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METHODOLOGY

MetaDecoder: a novel method for clustering 
metagenomic contigs
Cong‑Cong Liu1, Shan‑Shan Dong1, Jia‑Bin Chen1, Chen Wang1, Pan Ning2, Yan Guo1* and Tie‑Lin Yang1,3*   

Abstract 

Background:  Clustering the metagenomic contigs into potential genomes is a key step to investigate the func‑
tional roles of microbial populations. Existing algorithms have achieved considerable success with simulated or real 
sequencing datasets. However, accurately classifying contigs from complex metagenomes is still a challenge.

Results:  We introduced a novel clustering algorithm, MetaDecoder, which can classify metagenomic contigs based 
on the frequencies of k-mers and coverages. MetaDecoder was built as a two-layer model with the first layer being a 
GPU-based modified Dirichlet process Gaussian mixture model (DPGMM), which controls the weight of each DPGMM 
cluster to avoid over-segmentation by dynamically dissolving contigs in small clusters and reassigning them to the 
remaining clusters. The second layer comprises a semi-supervised k-mer frequency probabilistic model and a modi‑
fied Gaussian mixture model for modeling the coverage based on single copy marker genes. Benchmarks on simu‑
lated and real-world datasets demonstrated that MetaDecoder can be served as a promising approach for effectively 
clustering metagenomic contigs.

Conclusions:  In conclusion, we developed the GPU-based MetaDecoder for effectively clustering metagenomic 
contigs and reconstructing microbial communities from microbial data. Applying MetaDecoder on both simulated 
and real-world datasets demonstrated that it could generate more complete clusters with lower contamination. Using 
MetaDecoder, we identified novel high-quality genomes and expanded the existing catalog of bacterial genomes.
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Background
Shotgun sequencing has been widely used to obtain high-
quality microbial data and reconstruct the genomes of 
individual species from environmental communities [1] 
and human bodies [2]. Many assemblers have been devel-
oped for computationally reconstructing microbial com-
munities using sequencing reads [3–6]. Reference-based 

taxonomic annotation has been used to identify the 
genomes; however, it was estimated that only 2.1% of 
prokaryotic genomes have been sequenced [7]. In addi-
tion, limited by the complexity of mixed genomes, 
sequencing bias and errors, the assembled metagenome 
is still highly fragmented with numerous short contigs. 
Therefore, the major challenge in metagenomics is how 
to precisely classify contigs (especially for short contigs) 
into species-level groups.

To cluster metagenomic contigs, current popular clus-
tering algorithms [8–19] are usually developed on the 
basis of  k-mer frequency and coverage, since different 
microbial genomes have specific composition and abun-
dance. However, the performance of these tools (e.g., 
CONCOCT [10], VAMB [11], and MetaBAT2 [12]) is 
relatively poor when dealing with similar genomes. To 
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solve this problem, single-copy marker genes can be 
added to the model to distinguish similar genomes [13, 
14]. However, tools (e.g., MaxBin2 [14]) using marker 
genes on all contigs directly may not perform well on 
datasets with high complexity. That is because the num-
ber of genomes estimated according to different single-
copy marker genes varies in complex datasets, making 
it difficult to determine the actual number of genomes. 
To combine the advantages of different tools, an assem-
ble method, DASTool [9], was developed to combine the 
results of different methods and improve cluster quality. 
However, it is still a challenge to separate complete and 
pure genomes from environmental samples.

Considering the real metagenomics data are usually 
complex and containing similar genomes, we hypoth-
esized that using marker genes after reducing the com-
plexity of the datasets might be helpful for clustering 
metagenomic contigs. Therefore, we designed a two-layer 
probabilistic model. We first applied a modified Dirichlet 
process Gaussian mixture model (DPGMM) on all con-
tigs to generate the preliminary clusters to reduce the 

complexity. Then, each preliminary cluster with lower 
complexity than the original data containing all contigs 
was involved in the second layer to be further clustered, 
which comprised k-mer frequency probabilistic model 
and coverage model on the basis of single-copy marker 
genes. As shown in our results, applying MetaDecoder 
on both simulated and real-world datasets demonstrated 
that it could generate more complete clusters with lower 
contamination.

Results
An overview of MetaDecoder
MetaDecoder is constructed as a two-layer model (Fig. 1). 
At the first layer, k-mer frequencies and coverages of all 
contigs are merged together as inputs to the GPU-based 
modified DPGMM for preliminary clustering, which can 
dynamically dissolve small clusters and reassign contigs 
to the remaining clusters to avoid over-segmentation. We 
monitor the average Euclidian distance of pairwise k-mer 
frequencies within each cluster and discard the abnormal 
clusters (see the “Methods” section). Each preliminary 

Fig. 1  The two-layer architecture of MetaDecoder. A GPU-based modified Dirichlet process Gaussian mixture model (DPGMM) is designed as 
the first layer to cluster all contigs (≥ 2.5 Kb by default) into preliminary clusters based on the combination of k-mer frequency and coverage. 
These clusters with an average Euclidian distance of pairwise k-mer frequencies being greater than 0.04 will be marked as abnormal clusters and 
removed from the subsequent analysis. Each preliminary cluster is then involved in the second layer to be further clustered, which comprises a 
semi-supervised k-mer frequency probabilistic model with an elaborated seed selection model, and a modified Gaussian mixture model (GMM) as 
the coverage probabilistic model. Pure clusters (with an estimated genome number of one) are output, and the remaining contigs will continue to 
the next iteration until all contigs are consumed
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cluster derived from the DPGMM is involved in the sec-
ond layer to be further clustered, which comprises two 
major models modeling k-mer frequencies and cover-
ages, respectively. Firstly, semi-supervised k-mer fre-
quency probabilistic model is trained by an elaborated 
seed selection model on the basis of the single-copy 
marker genes, and then predicts the classification prob-
abilities (Supplementary Fig. S1), which are passed as 
priors to the coverage probabilistic model. Secondly, a 
modified multivariate Gaussian mixture model (GMM) 
models the coverages combined with the adaptive priors 
to cluster the contigs using the expectation-maximiza-
tion (EM) algorithm. Clusters with an estimated genome 
number of one are output. The remaining contigs will 

continue to the next iteration. The iterations will stop 
until all contigs are consumed.

Clustering benchmarks on simulated datasets
To evaluate the clustering performance of MetaDecoder 
on simulated datasets, we first simulated two samples of 
sequencing reads based on 100 genomes (Supplemen-
tary Table S1) and constructed an assembly contain-
ing 20,412 contigs. Benchmarks of MetaDecoder and 
other programs were summarized in Fig. 2, Supplemen-
tary Fig. S2, and Supplementary Table S2. The programs 
included MetaDecoder, MetaDecoder with the mini-
mum sequence length setting to 1 Kb (hereafter referred 
as MetaDecoder1000), CONCOCT [10], MaxBin2 [14], 

Fig. 2  Clustering benchmarks on a simulated dataset. A The number of clusters with different recall levels were shown at two precision levels. 
Programs were run with single or two samples. B The F1 scores of all programs run with a single and two samples. All programs were run with their 
default parameters. DASTool was run with two combinations: (1) DASTool_MM for MetaDecoder and MetaBAT2; (2) DASTool_CM for CONCOCT and 
MetaBAT2. MetaDecoder with minimum sequence length setting to 1 Kb (MetaDecoder1000) was also added for benchmarking
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MetaBAT2 [12], VAMB [11], and two combinations of 
DASTool [9] (DASTool_MM: MetaDecoder and Meta-
BAT2; DASTool_CM: CONCOCT and MetaBAT2). 
Among all programs, MetaDecoder achieved the high-
est average F1 scores with both single and multiple sam-
ples. For the single sample, the average F1 scores of all 
programs were 96.52% (MetaDecoder), 97.14% (Meta-
Decoder1000), 85.07% (CONCOCT), 84.43% (Max-
Bin2), 94.72% (MetaBAT2), 88.49% (VAMB), 89.62% 
(DASTool_MM), and 90.19% (DASTool_CM), respec-
tively. The numbers of high-quality clusters (preci-
sion  (purity) ≥ 0.95 and recall  (completeness) ≥ 0.90) 
identified by each program were 84 (MetaDecoder), 88 
(MetaDecoder1000), 61 (CONCOCT), 58 (MaxBin2), 
86 (MetaBAT2), 66 (VAMB), 83 (DASTool_MM), and 
77 (DASTool_CM). MetaDecoder and VAMB revealed 
all 100 genomes in the metagenome, while 10, 10, 2, 7, 
and 7 genomes were discarded by CONCOCT, MaxBin2, 
MetaBAT2, DASTool_MM, and DASTool_CM, respec-
tively. There were three similar Bacillus species, B. cellu-
losilyticus, B. cytotoxicus, and B. thuringiensis, of which 
B. cytotoxicus was not recognized by any other clustering 
programs except for MetaDecoder and VAMB. In addi-
tion, B. thuringiensis was missed from the results of Max-
Bin2, DASTool_MM, and DASTool_CM. The F1 scores 
of B. thuringiensis reported by CONCOCT and Meta-
BAT2 were 63.03% and 69.06%, respectively. Although 
VAMB found all three Bacillus species, it only obtained 
a very low F1 score (0.52%), while MetaDecoder obtained 
the highest F1 score of 89.93%. For multiple samples, the 
average F1 scores of MetaDecoder, MetaDecoder1000, 
CONCOCT, MaxBin2, MetaBAT2, VAMB, DASTool_
MM, and DASTool_CM were 97.49%, 97.54%, 82.63%, 
92.79%, 96.45%, 92.53%, 93.95%, and 89.52%, respectively. 
The numbers of high-quality clusters identified by these 
programs were 90, 93, 58, 72, 87, 83, 88, and 78, respec-
tively. MetaDecoder and VAMB identified all genomes, 
while CONCOCT, MaxBin2, MetaBAT2, DASTool_MM, 
and DASTool_CM missed 12, 3, 1, 4, and 8 genomes, 
respectively. It was noted that MetaDecoder achieved 
the highest average precision of 99.84% compared to oth-
ers (CONCOCT: 82.97%, MaxBin2: 93.82%, MetaBAT2: 
98.87%, VAMB: 97.89%, DASTool_MM: 95.88% and 
DASTool_CM: 91.33%).

Clustering benchmarks on CAMI datasets
We next benchmarked MetaDecoder and other programs 
on some more complex Critical Assessment of Metage-
nome Interpretation (CAMI) datasets (CAMI I Medium 
and High Complexity datasets, 64 CAMI II Mouse gut 
datasets and five CAMI II Human Microbiome Project 
datasets). The CAMI aims to identify and implement best 

practices for benchmarking in microbiome research (e.g., 
clustering metagenomic contigs) [20].

In two CAMI I datasets with different complexity (225 
and 450 genomes for Medium and High Complexity 
datasets), MetaDecoder obtained the most high-qual-
ity clusters (precision ≥ 0.95 and recall ≥ 0.90) (Fig.  3A, 
Supplementary Fig. S3, and Supplementary Table S3). 
For CAMI I Medium Complexity dataset, the num-
ber of high-quality clusters predicted by each program 
was 108 (MetaDecoder), 108 (MetaDecoder1000), 92 
(CONCOCT), 82 (MaxBin2), 103 (MetaBAT2), and 50 
(VAMB). MetaDecoder also generated more clusters at 
each threshold (recall from 0.95 to 0.50 under the preci-
sion threshold of 0.95 or 0.90) on CAMI I High Complex-
ity dataset. There were 190 and 201 high-quality clusters 
identified by MetaDecoder and MetaDecoder1000 from 
this complex dataset, while MetaBAT2 (which performs 
best among the remaining programs) identified 168 clus-
ters with the same threshold. Based on the combination 
of MetaDecoder and MetaBAT2, DASTool reported 202 
high-quality clusters. These results indicate that our pro-
gram can generate more complete clusters with lower 
contamination on complex datasets.

In a total of 64 CAMI II Mouse gut datasets (Fig. 3B, 
Supplementary Figs. S4, S5, and Supplementary Table 
S4), 804, 669, 895, 277, and 1068 high-quality clusters 
were predicted by CONCOCT, MaxBin2, MetaBAT2, 
VAMB, and DASTool_CM, respectively. For comparison, 
the numbers of high-quality clusters identified by Meta-
Decoder, MetaDecoder1000, and DASTool_MM were 
1,120, 1162 and 1141 respectively. In addition, MetaDe-
coder also identified a higher number of clusters under 
each precision and recall threshold.

In five CAMI II Human Microbiome Project datasets, 
we removed MaxBin2 duo to its excessive runtime with 
multiple samples. MetaDecoder showed considerable 
performance at every threshold level on these five data-
sets (Fig. 3C, Supplementary Fig. S6, and Supplementary 
Table S5). The largest genome in these five CAMI HMP 
datasets was 11,694,096 bp. MetaDecoder and DASTool 
did not report any of the genomes larger than this size 
(Supplementary Table S5). Meanwhile, CONCOCT, 
MetaBAT2, and VAMB predicted 99, 46, and 28 clusters 
larger than this size (Fig.  3D). They may place different 
genomes in the same cluster, which will be filtered out 
under precision ≥ 0.95. We got an additional improve-
ment using a combination of MetaDecoder and Meta-
BAT2 with DASTool. It improved the purity of clusters 
and recovered the most high-quality genomes.

Clustering benchmarks on real‑world datasets
For the real-world datasets, we first used two envi-
ronmental datasets from a high-CO2 cold-water 
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geyser for benchmarking MetaDecoder (including 
MetaDecoder1000) and other programs. Two samples 
(SRR1534387 and SRR1534154) were collected on 3.0 μm 
and 0.2 μm filters from subsurface aquifers, respectively. 

We used CheckM [21] to evaluate completeness and 
contamination of clusters produced by all programs. 
The results showed that MetaDecoder obtained the 
most high-quality clusters (contamination ≤ 0.05 and 

Fig. 3  Clustering benchmarks on CAMI datasets. The number of clusters with different recall levels are shown at two precision levels (A CAMI I 
Medium and High Complexity datasets, B CAMI II Mouse gut datasets, C CAMI II Human Microbiome Project datasets). D Distribution of cluster size 
at each recall level on CAMI II Human Microbiome Project datasets. All programs were run in multi-sample mode (if have multiple samples) with 
their default parameters except for MaxBin2 on CAMI I High Complexity dataset. MaxBin2 was run with a single merged sample on this dataset 
and disabled on the CAMI II Human Microbiome Project datasets due to the excessive runtime with multiple samples. DASTool was run with two 
combinations: (1) DASTool_MM for MetaDecoder and MetaBAT2; (2) DASTool_CM for CONCOCT and MetaBAT2. MetaDecoder with minimum 
sequence length setting to 1 Kb (MetaDecoder1000) was also added for benchmarking.
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completeness ≥ 0.90) on both datasets (SRR1534387: 32 
and SRR1534154: 34), compared to CONCOCT [10] (22 
and 14), MaxBin2 [14] (18 and 16), MetaBAT2 [12] (27 
and 28), VAMB [11] (21 and 18) (Fig. 4 and Supplemen-
tary Table S6). With the combination of MetaDecoder 
and Metabat2, DASTool recovered 34 and 33 high-qual-
ity clusters for SRR1534387 and SRR1534154, respec-
tively. Taxonomic classifications of these 66 high-quality 
clusters were determined by GTDB-TK [22–24] (Sup-
plementary Table S7). We obtained a new high-quality 
member (SRR1534154.metadecoder.15) in genus Sulfuri-
monas. Species in this genus are sulfur-oxidizing bacteria 
and commonly live in deep sea-vents, terrestrial habitats 
and marine sediments [25].

We next benchmarked the clustering performance 
on 24 real-world datasets downloaded from Human 
Microbiome Project (HMP). MetaDecoder identified 
778 genomes with contamination ≤ 0.05 and complete-
ness ≥ 0.50 compared to CONCOCT (415), MaxBin2 
(308), MetaBAT2 (639), VAMB (456), DASTool_MM 
(539), and DASTool_CM (488). Of which, MetaDe-
coder recovered 406 high-quality genomes with com-
pleteness ≥ 0.90 at the same contamination level, while 
CONCOCT, MaxBin2, MetaBAT2, VAMB, DASTool_
MM, and DASTool_CM identified 297, 207, 270, 220, 
337, and 344 genomes, respectively (Fig.  5 and Sup-
plementary Table S7). MetaDecoder also showed the 

best performance when the contamination threshold 
increased to 0.10 (Supplementary Fig. S7 and Supple-
mentary Table S8). Taxonomic classifications of these 
clusters showed that we discovered 32 novel high-qual-
ity genomes (Supplementary Table S9). For example, 
“SRS148193.metadecoder.5” (contamination ≤ 0.05 and 
completeness ≥ 0.95) was reported as a new member in 
family Bacteroidaceae. Thus, using MetaDecoder, we 
expanded the reference catalog of human gut bacterial 
genomes.

Revealing an increased abundance of Holdemanella 
species in subjects with impaired glucose tolerance
We carried out MetaDecoder and all other programs on 
a cohort of type 2 diabetes (T2D) study containing stool 
samples from 145 Swedish women, 53 of which were T2D 
samples [26]. Assessments by CheckM were presented 
in Fig. 6A; Supplementary Figs. S8, S9; and Supplemen-
tary Table S10. MetaDecoder predicted 3651 clusters 
with contamination ≤ 0.10 and completeness ≥ 0.50, 
more than the clusters produced by MetaBAT2 (which 
performs best among the remaining programs) at the 
same threshold (3036). Further, 2989 clusters were 
identified with the same taxonomic classification, 662 
and 47 clusters were exclusively identified by MetaDe-
coder and MetaBAT2, respectively. We obtained a total 
of 2014 high-quality clusters (contamination ≤ 0.05 and 

Fig. 4  Clustering benchmarks on two datasets from a high-CO2 cold-water geyser. The number of clusters with different completeness levels are 
shown at two contamination levels. All programs were run with their default parameters. DASTool was run with two combinations: (1) DASTool_MM 
for MetaDecoder and MetaBAT2; (2) DASTool_CM for CONCOCT and MetaBAT2. MetaDecoder with minimum sequence length setting to 1 Kb 
(MetaDecoder1000) was also added for benchmarking
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completeness ≥ 0.90), compared to MetaBAT2 (1302), 
DASTool_MM (1865) and DASTool_CM (1802). Taxo-
nomic classifications of 3651 clusters were determined 
using GTDB-TK [22–24] (Supplementary Table S11). 
They were classified into an archaeal phylum and six 
bacterial phyla, with the most frequent phylum being 
Firmicutes (78.58%), suggesting a very broad metabolic 
potential in the gut (Supplementary Fig. S10). Further-
more, we found a new significant increase in the abun-
dance of Holdemanella species in subjects with impaired 
glucose tolerance (IGT, pre-diabetic states) (Fig. 6B and 
Supplementary Table S12). Holdemanella biformis has 
been proven to be associated with an unhealthy fasting 
serum lipid profile [27]. Therefore, generating more com-
plete clusters with MetaDecoder could reveal more dis-
ease specific gut metagenomics signatures.

Benchmarking computing efficiency
We ran all programs on two CAMI I datasets for bench-
marking computing efficiency (Table  1 and Supplemen-
tary Table S13). MetaDecoder was faster than other 
tools when analyzing the CAMI I Medium Complexity 
dataset. For the CAMI I High complexity dataset, Meta-
Decoder was similar but slightly lower to the fastest 

program, MetaBAT2. Moreover, the DPGMM layer in 
MetaDecoder can be accelerated by the GPU to achieve 
the significant improvement in computational efficiency. 
MetaDecoder finished clustering in 4 min on the CAMI 
I High complexity dataset, which is at least 3 times faster 
than other programs.

Performance of MetaDecoder and MetaDecoder1000
The default length cutoff for contigs of MetaDecoder 
was 2.5 Kb, which was the same as MATBAT2. We 
benchmarked MetaDecoder and MetaDecoder1000 
(which uses 1 Kb as the cutoff) on 171 real-world data-
sets (i.e., two water datasets, 24 HMP datasets and 145 
T2D datasets), and no significant difference was detected 
(Supplementary Fig. S11). To speed up analysis, we rec-
ommend the users to use 2.5 Kb as the cutoff. How-
ever, users can set their own cutoff with the option of 
“--min_sequence_length”.

Discussion
We have introduced MetaDecoder, a new program devel-
oped to accurately cluster metagenomic contigs on the 
basis of the combination of their k-mer frequency and 
coverage. Benchmarks on simulated and real-world 

Fig. 5  Clustering benchmarks on 24 Human Microbiome Project datasets. The number of identified clusters with contamination ≤ 0.05 and 
different completeness levels are shown. All programs were run with their default parameters. DASTool was run with two combinations: (1) 
DASTool_MM for MetaDecoder and MetaBAT2; (2) DASTool_CM for CONCOCT and MetaBAT2. MetaDecoder with minimum sequence length 
setting to 1 Kb (MetaDecoder1000) was also added for benchmarking
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datasets demonstrated that MetaDecoder outperformed 
other programs.

MetaDecoder can produce more complete and pure 
clusters, which is important to explore the phylogenetic 
diversity of microbial genomes, particularly for species 
that are not easily cultured [28–30]. We assessed Meta-
Decoder’s performance on CAMI benchmarking datasets 
with the ground truth. MetaDecoder identified the most 
high-quality clusters (precision ≥ 0.95 and recall ≥ 0.90) 
on all datasets as well as under other threshold levels 
(Fig.  3A–C). For real-world datasets, we reported 33 
novel high-quality genomes. These findings expanded 
the existing catalog of bacterial genomes. For a gut 
metagenomic dataset of T2D study, we identified 54.69% 
more high-quality clusters than MetaBAT2 and found a 

previously reported significant decreased abundance of 
Roseburia species in T2D samples (p = 0.033) [31], and 
a new increased abundance of Holdemanella species in 
IGT samples (Fig. 6B).

The runtime and memory cost of MetaDecoder is com-
parable to other programs on CPU-based workstations. 
Furthermore, MetaDecoder is at least three times faster 
than other current tools when working on GPUs. With 
the advances in sequencing technologies, the metagen-
omic data for large scale populations have been generated. 
For example, as of August 2020, the Integrated Micro-
bial Genomes (IMG) released 26,488 metagenomes and 
85,565 high-quality and medium-quality metagenome 
clusters [32]. The massive number of fragments is one 
of the most major characteristics of metagenomic data 

Fig. 6.  Analyses of T2D dataset. A The number of clusters with different completeness levels were shown at two contamination levels. All 
programs were run with their default parameters. DASTool was run with two combinations: (1) DASTool_MM for MetaDecoder and MetaBAT2; (2) 
DASTool_CM for CONCOCT and MetaBAT2. MetaDecoder with minimum sequence length setting to 1 Kb (MetaDecoder1000) was also added for 
benchmarking. B Differential abundance of genus Holdemanella in T2D (n = 53), IGT (n = 49), and NGT (control, n = 43) samples. Relative abundance 
was estimated using CheckM and its profile function. Significance was determined using Wilcoxon rank-sum test

Table 1  Runtime and memory comparison on CAMI I Medium and High Complexity datasets. All programs were run on a workstation 
with an Intel(R) Xeon(R) Silver 4108 CPU @ 1.80 GHz (16 threads in total), a NVIDIA Tesla K80 GPU and 96 GB memory. All programs 
were run with all threads and with their default parameters except for setting the minimum contig length to 2.5 Kb

Note: aRun with GPU acceleration

Runtime memory MetaDecoder CONCOCT (version 1.0.0) MaxBin2 (version 2.2.4) MetBAT2 (version 2.12.1) VAMB (version 3.0.2)

CAMI I Medium 5 m 11 s, 0.9 GB
2 min 7 s, 0.9 GBa

9 min 7 s, 0.7 GB 133 min 3 s, 0.8 GB 6 min 4 s, 0.8 GB 17 min 34 s, 0.5 GB
8 min 22 s, 0.5 GBa

CAMI I High 17 min 38 s, 2.6 GB
4 min 2 s, 2.6 GBa

19 min 25 s, 1.1 GB 331 min 8 s, 1.7 GB 13 min 36 s, 1.5 GB 31 min 18 s, 1.7 GB
14 min 0 s, 1.7 GBa
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and is also a challenge for clustering. GPU contains mas-
sive parallel processors and can perform a large number 
of matrix calculations very quickly. Therefore, the GPU-
based DPGMM in MetaDecoder would offer help for 
metagenomics researchers in a time efficient manner.

Conclusions
In conclusion, we developed MetaDecoder for clustering 
metagenomic contigs and reconstructing microbial com-
munities from microbial data. Applying MetaDecoder 
on both simulated and real-world datasets demonstrated 
that it could generate more complete clusters with lower 
contamination. Moreover, MetaDecoder can be acceler-
ated by the GPU to achieve the significant improvement 
in computational efficiency. Therefore, we believe that 
MetaDecoder can be served as a promising approach for 
effectively clustering metagenomic contigs.

Methods
The GPU‑based modified Dirichlet process Gaussian 
mixture model
Given a collection of contigs, we first partition them into 
preliminary clusters based on their k-mer frequencies 
and coverages. Clustering contigs together is equivalent 
to assigning them a set of same parameters that describe 
a distribution, which also means that the distribution of 
parameters is discretized. With respect to an ambigu-
ous number of clusters G, a good choice is to apply the 
Dirichlet process (DP) to construct a Gaussian mixture 
model since a draw from DP is a discrete distribution and 
it is not sensitive to the number of clusters. A DP consists 
of a base measure G0 and a concentration parameter α, 
which is expressed as follows:

where G is a random measure. And we use the stick-
breaking construction to create DP defined as follows:

from which a DP is derived as:

where β denotes a random variable from Beta distri-
bution with parameters 1, α. δηj is a point mass prob-
ability measure, ηj is a random variable followed G0 
with a weight of πj, which can also be viewed as the 

G ∼ DP(α,G0)

βi ∼ Beta(1,α)

πj = βj

j−1
∏

i=1

(1− βi), j = 1, 2, . . . ,∞

G =

∞
∑

j=1

πjδηj

parameter of the cluster j in mixture model. We then 
use DP to build the Dirichlet process Gaussian mix-
ture model (DPGMM) with G clusters. We define zc as 
the hidden variable which indicates the cluster that xc is 
from, thus, we have:

of which Cat(π1, π2, …, πg) means the categorical dis-
tribution parameterized by π1, π2, …, πg and N  denotes 
a multivariate Gaussian distribution with parameter ηzc 
(i.e., µzc and Σzc in GMM). Under the Bayesian frame-
work, the normal-inverse-Wishart distribution is chosen 
as the base measure G0 as its conjugacy to the multivari-
ate Gaussian likelihood with unknown mean and covari-
ance. We have:

where d represents the dimension of each xc, κ denotes 
the precision prior on the mean μ distribution, and is set 
to 10−4 to reduce the effect of prior μ0 (defined as the 
mean of X = {x1, x2, …, xn}) of μ. Σ denotes a d × d matrix. 
Ψ denotes the prior of Σ and is set to the covariance of 
X. v is the prior of the number of degrees of freedom on 
the Wishart distribution and is set to d. Γd represents 
the multivariate gamma function and |M|, tr(M) are the 
determinant and trace of matrix M, respectively. We use 
variational method to approximate the posterior distri-
bution, thus we have:

In MetaDecoder, we put the weight of each contig on 
DPGMM, which is defined as wc =

lc
1
C

∑C
c=1lc

 , where lc is 

the length of contig c. Because longer contigs contribute 
more to the estimation of the parameters.

With respect to the responsibilities r, we have:

zc ∼ Cat(π1,π2, . . . ,πG)
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βg ∼ Beta
(

γg ,1, γg ,2
)

µg ,Σg ∼ N IW
(

µ0,g , κg ,Ψg , vg
)

zc ∼ Cat
(

rc,1, rc,2, . . . , rc,G
)
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where xg denotes the weighted mean of x in cluster g 
and is defined as xg =

∑C
c=1 wcrc,g xc

∑C
c=1 wcrc,g

 , the concentration 

parameter α is set to 1. And the updating formula of rc, g 
is:

where ψ denotes the digamma function, which is the 
logarithmic derivative of the gamma function.

We perform principal component analysis (PCA) on 
the k-mer frequencies with at least 90% of the variance 
retained, and then concatenate with the log-transformed 
coverages as the input to DPGMM. The k-mer frequency 
contributes more to DPGMM since the length of the 
coverage vector (the number of samples) usually does 
not exceed the PCA-processed k-mer frequency vec-
tor. While for contigs with similar k-mer frequencies, 
the length of the k-mer frequency vector will be reduced 
after PCA processing, and therefore, DPGMM can assign 
more weight to the coverage. This is the so-called intrin-
sic balance of the two features. DPGMM starts with 3 
times value of G clusters estimated by the single-copy 
marker genes (see the seed selection model section), 
since the effective number can be inferred from the data. 
We dynamically track the weight of each component with 
an interval of 10 iterations.

One important point in our modified model is to 
keep the integrity of each component. Contigs in small 
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components (< 500 Kb by default) will be dissolved and 
reassigned to the remaining components to avoid over-
segmentation, we remove the small component and re-
normalize responsibilities as follows:

where g′ denotes a small component. As shown in 
Supplementary Fig. S12, we found that over 98.35% 
intra-distances are less than or equal to 0.04. In addi-
tion, in our simulations data, clusters with average 
Euclidean distance > 0.04 usually contains many short 
contigs, which is difficult for classification. Therefore, 
clusters with k-mer frequency Euclidean distance > 0.04 
are considered as abnormal clusters in our first layer. 
We also tested other values above 0.04 (e.g., 0.05 and 
0.1) and the results of our simulated datasets were simi-
lar. However, users can use the option “--max_dpgmm_
distance” in MetaDecoder to modify this cutoff.

K‑mer frequency probabilistic model
MetaDecoder uses the frequencies of tetramers (k = 4) 
of each contig as signatures, which has been proven to 

be a successful strategy for microbial genomes discov-
ery [33], and can also support any positive integer as an 
input parameter. The k-mers from the two strands are 
merged and considered as a kind of k-mer.

The semi-supervised k-mer frequency probabilis-
tic model uses a group of seeds generated by the seed 
selection model as the training set (see the seed selec-
tion model section). For each seed, 300 sub-seeds (3–4 
Kb) are randomly selected. The multi-class SVM with 
a radial basis function (RBF) kernel is then trained on 
the k-mer frequencies of all sub-contigs with the cor-
responding labels. The parameter γ of the RBF kernel is 
defined as γ = 1

#distinct k−mers
 (#distinct  k − mers = 136 

when k = 4). Based on the fitted model, the probabil-
ity pgSVM(c) that each contig c belongs to genome g are 
predicted.

Coverage probabilistic model
The sequencing coverage reflects the abundance of 
microorganisms and can therefore be used to determine 
the source of each contig. There are three main reasons 

rc,g  =g ′ =
rc,g  =g ′

∑

g  =g ′ rc,g

rc =
(

rc,1, . . . rc,g ′−1, rc,g ′+1, . . . rc,G
)
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why we designed this model. Firstly, in theory, the cover-
age follows the Poisson distribution with the parameter 
λ representing the average coverage of the genome; how-
ever, the positional coverages are significantly different 
so the variance may not equal to λ. Secondly, each contig 
has its own k-mer frequency probability pgSVM(c) , which 
can be used as a prior. Thirdly, we believe that compared 
to the k-mer frequency probabilistic model, the cover-
age probabilistic model will become more reliable with 
increasing number of samples, we need to adjust the 
effect of the prior on it. Thus, we developed a modified 
GMM to model the coverages defined as follows:

In our model, the first term is the likelihood of the data. 
Each Gaussian component represents a genome. π g

c  rep-
resents the prior probability that the contig c belongs to 
the genome g, and therefore the component weights are 
data-dependent, which is different from a traditional 
GMM. xc indicates the log-transformed coverage of con-
tig c. N

(

xc|µ
g ,Σg

)

 denotes a Gaussian probability den-
sity function (PDF) parameterized by the mean vector 
μg ∈ ℝn and covariance matrix Σg ∈ ℝn × n of the genome g, 
and the PDF is defined as:

Of which n is the number of sequencing samples, |Σg|, 
Σg − 1 represent the determinant and the inverse of the 
covariance matrix Σg, respectively.

The second is the regularization term, which is the 
weighted sum of Kullback-Leibler divergence between 
the k-mer frequency probability pgSVM(c) and the contig 
dependent prior probability π

g
c  
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∥

∥
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)

 ). W is a 

positive constant in the regularization term and is set 
to W = 1

n by default. The role of this term is to force π g
c  

to be close to pgSVM(c) . A small W (e.g., a large number 
of sequencing samples) will weaken this force and 
therefore enhance the weight of this model. The regu-
larization term will be minimized to zero if the two 
probabilities are the same. It indicates that if two prob-
abilistic models make the same decision for the same 
contig, the likelihood will be maximized. The EM 
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algorithm is used to solve this problem, which contains 
two main steps as follows:

E-step:

where rgc  is the posterior probability (responsibility) 
that the contig c belongs to the genome g.

M-step:

Before running the EM algorithm, some parameters 
such as μg, Σg, and π g

c  must be determined, which usu-
ally be randomly initialized; however, this might cause 
the EM algorithm to fall into a locally optimal solu-
tion. Therefore, we take the k-mer frequency prob-
ability pgSVM(c) as the prior π g

c  in the EM algorithm and 
then to initialize all necessary parameters. The E-step 
and M-step are repeated until convergence. Clusters 
(> 200 Kb by default) generated from this model with 
an estimated genome number of one are output. There-
fore, there will be no clusters smaller than 200 Kb with 
default parameters. However, users can change this 
cutoff by using the “--min_cluster_size” option. Con-
tigs in abnormal clusters from the first layer or in small 
clusters (i.e., < 200 Kb) from this model are defined as 
the unclustered contigs. Users could use the “--output_
unclustered_sequences” option to output all unclus-
tered contigs.

Seed selection model
The k-mer frequency probabilistic model in MetaDe-
coder is a semi-supervised model with training set 
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provided by this model (Fig.  7). Assume that there are 
several single-copy marker genes harbored in a DPGMM 
cluster, and one of them, mi, is mapped to Gi contigs. Ide-
ally, mi is single-copy and shared among all genomes, all 
contigs are long enough with no assembly errors, then 
with respect to mi, the number of genomes in this data-
set should be estimated as Gi. However, there are many 
restrictions in practice. Due to limited mapping method, 
sequencing errors, or poor assembly quality, mi may be 
lost or multiplied in real-world datasets, resulting in dif-
ferent numbers of contigs {G1, G2, …, Gi} containing the 
marker genes {m1, m2, …, mi}. Intuitively, the estimated 
number of genomes should be greater than or equal 

to the mode of {G1, G2, …, Gi} (Gmode) and thus can be 
roughly determined as follows:

where #Gi, #Gmode are the counts of Gi and Gmode in the 
set {G1, G2, …, Gi}, respectively. We collect a set of groups 
of contigs S = {g1,g2, ..,gS} with Gs ≥ Gmode. Contigs in 
each g are more likely to derive from different genomes, 
since they contain the same single-copy marker gene. We 
next need to identify contigs from the same genome but 
scattered in different g . An adjacency matrix A is defined 

G = max
(

Gi if #Gi ≥ #Gmode × 0.5
)

Fig. 7  Framework of seed selection model. Assume that a set of M single-copy marker genes are mapped to 15 contigs with hidden origins 
indicated by different colors, we first estimate the number of genomes as G = 5 and determine a set ( S ) of groups of contigs containing marker 
genes {m4, …, mM}. Then the classifier is trained with each group of contigs from S and predicts all contigs in S based on both k-mer frequencies 
and coverages to form a symmetric similarity matrix. We next run spectral clustering algorithm to obtain spectral clusters. And finally, contigs in 
each spectral cluster are concatenated into a single extended seed
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to measure the possibility that any two contigs belong to 
the same genome. For each gs ∈ S , 20 sub-contigs (1.5–
2.5 Kb) are randomly sampled from each contig to train 
the multi-class SVM, then all contigs are predicted. The 
possibility that each pair of contigs (i, j) belongs to the 
same genome is measured as follows:

where gi denotes a group containing contig i which 
is used to train the classifier and gj denotes a predicted 
group containing contig j. Function f(j) is expressed as 
the predicted label of the contig j. Ai, j is the ith row and 
jth column of the adjacency matrix A. It is reasonable to 
use this matrix to quantify the possibility that contigs 
should be clustered together. Consider two groups: gi is 
used to train the classifier and gj for predicting. j will be 
labeled i if they are derived from the same genome, which 
means that Ai, j will obtain a bonus of 1. In some com-
plicated cases, such as j, k ∈ gj and f(j) = f(k) = i, then Ai, 

j will get a lower bonus of 0.5 since we cannot determine 
whether i and j are from the same genome. For reasons 
of symmetry, A plus AT and the number of clusters G are 
as inputs to run the spectral clustering algorithm. Con-
tigs in each spectral cluster are concatenated into a single 
extended seed.

Mapping single‑copy marker genes to contigs
Protein coding genes recognized by FragGeneScan (ver-
sion 1.31) [34] with default parameters were obtained 
to search against the database formed by the 107 single-
copy marker genes shared within 95% of the sequenced 
bacteria [35] using HMMER [36] (version 3.2.1). Valid 
hits (coverage ≥ 0.5 and accuracy ≥ 0.6) were preserved 
for the subsequent analyses. These two programs have 
been included in MetaDecoder.

Assemblies constructing and sequencing reads aligning
For our simulated and all real-word datasets, the 
sequencing data were first de novo assembled into a set 
of contigs (assembly) using IDBA-UD (version 1.13) 
[3] with default parameters. For CAMI I and CAMI 
II datasets, we directly used the pooled gold standard 
assemblies.

Reads of two samples from high-CO2 cold-water gey-
ser were trimmed using sickle (version 1.33) (https://​
github.​com/​najos​hi/​sickle/) with default parameters. 
Read mapping for all samples was done using Bowtie2 
(version 2.3.4.3) [37] with default parameters. For all 
datasets with multiple samples, we aligned each sam-
ple data to the assembly. MetaDecoder used uniquely 

Ai,j =
∑

gi ,gj

{

1/
∑

k∈gj
1{f (k)=i}, if f (j) = i

0, otherwise

aligned reads with MAPQ ≥ 20 to calculate the coverages 
of contigs, which is defined as the mean number of bases 
of a contig.

Programs and datasets used for benchmarking
In this study, MetaDecoder, CONCOCT (version 1.0.0), 
MaxBin2 (version 2.2.4), MetaBAT2 (version 2.12.1), 
VAMB (version 3.0.2), and DASTool (version 1.1.2) with 
two combinations: 1) DASTool_MM for MetaDecoder 
and MetaBAT2; 2) DASTool_CM for CONCOCT and 
MetaBAT2 with the default parameters were applied to 
reconstruct the genome clusters. The minimum length 
threshold of contigs of MetaDecoder is set to 2.5 Kb by 
default, which is the same as the cutoff of MetaBAT2. 
Since this threshold of CONCOCT and MaxBin2 is 1 Kb, 
we also provided the performance of MetaDecoder with 
1Kb as the cutoff (MetaDecoder1000) for benchmark-
ing. For datasets with multiple samples, we ran them in 
multi-sample mode except for MaxBin2 on CAMI I High 
Complexity dataset. We carried out MaxBin2 on a single 
merged sample duo to its excessive runtime with multiple 
samples.

To benchmark the semi-supervised k-mer frequency 
probabilistic model, a set of 16,199 random fragments 
(1–50 Kb) was simulated from 100 sequenced completed 
bacterial genomes collected from NCBI (Supplementary 
Table S1).

We used MetaSim (version 0.9.5) [38] to simulate 
two sets of shotgun sequencing reads based on 100 
genomes with random coverages from 10× to 40× using 
the default parameters and the empirical error model 
downloaded from http://​ab.​inf.​uni-​tuebi​ngen.​de/​softw​
are/​metas​im/​error​model-​80bp.​mconf (Supplementary 
Table S2). Of which, one sample was used to construct a 
metagenome containing 20,412 contigs.

Simulated short-read CAMI datasets were downloaded 
from https://​data.​cami-​chall​enge.​org/​parti​cipate/. For 
benchmarking on read-world datasets, we downloaded 
24 HMP datasets from HMP portal, two datasets from a 
high-CO2 cold-water geyser and a cohort of T2D study 
which consists of 145 samples from NCBI.

Clustering benchmarks on simulated and real‑world 
datasets
For CAMI I and CAMI II benchmarking datasets, we 
used the gold standard mapping files provided in the 
datasets as input to AMBER (version 2.0.2) [39]. For our 
simulated dataset, each contig was matched against the 
reference using BLAST (version 2.7.1) [40] with default 
parameters and was labeled genome identifier with the 
highest score. Then we converted the mappings to the 
gold standard file which can be used by AMBER. Clus-
tering quality was evaluated with AMBER using default 

https://github.com/najoshi/sickle/
https://github.com/najoshi/sickle/
http://ab.inf.uni-tuebingen.de/software/metasim/errormodel-80bp.mconf
http://ab.inf.uni-tuebingen.de/software/metasim/errormodel-80bp.mconf
https://data.cami-challenge.org/participate/


Page 14 of 16Liu et al. Microbiome           (2022) 10:46 

parameters to obtain the quality metrics. For real-world 
datasets, as no reference genomes can be provided, we 
ran CheckM (version 1.0.13) [21] based on the presence 
of lineage-specific marker genes with default parameters 
to evaluate completeness and contamination of each 
cluster.

Taxonomic, phylogenetic, and differential abundance 
analyses of identified clusters
Taxonomic classifications of identified clusters were 
assigned by GTDB (version 95) using GTDB-TK (version 
1.3.0) with default parameters on the basis of the average 
nucleotide identity (ANI) [22–24]. Novel high-quality 
genomes (contamination ≤ 0.05 and completeness ≥ 0.95) 
were determined if the ANI between them and all repre-
sentative genomes in GTDB was lower than 95%.

For phylogenetic analysis, FastTree (version 2.1.11) [41] 
with default parameters was used to construct the tree 
based on the concatenated marker gene amino acid align-
ments created by CheckM (version 1.0.13) [21]. The phy-
logenetic tree was visualized in iTOL [42].

Relative abundance was determined as the percentage 
of reads mapped to each cluster using CheckM and its 
profile function. Significance was determined using Wil-
coxon rank-sum test.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01237-8.

Additional file 1: Supplementary Figure S1. Clustering performance of 
the k-mer frequency probabilistic model. (A) PCA of 16,199 fragmented 
contigs with transparency representing the length and color indicating 
the genome. (B) Clustering performance of the multi-class SVM on all 
16,199 contigs. The classifier was trained 100 times with a random region 
of 50 Kb in length of each genome. Among the 1,619,900 predictions, 
92.85% (1,504,091) were accurate. The mean and standard deviation of 
the clustering probabilities were 0.86±0.17 (correct predictions) and 
0.40±0.21 (incorrect predictions), respectively. Genome identifiers were 
provided in Supplemental Table S1. (C) Comparison of clustering prob‑
abilities between correct and incorrect predictions. Misclassified predic‑
tions have a higher average Shannon entropy (2.35) than the correct 
predictions (0.71).

Additional file 2: Supplementary Figure S2. Clustering benchmarks on 
a simulated dataset. The number of identified bins with different score 
levels were shown. All programs were run with their default parameters 
in both single-sample (A) and multi-sample (B) modes. MetaDecoder 
with minimum sequence length setting to 1 Kb (MetaDecoder1000) was 
also added for benchmarking. Assessments were evaluated using AMBER 
(version 2.0.2).

Additional file 3: Supplementary Figure S3. Clustering benchmarks on 
two CAMI I datasets. The number of identified bins on CAMI I (A) Medium 
and (B) High Complexity dataset with different score levels were shown. 
All programs were run in multi-sample mode with their default param‑
eters except for MaxBin2 on the CAMI I High Complexity dataset. MaxBin2 
was run on a single merged dataset duo to the excessive runtime with 
multiple samples. MetaDecoder with minimum sequence length setting 
to 1 Kb (MetaDecoder1000) was also added for benchmarking. Assess‑
ments were evaluated using AMBER (version 2.0.2).

 
Additional file 4: Supplementary Figure S4. Clustering benchmarks on 
64 two CAMI II Mouse gut datasets. The number of identified clusters with 
precision ≥ 0.95 and different recall levels were shown. All programs were 
run with their default parameters. MetaDecoder with minimum sequence 
length setting to 1 Kb (MetaDecoder1000) was also added for benchmark‑
ing. Assessments were evaluated using AMBER (version 2.0.2).

Additional file 5: Supplementary Figure S5. Clustering benchmarks on 
64 two CAMI II Mouse gut datasets. The number of identified clusters with 
precision ≥ 0.90 and different recall levels were shown. All programs were 
run with their default parameters. MetaDecoder with minimum sequence 
length setting to 1 Kb (MetaDecoder1000) was also added for benchmark‑
ing. Assessments were evaluated using AMBER (version 2.0.2).

Additional file 6: Supplementary Figure S6. Clustering benchmarks on 
five CAMI II Human Microbiome Project datasets. The number of identified 
bins on (A) Airways, (B) Gastrointestinal tract, (C) Oral cavity, (D) Skin and 
(E) Urogenital tract dataset with different score levels were shown. All 
programs were run in multi-sample mode with their default parameters. 
MetaDecoder with minimum sequence length setting to 1 Kb (MetaDe‑
coder1000) was also added for benchmarking. DASTool was carried out 
on two combinations: 1) MetaDecoder and MetaBAT2, 2) CONCOCT and 
MetaBAT2. Assessments were evaluated using AMBER (version 2.0.2).

Additional file 7: Supplementary Figure S7. Clustering benchmarks 
on 24 Human Microbiome Project datasets. The number of identified 
clusters with contamination ≤ 0.10 and different recall levels were shown. 
All programs were run with their default parameters. MetaDecoder with 
minimum sequence length setting to 1 Kb (MetaDecoder1000) was also 
added for benchmarking. Assessments were evaluated using CheckM 
(version 1.0.13).

Additional file 8: Supplementary Figure S8. Clustering benchmarks on 
a cohort of T2D study. The number of identified clusters with contamina‑
tion ≤ 0.05 and different recall levels were shown. All programs were run 
with their default parameters. MetaDecoder with minimum sequence 
length setting to 1 Kb (MetaDecoder1000) was also added for benchmark‑
ing. Assessments were evaluated using CheckM (version 1.0.13).

Additional file 9: Supplementary Figure S9. Clustering benchmarks on 
a cohort of T2D study. The number of identified clusters with contamina‑
tion ≤ 0.10 and different recall levels were shown. All programs were run 
with their default parameters. MetaDecoder with minimum sequence 
length setting to 1 Kb (MetaDecoder1000) was also added for benchmark‑
ing. Assessments were evaluated using CheckM (version 1.0.13).

Additional file 10: Supplementary Figure S10. Phylogenetic analysis 
of 3,651 clusters with contamination ≤ 0.10 and completeness ≥ 0.50. 
Taxonomic labels were assigned by GTDB (version 95) using GTDB-TK (ver‑
sion 1.3.0) with default parameters. FastTree (version 2.1.11) with default 
parameters was used to construct the tree based on the concatenated 
marker gene amino acid alignments created by CheckM (version 1.0.13). 
The tree was visualized in iTOL. Only the bacterial phyla were shown.

Additional file 11: Supplementary Figure S11. Clustering benchmarks 
of MetaDecoder under different contig length thresholds. MetaDecoder 
with default length threshold (2.5 Kb) and 1 Kb (MetaDecoder1000) 
were applied on all real-world samples (i.e., two samples from high-CO2 
cold-water geyser, 24 HMP samples and 145 samples from a cohort of T2D 
study), respectively. Cluster number (completeness ≥ 0.90) of each sample 
was shown at two contamination levels. Significance was determined 
using the Wilcoxon matched-pairs signed rank test.

Additional file 12: Supplementary Figure S12. Euclidean distance 
distributions between contigs abstracted from the same genome (intra-
genome) and from two different genomes (inter-genome). The 3,023 bac‑
terial genomes downloaded from NCBI were randomly fragmented into 
contigs (1 Kb - 100 Kb), then one million simulations were performed. Two 
histograms denote the intra- and interdistances, respectively. Two curves 
represent Gaussian densities parametrized by the mean and variance of 
the intra- and inter- distances, respectively.

https://doi.org/10.1186/s40168-022-01237-8
https://doi.org/10.1186/s40168-022-01237-8
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Additional file 13: Supplementary Table S1. Information of 100 
genomes collected from NCBI.

Additional file 14: Supplementary Table S2. Clustering benchmarks on 
a simulated dataset (20,412 contigs).

Additional file 15: Supplementary Table S3. Clustering benchmarks on 
CAMI I Medium and High Complexity datasets.

Additional file 16: Supplementary Table S4. Clustering benchmarks on 
CAMI II Mouse gut datasets.

Additional file 17: Supplementary Table S5. Clustering benchmarks on 
five CAMI II Human Microbiome Project datasets.

Additional file 18: Supplementary Table S6. Clustering benchmarks on 
two datasets from a high-CO2 cold-water geyser.

Additional file 19: Supplementary Table S7. Taxonomic classifications of 
clusters identified by MetaDecoder with contamination <= 0.10 and com‑
pleteness >= 0.50 on two datasets from a high-CO2 cold-water geyser.

Additional file 20: Supplementary Table S8. Clustering benchmarks on 
24 Human Microbiome Project datasets.
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