-IR and D fecal calprotectin for AX and MCC, respectively, using fecal bile acid shifts; and E TNF-α for MCC using 
baseline intakes of calorie-adjusted macronutrients. (center) Horizontal bars represent Spearman’s correlation coefficients between endpoints 
and A and B metabolically active ASVs, C and D fecal bile acids, or E macronutrients shown to be important for predicting responses. Mean 
importance values were determined by random forest, which identifies factors that contribute the most to the model. (right) Scatter plots 
show the association between endpoints and the most discriminative microbiota-related factors that correlate with AX-induced A and B satiety 
after a meal and C HOMA-IR attenuation, and D MCC-induced fecal calprotectin attenuation. Vertical bar graphs show the most discriminative 
microbiota-related factors grouped by high- and low-responders. High-responders (black) and low-responders (gray) were defined according to 
the study cohort median. Statistical significance was set at p < 0.05 and FDR adjusted q values < 0.05. ∆, absolute change from baseline to week 
6; %∆, percent change from baseline to week 6; 3√, cube root transformed before analysis; All ASVs, amplicon sequence variants with average 
relative abundances ≥ 0.15%; AX, arabinoxylan; AUC-ROC, area under the receiver operating characteristic curve; BL, baseline; Diff. Abundant 
ASVs, differentially abundant amplicon sequence variants among the bacterial consortia recovered by fluorescence-activated cell sorting; GDCA, 
glycodeoxycholic acid; HOMA-IR, homeostatic model assessment of insulin resistance; ILCA, isolithocholic acid; LCA, lithocholic acid; MCC, 
microcrystalline cellulose; TLCA, taurolithocholic acid; TNF-α, tumor necrosis factor-α

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Discussion
This study established physiological effects for two iso-
lated forms of dietary fiber, AX and MCC, that are thera-
peutically relevant for individuals with excess weight. By 
using BONCAT, we provide evidence that the ability of 
AX to enhance satiety was predicted by bacterial taxa 
involved in its utilization, suggesting that fermentation of 
fiber by the gut microbiota may influence its satietogenic 
effects. In contrast, the AX-induced attenuation of insu-
lin resistance, although linked to fecal bile acid shifts, 
did not show positive correlations with microbiota fea-
tures. Interestingly, MCC, which is non-accessible by gut 
microbiota, showed anti-inflammatory effects in the gut 
by reducing fecal calprotectin levels that were also pre-
dicted by bile acid shifts. Surprisingly, molecular mark-
ers of biological processes hypothesized to link metabolic 
activities of the gut microbiome with host metabolism 
and immunology (i.e., TMAO, gut hormones, cytokines, 
and intestinal barrier integrity) were not affected by 
fermentable AX and could not predict its effects. By 
exploring the role of the gut microbiota in the effects 
of physicochemically distinct fibers, our study provides 
insight as to how fibers may impact satiety and obesity-
related surrogate endpoints in humans.

The ability of AX to induce satiety is in agreement with 
previous research [49] on both long-chain AX supple-
ments [50, 51] and AX-rich whole grains [52–54]. Due 
to its viscous properties, AX may delay gastric emptying, 
thereby prolonging postprandial satiety [7]. Our results 
indicate that microbial fermentation of AX might also 
contribute to perceived satiety during AX consumption 
since satiety scores were predicted by the bacterial taxa 
involved in the breakdown of AX, as detected by BON-
CAT. We observed significant random forest models 
(Fig.  4A and B) and weak positive correlations between 
satiety and propionate producers (D. invisus and B. ple-
beius), as well as negative associations with butyrate 
producers, such as E. ramulus and F. prausnitzii. The 
findings are in overall agreement with the analysis of 
fecal SCFAs, which showed that AX shifts the propionate 
to butyrate ratio in favor of propionate [33]. Therefore, 
substrate competition between propionate and butyrate 
producers may have influenced satiety, as only propi-
onate is shown to be satietogenic in humans [22, 37]. 
Although additional studies are needed to elucidate exact 
mechanisms and cross-feeding interactions, our findings 
provide evidence that the gut microbiota might contrib-
ute to the satiety-enhancing properties of AX in humans.

Although BONCAT has the potential to provide a 
direct assessment of bacterial taxa involved in fiber uti-
lization, the approach is not without limitations. As 
BONCAT applies an in vitro fermentation, in vivo condi-
tions are unlikely to be accurately replicated, and starting 

inoculums may have been affected by oxygen exposure 
during fecal collection, loss of viability during storage, 
and freeze-thawing. Microbes that do not import amino 
acids and incorporate them into newly synthesized pro-
teins would also fail to be detected by BONCAT. Being 
a long-chain highly branched and viscous fiber, the AX 
is further likely to have behaved differently ex vivo than 
in the gastrointestinal tract. These limitations may pro-
vide an explanation for the failure of B. longum and P. 
copri to become metabolically active during the in vitro 
fermentation (Additional file  8: Table  S6), even though 
these species expanded in  vivo through AX [33]. How-
ever, the significant random forest models that resulted 
from including all bacterial ASVs identified by BONCAT 
support the value of this approach and its application in 
human nutritional studies. Future research is needed to 
further explore and refine the application of BONCAT to 
determine the interactions between dietary compounds 
and the microbiome, and to improve and validate experi-
mental procedures.

The ability of different types of AX to improve glucose 
and insulin metabolism is well supported [49, 50, 55, 56] 
and has resulted in an European Food Safety Authority 
health claim [10]. The effect size detected in our study 
was comparable with that in studies that tested alterna-
tive strategies aimed to attenuate insulin resistance in 
individuals with obesity, such as a plant-based diet [40], 
Akkermansia muciniphila [41], or FMT [42]. Compared 
to these strategies, AX supplements would be more 
cost-effective and, since it is a food-grade dietary fiber, 
AX would constitute a promising opportunity for the 
development of functional foods and beverages. Inter-
estingly, HOMA-IR increased in the MCC group, an 
effect likely attributable to the elevated sugar consump-
tion during the treatment period. Given that sugar con-
sumption increased equally in both groups (Additional 
file 3: Table S2), our findings indicate that AX may have 
counteracted the detrimental effects of sugar on insulin 
sensitivity.

Anti-inflammatory effects of MCC have, to our knowl-
edge, not yet been reported in humans. These findings 
are, however, in agreement with research in mice, where 
very high cellulose diets mitigated chemically induced 
colitis [57, 58] and improved LPS-induced intestinal 
permeability [59]. Since the anti-inflammatory effects of 
MCC are novel in humans, larger studies are needed to 
confirm our findings and explore whether anti-inflamma-
tory properties are specific to large-particle, highly crys-
talline cellulose.

Although the physiological effects of AX and MCC dif-
fered, both responses were predictable in random for-
est models through shifts in fecal secondary bile acids, 
albeit different derivatives. For AX, HOMA-IR responses 
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were inversely associated with shifts in LCA and ILCA, 
two bile acids that can regulate glucose homeostasis via 
activating FXR- and TGR5-mediated signaling path-
ways [24]. Fecal calprotectin responses associated with 
MCC-induced reductions in TLCA, TDCA, and GDCA. 
While immunoregulatory properties of these conjugated 
bile acids remain poorly defined, TLCA may exert anti-
inflammatory effects by inhibiting inflammasome signal-
ing [60]. These findings are relevant given the emerging 
role of bile acids in the regulation of metabolism and 
immunology [23, 24]. However, despite good predictive 
power, our correlation analyses identified only nega-
tive correlations between physiological benefits and bile 
acids shifts, and significant shifts in bile acids were only 
observed in low-responders. Cause-and-effect relation-
ships cannot be unraveled with our correlative data, and 
it is possible that the negative associations arose through 
indirect effects of the fibers, such as changes in pH 
(through AX fermentation) or moisture content (through 
MCC stimulating fluid secretions) [6, 7, 48], as suggested 
by our GLMs (Additional file  11: Figure S4). Neverthe-
less, the lack of positive associations between fiber-
induced bile acid shifts and surrogate endpoints suggest 
that modulation of the bile acid pool does not provide a 
primary mechanism for the clinical benefits of AX and 
MCC. The specific effects of the two fibers as they relate 
to reductions in secondary bile acids are still therapeu-
tically relevant as they provide information on how fib-
ers can selectively manipulate bile acids. Secondary bile 
acids are considered to be cytotoxic [61]; therefore, the 
observed reductions might constitute a mechanism by 
which dietary fibers protect against the development of 
colon cancer [62].

Through a direct comparison of the effects of microbi-
ota-accessible and non-accessible fibers in a human trial, 
this study was specifically designed to evaluate the role of 
the microbiome in the effects of fibers and test commonly 
hypothesized mechanistic links between microbial fer-
mentation and physiological effects of fibers [16, 17]. For 
instance, the experimental design allowed us to deter-
mine whether fiber-induced shifts in fecal SCFAs were 
linked to effects on satiety and insulin sensitivity via gut 
hormones or systemic inflammation through improve-
ments in barrier function [5, 16]. However, despite effects 
on satiety and insulin resistance through AX, none of the 
mechanistic biomarkers significantly changed in the AX 
and MCC groups. Even though this was surprising given 
that animal models provide convincing evidence for the 
importance of these mechanisms [4, 5], findings from 
human studies with fermentable fibers are, at best, incon-
clusive [63–65]. In addition, even though B. longum and 
P. copri were the numerically dominant AX-responders 
[33] and have been previously linked to improvements 

in inflammation [66], satiety [36], and insulin sensitivity 
[20] in humans, these taxa did not correlate with physi-
ological outcomes. A microbiome independent effect is 
in agreement with the fact that MCC is not accessible to 
the microbiota, that non-accessible forms of AXs such 
as psyllium can improve insulin sensitivity [67], and that 
fibers can improve insulin sensitivity in germ-free mice 
[32]. Overall, our findings serve as a reminder that cer-
tain physiological effects of fiber might be microbiome 
independent and related to physicochemical attributes of 
fiber, such as viscosity or fecal bulking [6, 7]. Although 
we acknowledge the limitations of mechanistic studies in 
humans [30], as well as the challenges in accurately meas-
uring biomarkers [68, 69] and the small sample size of 
our study, one has to also consider that some principles 
of the mechanistic actions of fibers detected in animal 
models, especially as they relate to the gut microbiota, 
might not apply to humans.

Conclusion
In summary, this study provides evidence for the physi-
ological benefits of purified forms of dietary fibers, a 
notion that has been increasingly questioned in recent 
nutrition literature [2, 14]. Given the importance of sati-
ety, insulin resistance, and systemic inflammation in the 
etiology of obesity and cardiometabolic diseases, our 
findings establish the potential role of purified fibers in 
the prevention and treatment of chronic diseases, while 
also warranting future studies to explore the anti-inflam-
matory effects of MCC. The distinct effects of the two 
fiber types can serve as a basis for a more targeted appli-
cation of dietary fiber, such as AX for type II diabetes and 
MCC for inflammatory diseases, which could ultimately 
inform nutritional guidelines. Our findings also provide 
evidence for the role of fiber-microbiome interactions 
in inducing satiety, while the metabolic and immuno-
logical effects of the fibers may be primarily microbiota-
independent. A better understanding of mechanisms 
by which fibers induce physiological effects in humans 
would contribute to a conceptual framework for the 
development of fiber structures or designer carbohy-
drates with improved clinical efficacy. In this respect, 
our findings that the effects of AX on satiety were linked 
to the ability of an individual’s microbiome to utilize the 
fiber provides a mechanistic basis to optimize fiber appli-
cations through a personalized approach.

Methods
Study design
Registration
As previously described [33], this randomized controlled 
exploratory trial was prospectively registered in July 
2015 at ClinicalTrials.gov (NCT02322112) as part of a 
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large clinical trial aimed at comparing the effects of four 
structurally distinct dietary fibers on the gut microbiota 
and human health. In response to requests by reviewers 
of a grant application, which advised against including a 
premarket ingredient in a large human trial, the AX arm 
was separated from the original trial in October 2016. 
Data from the participants that completed the AX pro-
tocol were analyzed independently and compared to data 
from the participants that completed the MCC protocol 
(microbiota-non-accessible controls) during the same 
period.

Dietary intervention
In brief, 38 individuals with excess weight (BMI: 25–35 
kg/m2) were enrolled and randomly assigned to sup-
plement their habitual diet with either AX or MCC at a 
daily dose of 25 g (females) or 35 g (males), an amount 
that resembles Health Canada recommendations for the 
intake of dietary fiber [70] (Fig.  1). Of the 19 individu-
als enrolled per arm, 15 participants completed the AX 
protocol, and 16 participants completed the MCC proto-
col [33]. The AX used was AGRIFIBER SFC (previously 
named BIOFIBER GUM), a fermentable, long-chain AX 
isolated from corn bran (AgriFiber Solutions LLC, USA), 
while the MCC was MICROCEL MC-12, a non-accessi-
ble, large-particle (160-micron average) wood-derived 
cellulose (Blanver Farmoquimica LTDA, Brazil) [33]. 
The rationale to focus on a BMI range of 25–35 kg/m2 
was that these individuals would be more likely to have 
elevated levels of risk factors that predict cardiometa-
bolic disease, but less likely to have these chronic diseases 
[21, 71]. Our overall goal was to explore if dietary supple-
ments could attenuate these risk factors prior to disease 
onset.

Dietary intake
To assess whether dietary fiber supplementation influ-
enced dietary intake, participants completed two non-
consecutive 24-h dietary recalls at baseline and weeks 
3 and 6 (Fig. 1) using the Canadian version of the web-
based Automated Self-Administered 24-hour Dietary 
Assessment Tool [72]. Mean values of baseline (two 
recalls) and of weeks 3 and 6 (four recalls) were used in 
statistical analyses. Prior to assessing associations, diet 
data were first calorie-adjusted as previously described 
[73].

Perceived satiety
Perceived satiety was evaluated at baseline and weekly 
during the intervention using the validated SLIM ques-
tionnaire (Fig.  1), which is a 100 mm, bidirectional 
hunger-fullness scale anchored by “greatest imaginable 
fullness” (50 mm) and “greatest imaginable hunger” (− 50 

mm), with “neither hungry nor full” in the center (0 mm) 
[74]. Each week, a SLIM scale was completed within (i) 
30 mins of waking and (ii) 30–60 min of consuming a 
meal with AX or MCC added. For between-group com-
parisons, the area under the SLIM curve (AUC​BL–W6) 
was calculated by using the linear trapezoidal method in 
GraphPad Prism. When applicable, missing data points 
were imputed using the mean of the participants’ known 
values, as previously described [75].

Obesity‑related surrogate endpoints
Blood pressure was measured at baseline and week 6 
with an automatic sphygmomanometer (Welch Allyn, 
Hill-Rom Inc., Indiana, USA). Blood samples were also 
collected at baseline and week 6 after a 12-h overnight 
fast using separation tubes, K2EDTA-coated tubes, 
and P800 tubes to obtain serum, plasma, and inhibitor-
treated plasma, respectively. P800 tubes are pre-coated 
with K2EDTA plus a proprietary cocktail of protease, 
esterase, and DPP-IV inhibitors to prevent hormone 
degradation (BD Biosciences, USA). Total cholesterol, 
high-density lipoprotein cholesterol, triglycerides, and 
glucose were then quantified in serum on a Beckman 
Coulter DxC 800 (Beckman Coulter Inc., California, 
USA), with insulin measured in inhibitor-treated plasma 
by electrochemiluminescence immunoassay (ECLIA; 
K15174C, MesoScale Discovery®, Maryland, USA; intra-
assay coefficient of variation [CV] 4.5%). Low-density 
lipoprotein cholesterol, HOMA-IR, and QUICKI values 
were then calculated as previously described [76–78]. To 
assess intestinal and systematic inflammation, fecal cal-
protectin and plasma high-sensitivity C-reactive protein 
were quantified by enzyme-linked immunosorbent assay 
(ELISA; K6927, Immundiagnostik AG, Bensheim, Ger-
many) and ECLIA (K151STD; CV 2.1%), respectively. 
Finally, whole blood was collected for immediate quanti-
fication of complete blood count parameters using a Sys-
mex XN-10 analyzer (Sysmex Corporation, Kobe, Japan).

Biomarkers of host‑microbiome interactions implicated 
in the pathophysiology of obesity
Appetite, glucose metabolism, and systemic inflammation
Several hormonal regulators of appetite and glucose 
metabolism were quantified in inhibitor-treated plasma 
by ECLIA (MesoScale Discovery®). This included total 
ghrelin and peptide YY by a U-PLEX® Assay (K151ACL; 
CV 3.2% and 2.4%), along with active glucagon-like 
peptide-1, glucagon, and leptin by a MULTI-SPOT® 
Assay (K15174C; CV 6.6%, 6.0%, and 5.1%). In addi-
tion, both adipocyte-derived hormone adiponectin, and 
the cytokines TNF-α, interleukin-6, interleukin-8, and 
interleukin-10 were measured in plasma by single-plex 
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(K151BXC; CV 3.3%) and multiplex (K15049D; CV 3.0%, 
4.3%, 3.7%, and 5.8%) assays, respectively.

Intestinal barrier integrity
Lipopolysaccharide-binding protein, albumin, and zonu-
lin were quantified by ELISA as measures of gut barrier 
function recently validated by our group [79]. While 
lipopolysaccharide-binding protein was measured in 
plasma diluted 1:1300 in phosphate-buffered saline (PBS) 
(SEB406Hu, USCN Life Science and Technology, Texas, 
USA; CV 12.6%), albumin and zonulin were measured 
in fecal samples prepared by the Stool Sample Applica-
tion System (K6330, K5600, and K6998SAS, Immundiag-
nostik AG), which diluted samples 1:100 in a proprietary 
extraction buffer.

TMAO
TMAO, a metabolite generated in the liver from the oxi-
dation of bacterial-derived trimethylamine (TMA), was 
measured in serum by high-performance liquid chro-
matography-tandem mass spectrometry as previously 
described [80], with a CV of 5.0%. Briefly, for TMAO 
extraction, 50 μL of thawed serum was spiked with 50 
μL of internal standard solution (TMAO-d9 and TMA-
d9) and 150 μL of methanol with 0.1% formic acid. The 
mixture was then vortexed for 1 min and centrifuged 
at 10,000 rpm for 15 min at 15 °C. The supernatant was 
collected and stored frozen at − 20 °C until analysis. For 
sample derivatization, 25 μL of supernatant was reacted 
with 50 μL of ethyl bromoacetate (4 mg/ml in acetoni-
trile) in the presence of 3 μL concentrated ammonium 
hydroxide for 40 min at room temperature. Then, HPLC-
grade water containing 0.5% formic acid was added to 
obtain the final volume of 500 μL and then stored at – 20 
°C until analysis.

An Agilent 1200 series HPLC system (Agilent Tech-
nologies Inc., California, USA) coupled to a 3200 QTRAP 
mass spectrometer (AB SCIEX, Ontario, Canada) was 
used under turbospray positive mode to analyze standard 
and sample solutions. An Ascentis Express HILIC column 
(15 cm × 2.1 mm, 2.7 μm particle size; Sigma, Missouri, 
USA) was used at room temperature for LC separation. 
Composition of the mobile phase used for isocratic elu-
tion was (solvent A) 0.1% formic acid in acetonitrile and 
(solvent B) 10 mM ammonium formate (70:30, v/v). The 
run time was set as 6 min with a flow rate of 0.25 mL/
min. Electrospray ionization was used under positive-ion 
detection with multiple-reaction monitoring scans. All 
other instrumental parameters used were as follows: cur-
tain gas at 20 arbitrary units; gas 1 at 50; gas 2 at 60; ion 
spray voltage at 5200 V. The dwell time for each transi-
tion ion was 300 ms and the ion source temperature was 
400 °C. Multiple-reaction monitoring transitions used 

were as follows: TMA derivative: 146.1 > 118.1; TMAO: 
76.1 > 58.1; TMA-d9 derivative: 155.1 > 127.1; TMAO-
d9: 85.1 > 68.1.

Fecal bile acids
Fecal bile acids were characterized by targeted metabo-
lomics of 60 bile acids with ultrahigh performance liq-
uid chromatography/multiple-reaction monitoring-mass 
spectrometry at the University of Victoria Genome Brit-
ish Columbia Proteomics Centre as previously described 
[81]. Briefly, bile acids were extracted from lyophilized 
and homogenized fecal samples by adding 1 mL of 75% 
acetonitrile to 10 mg of sample, followed by 20 sec of vor-
texing at 3,000 rpm, 5 min of sonication in an ice water 
bath, and 5 sec of additional vortexing. Samples were 
centrifuged at 15,000 rpm and 10 °C for 15 min, and then 
20 μL of the supernatant was mixed with 60 μL of 50% 
methanol and 40 μL of internal standard. Finally, 10 μL 
of the mixture was injected onto an Agilent 1290 series 
HPLC system coupled to a 4000 QTRAP mass spectrom-
eter. A Waters BEH C18 UPLC column (Waters Corp., 
Massachusetts, USA) was used for chromatographic 
separation. Composition of the mobile phase used for 
binary-solvent gradient elution was 0.01% formic acid in 
water (solvent A) and 0.01% formic acid in acetonitrile 
(solvent B). The flow rate was 0.35 mL/min with the col-
umn temperature maintained at 45 °C.

Ex vivo characterization of the bacterial consortia 
that utilize AX
Collection and processing of fecal samples
Fecal samples were collected at 6 weeks of AX supple-
mentation as previously described [33]. Briefly, fecal 
material was collected in a stool specimen container and 
placed in an air-tight bag that contained a GasPak™ EZ 
Anaerobe Sachet (BD, Canada) to maintain anaerobicity. 
Samples were brought to the clinic within 4 h of defeca-
tion and processed immediately in a Bactron Anaero-
bic Chamber (Shel Lab, Oregon, USA) under anaerobic 
conditions (5% H2, 5% CO2, and 90% N2). Fecal material 
used for BONCAT was then diluted 1:10 in pre-reduced 
molecular grade PBS with 10% glycerol (a method previ-
ously shown to maintain microbiota viability [82]), ali-
quoted, and stored at − 80 °C until being shipped frozen 
on dry ice to the University of Vienna for further analysis.

BONCAT of AX‑utilizing bacterial cells
To identify bacterial taxa involved in the degradation 
of AX and utilization of breakdown products released 
during degradation, we applied BONCAT [39], a fluo-
rescence-based single-cell labeling of cellular activity, 
to week 6 fecal samples from the AX treatment group 
(Fig. 3). Briefly, BONCAT is based on incorporating the 
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non-canonical amino acid AHA instead of L-methionine 
during protein synthesis, followed by fluorescent label-
ling of AHA-containing cellular proteins by azide-alkyne 
click chemistry. Using a Cu(I)-catalyzed reaction, a ter-
minal alkyne coupled fluorescence dye, such as Cy5, can 
be linked to the azide group of the incorporated AHA; 
thus, marking microbial cells that have undergone pro-
tein synthesis during incubation with AHA and AX [83].

To apply BONCAT, fecal homogenates were first 
thawed and introduced into an anaerobic tent (85% 
N2, 10% CO2, 5% H2) upon arrival to the University of 
Vienna, with all reagents and laboratory consumables 
being introduced into the anaerobic tent two days prior 
to the experiment to ensure anaerobicity at the start of 
the experiment. Fecal homogenates were filtered (40 μm 
filter, Corning, Germany) to remove particles, washed 
twice in 1× PBS to remove residual glycerol, and diluted 
1:10 in 1× PBS, as opposed to nutrient-rich media, to 
limit background noise, avoid autofluorescence in the 
Cy5 dye solution, and select for bacterial cells that pref-
erentially utilize AX. Samples were then added to ster-
ile Hungate tubes with 1 mM of cellular activity marker 
AHA (Baseclick GmbH, Germany) and 2 mg/mL of 
in  vitro pre-digestion AX [84] (consistent with dietary 
intakes of AX [85, 86]), and then incubated in an anaero-
bic tent at 37 °C for 6 h. For each sample, a non-amended 
negative control, wherein only 1 mM of AHA was added, 
was also incubated to account for potential basal activity, 
of which there was no basal activity detected. After 6 h of 
incubation, biomasses were washed with 1× PBS, fixed in 
ethanol, and stored at – 20 °C in 1:1 ethanol/PBS.

To prepare the Cy5 dye solution, 1.25 μl of 20 mM 
CuSO4, 2.50 μl of 50 mM THPTA (Baseclick, Germany), 
and 0.30 μl of Cy5 alkyne dye (Jena Bioscience, Germany) 
were left in the dark for 3 min to react and then added to 
221 μl of 1× PBS, 12.5 μl of 100 mM sodium ascorbate 
(Sigma-Aldrich, Austria), and 12.5 μl of 100mM amino-
guanidine hydrochloride (Sigma-Aldrich, Austria). Next, 
300–500 μl of the fixed biomasses were centrifuged at 
10,000 rpm for 10 min and resuspended in 96% ethanol 
once the supernatants were removed. Finally, 60–100 
μl of the dye solution was added to the fixed biomasses, 
incubated in the dark at room temperature for 30 min, 
washed three times with 1× PBS, and then filtered with 
35 μm nylon mesh using 12 × 75 mm BD tubes (BD, Ger-
many) immediately before being sorted by flow cytom-
etry. Biomasses were also collected from the amended 
samples at 0- and 6-h incubations for additional DNA 
extractions.

FACS of AX‑utilizing bacterial cells
Flow cytometry FACS of Cy5-labeled bacterial cells was 
done with an ultra-high-speed cell sorter MoFlo Astrios 

EQ (Beckman Coulter, California, USA) using the soft-
ware Summit v6.2 (Beckman Coulter), as represented 
in Additional file  7: Figure S2. To standardize measure-
ments and assess bacterial size, silica calibration beads 
(100, 500, and 1000 nm, Kisker Biotech, Germany) with 
refractive indexes close to that of biological material were 
recorded. The sorting of Cy5-labeled bacteria was per-
formed as followed: background noise of the machine 
was first detected using the parameters forward scatter 
and side scatter. 488-nm FSC1-Height-Log vs 488-nm 
SSC2-Height-Log was then used to show the different 
sizes of silica beads in the first measurement and the 
scattering of the bacteria in subsequent measurements. 
Bacteria were pre-gated and displayed on a third scatter 
plot with 488 nm SSC-Area-Log vs 640 nm 671/30-Area-
Log axes. Cy5-positive bacteria were then sorted out into 
tubes with a maximum event rate of 50,000 events/s. Rea-
nalysis of the samples showed a purity of more than 99%.

DNA extraction, 16S rRNA gene amplicon sequencing, 
and inference of bacterial ASVs
Bacterial DNA from both FACS-sorted cells (6 h) and 
fecal incubations (0 and 6 h) were extracted using 
QIAamp DNA Mini Kit (Qiagen, Germany) following 
the protocol for bacteria according to the manufacturer’s 
instructions. Cell lysis was further performed enzymati-
cally by first using Proteinase K and then by a second 
lysozyme step (Sigma-Aldrich, Austria). The V3–V4 
region of the 16S rRNA gene was amplified and barcoded 
using a previously described 2-step PCR approach [87] 
with 16S rRNA gene primers S-D-Bact-0341-b-S-17 (5′-
CCT​ACG​GGNGGC​WGC​AG-3′) and S-D-Bact-0785-
a-A-21 (5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′) [88]. 
Barcoded samples were then purified and normalized 
over a SequalPrep™ Normalization Plate Kit (Invitrogen) 
using a Biomek® NXP Span-8 pipetting robot (Beckman 
Coulter, California, USA), then pooled and concentrated 
on columns (Anlaytik Jena). Next, sequence libraries 
were prepared with the Illumina TruSeq Nano Kit as 
previously described [87] by sequencing in paired-end 
mode (2 × 300 nt; v3 chemistry) on an Illumina MiSeq. 
After sequencing, amplicon pools were extracted from 
the raw sequencing data using the FASTQ workflow in 
BaseSpace (Illumina) with default parameters, and then 
sequences were demultiplexed with the python package 
demultiplex [89] by permitting one mismatch each for 
barcodes, linkers, and primers. Contaminants, including 
mitochondria and chloroplast sequences, were removed 
using the R package decontam v1.6.0 [90] with the preva-
lence method and a threshold setting of 0.01. Sequence 
data were then analyzed using a bioinformatic approach 
based on ASVs as described previously [39, 91].
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Statistical analyses
Statistical assessment of clinical effects
Statistical analyses were performed using R v3.5.1, Stata 
v15.0, and GraphPad Prism v9.1.2. Prior to statistical 
analyses, outliers were identified and removed based 
on a mean ± five standard deviation cutoff (≤ 2 partici-
pants per endpoint) [92]. To assess the overall effects of 
fiber supplementation on perceived satiety and surrogate 
endpoints, data were ordinated by principal component 
analysis using factoextra [93] and FactoMineR [94] pack-
ages. Then, between-group differences (AX-vs-MCC) 
were assessed by permutational multivariate analysis 
of variance based on Manhattan distances [95] using 
the Adonis function in the vegan [96] package. For per-
ceived satiety, surrogate endpoints, biomarkers (apart 
from SCFAs [33]), and diet variables, repeated measures 
one-way ANOVA and paired t-tests with permutations 
(n = 1000) were applied to compare within-group differ-
ences relative to baseline using the permuco [97] package. 
Between-group differences were assessed by unpaired 
permutational t-tests (n = 1000) using the lmPerm [98] 
package. For BONCAT identified bacterial ASVs, the 
DEseq2 [99] package was used to identify ASVs whose 
abundance differed in the bacterial consortia recovered 
by FACS after a 6-h incubation in the presence of AX as 
compared to the total fecal bacterial communities after 
0- and 6-h incubations. For surrogate endpoints, mecha-
nistic biomarkers, and bacterial ASVs, a more stringent 
cutoff of p < 0.01 was considered significant to account 
for multiple comparisons and to detect only the robust 
effects of AX and MCC consumption, while p < 0.05 was 
considered significant for the remaining analyses where 
relatively few comparisons were made.

Machine learning models to predict clinical effects
To identify potential determinants of host-microbiome 
interactions that predicted the effects of fiber supple-
mentation on perceived satiety and surrogate endpoints, 
separate RFCs were independently trained on changes in 
bacterial composition, ecological variables of the broader 
bacterial community (as previously determined [33]), 
mechanistic biomarkers, and macronutrient intake data-
sets (refer to Additional file  13: Table  S8 for a descrip-
tion of each predictor dataset). Random forest uses 
supervised tree-based machine learning algorithms that 
are purported to be a robust approach for the discrimi-
nant analysis of high dimensional, low sample size data 
[100–102]. Prior to analysis, participants were classified 
as high- or low-responders for each endpoint accord-
ing to the study cohort median, as in satiety after a meal 
(AUC​BL–W6), HOMA-IR, fecal calprotectin, and TNF-α 
(percentage change). Since HOMA-IR and QUICKI 
indexes showed significant collinearity (rs = − 0.97 and p 

< 0.0001, Pearson’s correlation) with the same classifica-
tions, RFC analyses were only performed on HOMA-IR.

Independent RFCs were performed using the default 
settings in the randomForest [103] package, with the 
generalization error of each RFC estimated across 100 
replicates using the leave-one-out cross-validation as 
previously described [104]. To evaluate the performance 
of each RFC, AUC-ROCs were generated from the true 
possible cross-validated results using the pROC [105] 
package and average out-of-bag error rates were esti-
mated across 100 replicates. RFCs with AUC-ROC values 
≥ 0.7 and out-of-bag error rates < 0.6 were considered to 
have good prediction accuracy [102]. A confusion matrix 
was further generated to evaluate subgroup prediction 
accuracy. To determine the importance of each individual 
variable for the classification of high-vs-low-responders, 
average mean importance scores were calculated by 100 
replicates estimation.

To support the RFCs, Spearman’s correlations were 
performed between the endpoint and its best predic-
tors, which showed the directionality of the associa-
tions. Univariate GLMs were further performed between 
the endpoint and the dominant fiber-induced shifts in 
fecal microbiota composition, propionate, and bile acids 
observed. To account for multiple comparisons, false 
discovery rate adjusted q values < 0.05 were considered 
significant. Data distributions were visually assessed by 
inspection of residual and histogram plots. Non-normally 
distributed data were cubed-root transformed prior to 
analysis by Gaussian-distribution GLMs with the identity 
link. Binominal-distribution GLMs with the logistic link 
were alternatively applied for HOMA-IR, as percentage 
change data were binomially distributed.

Adjusting for potential confounding effects
ANCOVA models were used to adjust for covariates that 
may have confounded the observed clinical effects. Multi-
variate GLMs were alternatively used to adjust for covari-
ates that may have confounded the associations detected 
between surrogate endpoints and microbiome markers. 
Due to limitations in statistical power (small sample size), 
separate ANCOVA models and GLMs were performed for 
each covariate. Statistical significance was considered at p < 
0.05 as relatively few comparisons were made.

Abbreviations
ANCOVA: Analysis of covariance; ASV: Amplicon sequence variant; AUC-ROC: 
Area under the receiver operating characteristic curve; AX: Arabinoxylan; 
BMI: Body mass index; BONCAT​: Bioorthogonal non-canonical amino acid 
tagging; CV: Intra-assay coefficient of variation; ECLIA: Electrochemilumines‑
cence immunoassay; ELISA: Enzyme-linked immunosorbent assay; FACS: 
Fluorescence-activated cell sorting; FMT: Fecal microbiota transplantation; 
GDCA: Glycodeoxycholic acid; GLM: Generalized linear model; HOMA-IR: 
Homeostatic model assessment of insulin resistance; ILCA: Isolithocholic acid; 



Page 18 of 22Deehan et al. Microbiome           (2022) 10:77 

LCA: Lithocholic acid; MCC: Microcrystalline cellulose; PBS: Phosphate-buffered 
saline; QUICKI: Quantitative insulin sensitivity check index; RFC: Random forest 
classifier; SCFA: Short-chain fatty acid; SLIM: Satiety Labeled Intensity Magni‑
tude; TDCA: Taurodeoxycholic acid; TLCA: Taurolithocholic acid; TMA: Trimeth‑
ylamine; TMAO: Trimethylamine N-oxide; TNF-α: Tumor necrosis factor-α.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01248-5.

Additional file 1: Figure S1. Adherence to the study protocol as esti‑
mated by the average amount (weight) of dietary fiber consumed during 
the intervention period.

Additional file 2: Table S1. Baseline clinical measurements. Table 
provides the anthropometric measurements, surrogate endpoints, and 
biomarkers of host-microbiota interactions assessed at baseline, with 
participant grouped by arabinoxylan or microcrystalline cellulose sup‑
plementation. Data provided as mean ± SD.

Additional file 3: Table S2. Macronutrient consumption at baseline and 
during arabinoxylan or microcrystalline cellulose supplementation. Table 
provides total dietary calories and macronutrients as assessed by the 
Canadian version of the web-based Automated Self-Administered 24-hour 
Dietary Assessment Tool, with participant grouped by arabinoxylan or 
microcrystalline cellulose supplementation. Data provided as mean ± SD.

Additional file 4: Table S3. Clinical measurements at baseline and six 
weeks of arabinoxylan or microcrystalline cellulose supplementation. 
Table provides the anthropometric measurements, surrogate endpoints, 
biomarkers of host-microbiota interactions, and stool characteristics 
assessed, with participant grouped by arabinoxylan or microcrystalline 
cellulose supplementation. Data provided as mean ± SD.

Additional file 5: Table S4. Covariate-adjustment of dietary fiber treat‑
ment effects by analysis of covariance (ANCOVA). Table provides p values 
from separate ANCOVA models used to adjust for the following covariates: 
age, sex, total dietary fiber intake, total dietary sugar intake, stool consist‑
ency, and bowel movement frequency.

Additional file 6: Table S5. Fecal concentrations of remaining bile acids 
detected at baseline and six weeks of arabinoxylan or microcrystalline 
cellulose supplementation. Table provides the remaining 29 bile acid com‑
pounds that were detected in < 90% of fecal samples, with participant 
grouped by arabinoxylan or microcrystalline cellulose supplementation.

Additional file 7: Figure S2. Sorting of AX-stimulated bacterial cells 
by FACS on a MoFlow Astrios EQ cell sorter. As shown in the dot plots, 
A background noise of the machine was detected using FSC and SSC 
parameters. B Bacterial cells were measured in the same setting and 
pre-gated. C An example of Cy5-negative cells is presented in the dot 
plot showing the Cy5 channel via the SSC channel. D An example of Cy5-
positive fluorescent cells (activated by AX) that were gated and sorted out 
by FACS. AX, arabinoxylan; FACS, fluorescence-activated cell sorting; FSC, 
forward scatter; SSC, side scatter.

Additional file 8: Table S6. Relative abundance of bacterial taxa acti‑
vated through ex vivo incubation with arabinoxylan and recovered by 
fluorescence-activated cell sorting (FACS). Table provides α-diversity and 
the bacterial taxa that were activated at 6-h incubation with arabinoxylan, 
recovered by FACS, showed a mean relative abundance > 1%, and/or 
showed a differential abundance in the recovered consortia relative to the 
total fecal communities. Data provided as mean ± SD.

Additional file 9: Figure S3. Confirmation of gut microbiota composi‑
tional features and mechanistic biomarkers that predict clinical responses. 
Line graphs show differences in the effects of A AX on perceived satiety 
after a meal and HOMA-IR and B MCC on fecal calprotectin and TNF-α 
for high and low responders, as defined according to the study cohort 
median. AUC-ROC values show the performance accuracy of random 
forest classifiers for predicting high-vs-low responders in C AX-induced 
perceived satiety after a meal and HOMA-IR attenuation, D MCC-induced 

fecal calprotectin and TNF-α attenuation, and E AX and MCC induced 
changes in HOMA-IR, fecal calprotectin, and TNF-α. High and low respond‑
ers were defined according to the study cohort median. Black cells denote 
OOB error rates ≥ 0.6. Prediction performance of random forest classifiers 
trained to predict high-vs-low responders in AX-induced F and G satiety 
after a meal and H HOMA-IR attenuation, and MCC-induced I fecal 
calprotectin and J TNF-α attenuation. OOB shows the mean prediction 
error of the random forests model with boosted decision trees (n = 500). 
The confusion matrix shows subgroup prediction accuracy, where row 
i and column j indicates the number of subjects predicted as i but were 
actually classified as j. Error rates indicate the percentage of incorrect 
classifications. ∆, absolute change from baseline to week 6; %∆, percent 
change from baseline to week 6; ASV, amplicon sequence variant; AX, 
arabinoxylan; AUC-ROC, area under the receiver operating characteristic 
curve; HOMA-IR, homeostatic model assessment of insulin resistance; 
MCC, microcrystalline cellulose; OTU, operational taxonomic unit; OOB: 
out-of-bag; SLIM, Satiety Labeled Intensity Magnitude; TNF-α, tumor 
necrosis factor-α.

Additional file 10: Table S7. Univariate and covariate-adjusted general‑
ized linear models (GLMs) assessing fecal microbiota-related factors that 
associate with surrogate endpoints of dietary fiber supplementation. Table 
provides β-coefficient directionality and p values from separate GLMs 
used to adjust for the following covariates: age, sex, total dietary fiber 
intake, total dietary sugar intake, stool consistency, and bowel movement 
frequency.

Additional file 11: Figure S4. Scatter plots show Spearman’s correlations 
between shifts in A and B fecal pH and C and D fecal moisture content 
and changes in the fecal concentrations of bile acids shown to predict the 
arabinoxylan and microcrystalline cellulose induced reductions in HOMA-
IR and fecal calprotectin, respectively. Statistical significance was set at 
FDR adjusted q values < 0.05. GDCA, glycodeoxycholic acid; HOMA-IR, 
homeostatic model assessment of insulin resistance; ILCA, isolithocholic 
acid; LCA, lithocholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolitho‑
cholic acid.

Additional file 12: Figure S5. Associations between the effects on per‑
ceived satiety and surrogate endpoints and the dominant fecal microbiota 
features affected by fiber supplementation. Heatmap shows cubed-root 
transformed β-coefficients of univariate generalized linear models per‑
formed on the compositional (dominant AX-responsive taxa at baseline, 
shifts, and ex vivo) and functional (fecal propionate and bile acid shifts) 
features of the gut microbiota. Statistical significance was considered at 
FDR corrected q values < 0.05. ∆, absolute change from baseline to week 
6; %∆, percent change from baseline to week 6; 7αOHCA; 7αOH-3-oxo-
4-cholestenoic acid; ApoCA; apocholic acid; ASV, amplicon sequence 
variant; AUC, area under the curve; AX, arabinoxylan; BL, baseline; HDCA, 
hyodeoxycholic acid; HOMA-IR, homeostatic model assessment of insulin 
resistance; MCC, microcrystalline cellulose; OTU, operational taxonomic 
unit; TNF-α, tumor necrosis factor-α.

Additional file 13: Table S8. Description of predictor datasets used for 
training the independent random forest classifiers. Table provides both a 
brief and detailed description of the variables included in each predictor 
dataset used for the random forest analyses, as referenced in Fig. 4 and 
Additional file 9: Figure S3.
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