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Abstract 

Background:  During wastewater treatment, the wastewater microbiome facilitates the degradation of organic mat-
ter, reduction of nutrients, and removal of gut parasites. While the latter function is essential to minimize public health 
risks, the range of parasites involved and how they are removed is still poorly understood.

Results:  Using shotgun metagenomic (DNA) and metatranscriptomic (RNA) sequencing data from ten wastewa-
ter treatment plants in Switzerland, we were able to assess the entire wastewater microbiome, including the often 
neglected microeukaryotes (protists). In the latter group, we found a surprising richness and relative abundance of 
active parasites, particularly in the inflow. Using network analysis, we tracked these taxa across the various treatment 
compartments and linked their removal to trophic interactions.

Conclusions:  Our results indicate that the combination of DNA and RNA data is essential for assessing the full spec-
trum of taxa present in wastewater. In particular, we shed light on an important but poorly understood function of 
wastewater treatment – parasite removal.
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Background
The microbiome in wastewater treatment plants 
(WWTPs) includes not only prokaryotes but also 
eukaryotes: fungi, protists, and microscopic metazoans. 
Together, this wastewater community facilitates anaero-
bic denitrification and aerobic nitrification, as well as 
heterotrophic respiration and flocculation [1–5]. Spe-
cifically, the coupling of denitrification and nitrification 
reduces wastewater nitrogen, while aerobic and anaero-
bic heterotrophs help to degrade organic material [1, 4]. 
Microbial biomass growth leads to flocculation, enabling 
the separation of solids through sedimentation [2, 3].

Although the abovementioned functions are fulfilled by 
the concerted actions of the entire WWTP microbiome, 
the vast majority of WWTP surveys focus merely on the 

most numerous microbial entity in WWTPs  –  bacteria 
[6]. Protists, in particular, remain largely underappreci-
ated, despite representing the majority of the eukaryotic 
fraction [7–9]. Although they are less numerous than 
bacteria, protists profoundly affect the community com-
position of their prokaryotic and eukaryotic prey [10–
12]. In WWTPs, protists have been found to modulate 
the composition and biomass of the microbial commu-
nity, thus affecting denitrification, nitrification, and floc-
culation, for instance by feeding on filamentous bacteria 
or loosely attached bacteria from flocs [2, 3, 13, 14].

In addition to their key role in regulating the WWTP 
microbial community, protists deserve more attention for 
another important reason: this microeukaryotic group 
includes many gut-associated taxa that are potentially 
harmful to humans and animals [12, 15]. The removal of 
these parasites, which include taxa such as Giardia and 
Entamoeba, is a key function of wastewater treatment 
[16–19]. However, little is known about the mechanisms 
involved, including the role of predation.
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This knowledge gap is to a large degree due to the chal-
lenges involved in the taxonomic identification and enu-
meration of the main predators in wastewater – protists 
[1]. Apart from labor-intensive microscopy, primer-based 
metabarcoding is currently the most commonly used 
method to assess microbiomes in various environments, 
including sewage. However, this method is inevitably 
selective as there is no general primer that enables the 
assessment of all taxa present leading to contradictory 
results in protist assessments [20–23]. Another alter-
native is to use shotgun methods, which are primer-
independent and thus suitable for assessing microbial 
communities in their entirety, including (parasitic) 
protists [24, 25]. Specifically, shotgun metagenomics 
(DNA-based) are used to determine microbial commu-
nity composition and functional potential, while shotgun 
metatranscriptomics (RNA-based) provides a proxy for 
assessing microbial activity [26, 27]. So far, these promis-
ing methods have rarely been used to investigate micro-
bial communities in sewage or WWTPs on a large scale, 
and if so, the data were not screened for protists.

The present study addresses this gap by analyzing a 
publicly available data set of shotgun metagenomic and 
metatranscriptomic data provided by Ju et  al. [28], who 
sampled microbial communities in various treatment 
compartments of WWTPs across Switzerland. This data 
set allowed us to assess the WWTP microbial community 
as a whole, including protists, and without a primer bias. 
Our specific objective was to identify protist taxa that are 
potential gut parasites, track their abundance and activity 
patterns across the consecutive WWTP compartments 
(from inflow to effluent), and screen for putative preda-
tor-prey interactions that could explain parasite removal 
during wastewater treatment.

Material and methods
We made use of the publicly available data sets from Ju 
et  al. [28]. In brief, these authors sampled 12 WWTPs 
across Switzerland for DNA (shotgun metagenomics) 
and RNA (shotgun metatranscriptomics). At each facil-
ity, they sampled four compartments connected by con-
tinuous flow: sewage-inflow after screening and primary 
sedimentation (INF), denitrification bioreactor (DNF), 
nitrification bioreactor (NFC), and effluent after passing 
of the secondary clarifier (EFF). For details of the sam-
pling process and metagenomic and metatranscriptomic 
sequencing, see Ju et  al. [28]. As explained below, after 
initial data processing, we based our final analysis on data 
from 10 of the 12 WWTPs sampled.

Data processing
We used Ju et  al.’s [28] metagenomic data (DNA) to 
assess the WWTP community in terms of taxonomic 

composition, and their metatranscriptomic data (RNA) 
as a measure of metabolic and reproductive activity [26, 
27]. We assessed the raw data via MG-RAST [29] and 
made use of the implemented MG-RAST prefiltering 
and ribosomal sequence calling. All statistical analyses 
and data visualizations described in the present paper, 
unless otherwise stated, were performed with the pack-
ages ggpubr v. 0.4.0 [30], rstatix v. 0.7.0 [31], SpiecEasi v. 
1.1.0 [32], and vegan v. 2.5-7 [33] in R v. 3.6.2 [34]. All 
figures, except the networks, were produced using ggth-
emes v. 4.2.4 [35], ggplot2 v. 3.3.5 [36], and ggpubr v. 0.4.0 
[30]. The networks were visualized using Cytoscape v. 
3.8.0 [37].

To identify prokaryotic taxa (bacteria and  archaea) in 
the WWTP samples, we searched for sequence simi-
larities in the SILVA data base [38]. Similarly, to identify 
eukaryotic taxa (protists, fungi, and microscopic meta-
zoa), we searched the PR2 data base [39]. Using BLASTN 
[40], we filtered the search results using an e value of 1e-50 
and a similarity threshold of ≥ 80 %, keeping only the 
best hit. Given the limitations of the sequencing method 
(read length of ~ 150 bp per fragment, limited sequenc-
ing depth, and sequencing of random fragments), we 
binned sequences at genus level, to avoid overestimation 
of microbial diversity in the data set [28, 41, 42]. Single-
tons were removed and putative contaminants, such as 
sequences derived from macroscopic animals, higher 
plants (Streptophyta), and chloroplasts, were excluded. 
For convenience, in this paper, we refer to the assessed 
communities as “microbial communities,” although they 
also include microscopic fauna (gastrotrichs, nematodes, 
rotifers, and tardigrades).

Considering that WWTP microbial communities are 
affected by location-specific environmental and opera-
tional factors, and therefore cannot necessarily be treated 
as biological replicates, we screened the data for poten-
tial outliers [1]. To this end, we compared the microbial 
communities of the different WWTP locations by explor-
ing multivariate dispersion (visualized by non-metric 
multidimensional scaling, NMDS, function metaMDS, 
package vegan, Supplementary Fig. 1 A) and beta diver-
sity (function vegdist, package vegan, Supplementary 
Fig.  1 B). Bray-Curtis dissimilarity was calculated from 
the relative abundance data, i.e., the number of reads 
of each taxon was divided by the total number of reads 
of the respective sample. Significant differences in beta 
diversity were identified using unpaired two-sample 
Wilcoxon tests (function stat_compare_means, package 
ggpubr). Based on these results, WWTP location “FD” 
[28] was removed from subsequent analyses due to clear 
differences in beta diversity (Supplementary Fig.  1). In 
addition, location “BE” was removed because its design 
prevented the sampling of its denitrification bioreactor. 
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Consequentially, our further analysis focused on 10 out 
of the originally 12 WWTPs sampled by Ju et al. [28].

For these ten locations, sequence data were subsam-
pled (rarefied) to guarantee a similar sampling depth 
of ribosomal (marker) gene sequences across the entire 
range of DNA and RNA data, respectively. Prior to rar-
efaction, one RNA sample and two DNA samples were 
removed from the data set because of exceptionally low 
sequencing depth in ribosomal genes. Accordingly, the 
data were rarefied to a depth of 13,359 DNA and 13,812 
RNA marker gene sequences per sample.

Furthermore, we evaluated the variation caused by 
sample processing, i.e., sequencing. When Ju et  al. [28] 
sampled the WWTPs for the database used in our study, 
they collected one sample per compartment, except for 
WWTP location “ZR”, where an additional two replicates 
in the inflow compartment were subjected to sequenc-
ing to assess the technical variation. We evaluated this 
variation based on an NMDS plot made with relative 
abundance data transformed by Bray-Curtis dissimilar-
ity (metaMDS function, package vegan; Supplementary 
Fig.  2). This analysis showed that variation caused by 
sequencing was low. For the remainder of our analyses, 
we kept only one of the three replicates mentioned above, 
to ensure comparability with the single samples taken 
from the other compartments at the different WWTP 
locations.

Rarefaction curves were calculated from count data 
using the function rarecurve (package vegan). With a 
total richness of 1947 and 1887 operational taxonomi-
cal units (OTUs) identified in the rDNA and rRNA data 
respectively, rarefaction curves showed sufficient satura-
tion in sequencing (Supplementary Fig. 3). An overview 
of the number of reads and OTUs of prokaryotes, pro-
tists, fungi, and microscopic metazoans is provided in 
Supplementary Table 1.

Finally, functional traits were assigned to the taxa iden-
tified, using published reference databases [43–48]. Based 
on these trait databases, we classified the following taxa 
as parasites: (a) all protist genera associated with human 
and animal gut and/or feces and (b) all prokaryote, fun-
gal, and microscopic-metazoan genera that include 
potentially pathogenic species to humans and animals. 
The poorly investigated and difficult to detect Rosculus 
and Guttulinopsis, two protistan taxa that are primarily 
known from feces of livestock for which evidence of a 
complete gut passage is yet missing, are here also consid-
ered as parasites [49]. An overview of the parasitic genera 
thus identified is given in Supplementary Table 2.

Area plots, line plots, and box plots
To analyze microbial community changes across waste-
water treatment compartments, we computed area plots 

of the 11 most abundant prokaryotic and eukaryotic 
orders, including both free-living and parasitic taxa. Dif-
ferences between the treatment compartments were 
tested both in terms of community composition (rDNA) 
and activity (rRNA), using Permutational Multivariate 
Analysis of Variance (PERMANOVA, adonis function, 
package vegan). Changes in the total number of ribo-
somal sequences over time, i.e., across the consecutive 
compartments, were analyzed based on qPCR analysis 
for DNA sequencing and spiked internal standards for 
RNA sequencing (RIS) (Supplementary Fig.  4). Total 
abundances of eukaryotic ribosomal sequences were esti-
mated based on the relative proportion of shotgun data 
in relation to the total abundances of qPCR prokary-
otic ribosomal sequences. Differences between the total 
abundance in the inflow versus denitrification bioreac-
tor, the denitrification versus nitrification bioreactor, 
and the nitrification bioreactor versus the outflow were 
tested using sign test (function sign_test, package rstatix, 
Supplementary Table 3). Additionally, the relative abun-
dance of selected parasitic protist taxa over time were 
visualized in line plots  and tested for significant differ-
ences using sign test (function sign_test, package rstatix), 
comparing their relative abundance in the inflow versus 
denitrification bioreactor, and the nitrification bioreac-
tor versus the outflow (Supplementary Table  4). Finally, 
to evaluate differences between measurable presence and 
activity, we compared the relative abundance of rDNA 
versus rRNA reads. This was done for the most numer-
ous orders within the community, across all compart-
ments (Supplementary Table 5), as well as for the seven 
parasitic protist taxa mentioned above, focusing on the 
inflow compartment where they were most abundant 
(box plots). For the latter, differences between rDNA and 
rRNA relative abundance were determined by Sign test, 
not considering outliers (package rstatix).

Network inference
Co-occurrence network analyses were performed to 
assess the complexity of correlations between free-living 
and parasitic taxa within the WWTP microbial commu-
nity and draw inferences about the role of predation in 
parasite removal. Beforehand, we conducted two pre-
processing steps to reduce indirect associations (spurious 
edges).

First, we reduced spurious edges caused by environ-
mental factors. In network inference, it is a challenge to 
disentangle microbial associations reflecting ecologi-
cal relationships–direct edges–from those induced by 
the environment  –  indirect edges [50–53]. To evaluate 
the influence of environmental factors on the WWTP 
microbial community, NMDS plots were computed for 
the WWTPs as a whole (Supplementary Fig.  5) as well 
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as for the individual compartment types (Supplemen-
tary Fig. 6), for both rDNA and rRNA relative abundance 
data (function metaMDS, package vegan). Next, the envi-
ronmental data measured by Ju et al. [28] (pH, dissolved 
oxygen, dissolved organic carbon, total nitrogen, total 
phosphorus, temperature, and hydraulic retention time) 
were fitted onto the ordinations using envfit (vegan). 
The resulting p values were corrected for multiple test-
ing according to Benjamini & Hochberg [54]. Significant 
environmental vectors, scaled (multiplied) with their cor-
relation value, were added to the NMDS plots. This anal-
ysis showed that environmental factors such as pH, total 
phosphorus (TP), and dissolved organic matter (DOC) 
correlated significantly with the diversity of the microbial 
community at the WWTP level (Supplementary Fig.  5), 
but not at the individual compartment level (with one 
exception; see Supplementary Fig.  6). Thus, spurious 
edges caused by environmental factors were minimized 
by conducting the network analysis at the compartment 
level.

Secondly, we reduced spurious edges caused by rare 
species. Since co-absence can yield artificially high cor-
relation values that have no ecological meaning [50], we 
filtered the data for rare taxa. Thus, for each WWTP 
compartment type, we excluded taxa detected in fewer 
than seven samples (of N=10 samples across WWTP 
locations). Metagenomic and metatranscriptomic data 
were processed separately.

Following these two pre-processing steps, network 
analysis was conducted by combining two methods, i.e., 
Sparse Correlations for Compositional data (SparCC) 
and Sparse and Compositionally Robust Inference of 
Microbial Ecological Networks (SPIEC-EASI), as sug-
gested by Chen et  al. [55]. SparCC accounts for com-
positionality using a correlation measure derived from 
Aitchison’s variance of log-ratios [56], while SPIEC-
EASI, in addition to accounting for compositionality, also 
reduces indirect edges by using sparse neighborhood or 
inverse covariance selection to infer correlations [32]. 
Since each method relies on different approaches to opti-
mally filter noises and none performs across all data sets, 
we combined the two methods in an attempt to improve 
the prediction accuracy [55, 57, 58].

To combine SparCC and SPIEC-EASI methods, net-
works were first calculated with each approach sepa-
rately. The same workflow was used for each WWTP 
compartment type and conducted separately for rDNA 
and rRNA data. For the Python (v. 2.7.18) based SparCC 
function non-normalized count data were used (pack-
age sparcc, v. 0.1.0, Friedman & Alm, 2012). Significant 
correlations at False Discovery Rate 0.05 were obtained 
by 100 permutations of randomly shuffled data (function 
MakeBootstraps, package sparcc), subjected to network 

inference. SPIEC-EASI networks (function spiec.easi, 
package SpiecEasi), based on non-normalized count data 
as well, were calculated with the sparse Meinshausen-
Buhlmann’s neighborhood selection (mb) method [32]. 
The default scaling factor determining the minimum 
sparsity (lambda.min.ratio) was lowered to 0.001 because 
of the density of the networks. In order to get closer to 
the target stability threshold (0.05), nlambda was set to 
50. Finally, only the shared correlations of both net-
work inference methods were retained and visualized 
in Cytoscape v. 3.8.0 [37] (Supplementary Fig.  7). The 
complexity of the networks was reduced for visualiza-
tion [51]. To this end, the nodes were grouped at order 
level, with the edges indicating the number of genera 
with shown correlations. To further reduce the complex-
ity of the graphs, only correlations with parasitic taxa are 
shown in this paper.

Results
The taxonomic richness of microbial organisms asso-
ciated with wastewater treatment was found to be 
high (Supplementary Table  1). We identified a total of 
508,250 SSU rDNA sequences via metagenomics and 
537,935 SSU rRNA sequences via metatranscriptomics 
and assigned these to 1947 and 1887 operational taxo-
nomic units (OTUs), respectively. Prokaryotes consti-
tuted ~ 94.3 % of the rDNA reads, but only ~ 42.5 % of 
the rRNA reads. Conversely, protists were less dominant 
in the rDNA reads (~ 4.6 %) but represented as much 
as ~ 54.8 % of the rRNA reads. Fungi and microscopic 
metazoa represented only minor fractions, with slightly 
higher contributions to the rRNA reads (~ 1.9 % and ~ 
0.9 %, respectively) than rDNA reads (~ 0.7 % and ~ 0.4 
%, respectively).

In terms of community composition (rDNA, metagen-
omics), the prokaryotic community was dominated by 
the orders Burkholderiales, Rhodocyclales, and Sphingo-
bacteriales (bacteria), and the eukaryotic community by 
the protist orders Peritrichia (Ciliophora) and Cryomon-
adida (Cercozoa), and the fungal order Pezizomycotina 
(Fig.  1). The highest activity (rRNA, metatranscriptom-
ics) was found in the prokaryotic orders Burkholderiales, 
Flavobacteriales, and Sphingobacteriales (bacteria) and 
the protist orders Kinetoplastida (Discoba), Sainour-
idea (Cercozoa), and Euglenida (Discoba) (Fig. 1). Taxo-
nomic composition differed significantly between the 
four WWTP compartments (PERMANOVA, rDNA: R2 
= 0.59, p = 0.001; rRNA: R2 = 0.35, p = 0.001), reflect-
ing community changes during the wastewater treatment 
process (Supplementary Fig.  5). Interestingly, across all 
compartments, the eukaryotic taxa showed pronounced 
differences between their relative abundance of rDNA (a 
measure of biomass) and relative abundance of rRNA (a 
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measure of activity), while these differences were much 
less pronounced in the prokaryotic taxa (Fig. 1, Supple-
mentary Table 5).

In terms of parasitic taxa, we found that the WWTP 
microbiome included a large and diverse number of para-
sitic eukaryotes (up to ~ 64 % of the eukaryote reads, of 
which the majority represented parasitic protists and less 
than 1% represented other parasitic eukaryotes) and a 
relatively smaller fraction of parasitic bacteria (up to ~ 15 
% of the prokaryote reads). Effective removal of parasites 
over the course of wastewater treatment was indicated by 
their pronounced decrease from high abundance in the 

inflow (mostly raw sewage) to low abundance in the out-
flow (effluent), both in relative numbers (Fig. 1) and total 
numbers of ribosomal sequences (Supplementary Fig. 4).

Based on these observations, we investigated the pro-
gress of parasite removal during wastewater treatment in 
closer detail by comparing changes in relative abundance 
and activity across WWTP compartments, focusing on 
selected taxa of parasitic protists (Fig.  2). Here, when 
comparing the inflow (INF) to denitrification (DNF) 
compartments, significant decreases were found in the 
relative abundance of Blastocystis and Rosculus, and 
in the activity of all taxa except Blastocystis (Sign-Test, 
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Supplementary Table  4). When comparing the nitrifica-
tion (NFC) bioreactor to the outflow (EFF) compartment, 
significant increases were found in the activity of Copro-
myxa and Rosculus (Sign-Test, Supplementary Table 4).

Given these different changes in abundance versus 
activity, we contrasted the “detectability” of each of 
the protist taxa mentioned above, in terms of abun-
dance (rDNA, metagenomics) versus activity (rRNA, 
metatranscriptomics), focusing on the samples from 
the inflow (Fig.  3). Intriguingly, this comparison 
showed that the gut parasites Dientamoeba, Enta-
moeba, Giardia, and Rosculus were hardly detectable in 
terms of abundance (rDNA) but yielded a high number 

of reads in terms of activity (rRNA). Conversely, the gut 
parasites Blastocystis, Copromyxa, and Guttulinopsis 
were hardly detectable in terms of activity (rRNA) but 
were clearly present in most rDNA samples. In other 
words, when present, the latter taxa showed low or no 
measurable activity.

To investigate whether parasite abundance and activity 
patterns across wastewater treatment can be explained 
by microbial community interactions, we conducted 
network analyses, looking specifically for associations 
between parasites and potential competitors, preda-
tors, and co-associated parasites. When comparing 
the networks of the communities in the inflow versus 
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denitrification compartments, where most of the para-
site removal took place, we observed a surprisingly high 
number of correlations between bacteria and eukary-
otes, in addition to the commonly reported correlations 
within bacteria (Fig. 4; for other compartments, see Sup-
plementary Fig. 7). Across the networks shown in Fig. 4, 
correlations within the bacteria accounted for ~ 47 % 
of all correlations, while correlations between bacteria 
and eukaryotes accounted for ~ 44 %. Of the latter cor-
relations, 74 % involved protists. Particularly interesting 
are the correlations found for Rosculus, the main genus 
found in the Cercozoa (“Ce” in Fig. 4). This parasitic and 
bacterivorous protist was found to be highly active (up 
to ~ 84 % of the protist rRNA reads) in the inflow, with 
significantly lower readings in the denitrification bioreac-
tor (only ~ 4 % of the protist reads, Fig. 2, Sign-Test, Sup-
plementary Table 4). Network inference revealed that, in 
the inflow, Rosculus correlated exclusively with bacteria 
(indicating Rosculus feeding on bacteria) while, in the 
denitrification compartment, it had fewer correlations 
with bacteria but gained correlations with the rotifers 
Adenita and Monostyla (indicating Rosculus being preyed 
upon by rotifers). Other parasitic protist taxa followed 
the same general pattern of strongly decreasing num-
bers between the inflow and denitrification compart-
ments (Fig. 2), correlating with bacteria, fungi, and other 
smaller protists in the inflow, and gaining correlations 
with predatory ciliates and rotifers in the denitrification 
bioreactor (Fig. 4).

Interestingly, the correlations discussed above emerged 
more strongly from the networks derived from activity 
data (rRNA, metatranscriptomics) than from the net-
works derived from abundance data (rDNA, metagen-
omics). As shown in Fig.  4, rDNA and rRNA networks 
showed distinct differences in density, with respectively 
124 versus 192 edges (correlations) and 65 versus 104 
nodes (taxa) in the inflow, and 135 versus 151 edges and 
78 versus 85 nodes in the denitrification compartment. 
This greater density of rRNA networks was also observed 
in the other compartments (Supplementary Fig.  7). 
Moreover, the rRNA networks revealed associations 
between parasitic protists and their potential predators 

(rotifers, in particular) that were not detected in the 
rDNA networks.

Discussion
Our study provides a comprehensive overview of the 
diversity of microorganisms in wastewater treatment 
plants (WWTPs), including not only bacteria but also 
fungi, protists, and microscopic metazoans. Expectedly, 
bacteria represented the most numerous fraction of the 
microbial community in terms of metagenomics [6]. 
However, in terms of metatranscriptomics (activity), the 
number of eukaryotic reads was higher than the prokary-
otic reads. Surprisingly, within the eukaryotic fraction, 
the abundance and activity of protists were found to be 
much higher than of fungi. With ~ 55% of all rRNA reads, 
protists, including many potential parasites, were the 
most active eukaryotes in the WWTP microbial commu-
nity. Our results further showed that rDNA (abundance) 
and rRNA (activity) data showed profoundly different 
patterns, especially among the eukaryotic taxa.

Parasite removal – predator facilitated?
Previous studies have repeatedly shown that wastewater 
is a hotspot of potential parasites [6, 59, 60]. These stud-
ies mostly focused on investigating the bacterial com-
munity and potentially parasitic bacteria [6], ignoring 
the fate of eukaryotic parasites during wastewater treat-
ment. Our study highlights the importance of the latter 
group, showing a surprising diversity and abundance of 
gut- and feces-associated parasitic protists, particularly 
in the inflow (sewage). Our primer-independent find-
ings significantly add to Maritz et al. [23], who detected 
various parasitic protists in raw sewage using a primer-
based approach. While they identified parasitic protists 
such as Blastocystis, Entamoeba, and Trichomonas, we 
detected the same taxa plus numerous additional ones, 
including Dientamoeba, Guttulinopsis, Giardia, and 
Rosculus. Many of these eukaryotic parasites are known 
to be “long branch organisms,” i.e., organisms with 
highly divergent marker gene sequences that often can-
not be assessed by conventional primer-based sequenc-
ing methods [49], which impedes the detection of taxa 

(See figure on next page.)
Fig. 4  Co-occurrence networks of parasitic orders in the inflow and denitrification bioreactor. Networks showing correlations derived from 
co-occurrence network inferences for the inflow (INF) and denitrification bioreactor (DNF) at N=10 WWTP locations, based on metagenomic (first 
row) and metatranscriptomic (second row) data. Only associations that involve parasites are shown. Nodes represent genera grouped at the order 
level and trait level (red nodes: parasitic taxa; yellow nodes: free-living taxa), with node size proportional to the total number of reads for each 
order. Edges represent correlations between taxa (blue lines: positive correlations; red lines: negative correlations), with line thickness proportional 
to the number of genera per order involved. Abbreviations for archaea: E Euryarchaeota, O others. Abbreviations for bacteria: A Actinobacteria, 
B Bacteroidetes, C Chloroflexi, F Firmicutes, O Others, Pl Planctomycetes, Pr Proteobacteria, T Tenericutes, V Verrucomicrobia. Abbreviations 
for Proteobacteria: Alpha Alphaproteobacteria, Beta Betaproteobacteria, Gamma Gammaproteobacteria, Delta Deltaproteobacteria, O others. 
Abbreviations: Fungi: A Ascomycota, B Basidiomycota, O others. Abbreviations for protists: Ce Cercozoa (*including Rosculus), Ci Ciliophora, Co 
Conosa, Db Discoba, Di Discosea, Ms Mesomycetozoa, Mt Metamonada, O Others, S Stramenopiles, T Tubulinea
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such as Giardia [61]. In contrast, the primer-independ-
ent shotgun data used in our study allow to assess the 
full spectrum of taxa. For example, Wylezich et  al. [24, 
25] demonstrated the use of this approach to assess the 

full range of eukaryotic parasites present in swine feces. 
It can be concluded that primer-based approaches have 
only limited use for monitoring eukaryotic parasites in 
wastewater.

Fig. 4  (See legend on previous page.)
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An array of studies revealed that potentially harm-
ful (parasitic) bacteria were strongly reduced during 
the initial phases of wastewater treatment [42, 62, 63]. 
Our study also shows a pronounced decrease in para-
sitic taxa between the inflow (sewage) and denitrifica-
tion bioreactor, but, moreover, shows that this decrease 
also applies to eukaryotic parasites, protists in particular. 
This decrease can partly be explained by the transition 
in chemical conditions of the environment, floccula-
tion, and sedimentation [1–3, 42]. However, our network 
analyses suggest that predation may also play a role, as 
we found parasites to co-occur with a number of other 
taxa within the microbial WWTP community, indicat-
ing that trophic interactions, as suggested by laboratory 
experiments, could be taking place [13, 14, 60, 64]. In the 
context of parasite removal from wastewater, the position 
of gut-parasitic protists is particularly interesting since 
many of these taxa are both predators (bacterivores) and 
prey. In our study, the networks of the inflow and denitri-
fication compartments showed a high percentage of cor-
relations (~44 %), thus putative ecological interactions, 
between bacteria and eukaryotes. Among these correla-
tions, ~ 74 % involved protists, indicating their central 
role as bacterivorous regulators of bacterial community 
composition (including potentially preying on gut-par-
asitic bacteria). Compared to the inflow (sewage), cor-
relations between protists and bacteria decreased in the 
denitrification compartment, whereas new correlations 
emerged between protists and their potential predators–
i.e., ciliates and rotifers. Previous studies have identified 
ciliates (protists) and rotifers (metazoans) as potentially 
the most crucial predators in WWTPs [65, 66]. Our net-
work analyses support this idea, providing evidence of 
trophic interactions between these predators and their 
protist prey, in situ.

Contrasting abundance versus activity patterns 
of eukaryotic parasites: consequences for WWTP 
biomonitoring
Taxonomic composition of the eukaryotic fraction 
strongly differed between rDNA data (metagenom-
ics) and rRNA data (metatranscriptomics) (Fig.  1). In 
extreme cases, we found some of the parasitic protists 
to be abundantly present in rDNA data but below detec-
tion level in rRNA data, or completely the other way 
around (Fig. 3). Such differences are generally not found 
in prokaryotes, where it is possible to assess “normalized 
activity” (RNA/DNA quotient as a measure of activity per 
individual) based on metagenome-assembled genomes 
(MAG) (see for example Herold et  al. [67] and Arbas 
et  al. [68], reporting on WWTP bacteria). Our findings 
show that it is not feasible to calculate this quotient for 

eukaryotes (especially when either rDNA or rRNA is 
zero); in addition, current technology does not yet allow 
to assess eukaryote MAGs, since eukaryotes have much 
larger genomes and higher variation in ribosomal gene 
duplication than bacteria [69].

As said, the difference in abundance (rDNA reads) 
versus activity (rRNA reads) was particularly strong for 
some of the parasitic protists (Fig.  3). In the absence 
of their natural hosts, we expected these parasites to 
become dormant, i.e., low in activity and potentially 
forming resting stages [70]. This was indeed found for the 
taxa Blastocystis, Copromyxa, and Guttulinopsis, whose 
presence could be detected via rDNA but whose activity 
was so low that it mostly fell below the sensitivity thresh-
old of our rRNA sequencing (Fig.  3). In contrast, the 
taxa Dientamoeba, Entamoeba, Giardia, and Rosculus 
were hardly present in the rDNA data but showed a high 
expression of ribosomal genes, indicating high activity 
and even potential reproduction [69]. Outstanding was 
the high proportion of Rosculus in rRNA data, making up 
to ~ 84 % of the eukaryotic fraction. Rosculus is known to 
be highly abundant and active in feces [49], and, as this 
study indicates, also in sewage within WWTPs.

The importance and ecological meaning of these dif-
ferences in abundance versus activity data were further 
revealed in our network analysis (Fig. 4). As expected, the 
activity-based rRNA networks showed a higher number 
of edges, i.e., putative interactions, than the rDNA-based 
networks, because rRNA data reflect the active part of 
the community. More importantly, the rRNA-based net-
works revealed associations between parasitic protists 
and their potential predators (ciliates and rotifers) that 
were not detected in the rDNA networks. Thus, the very 
low abundance (rDNA reads) of the parasitic protists 
Dientamoeba, Entamoeba, Giardia, and Rosculus may be 
explained by predation. At the same time, their observed 
high activity (rRNA reads) and strong network corre-
lations with bacteria suggest that these protists, while 
being preyed upon, themselves were actively feeding on 
bacteria (Fig. 4).

Conclusions
Our results are of particular interest for biomonitor-
ing to evaluate wastewater treatment efficiency [22, 63, 
71]. Especially in developing countries, the treatment of 
wastewater may be insufficient before re-introduction 
into the water system or re-use for agricultural purposes 
[6, 17, 59, 72]. According to Cai et  al. [42], this applies, 
for instance, to around 80 % of sewage in India. Subse-
quently, potentially infectious and harmful parasitic 
microorganisms become widespread and form a threat 
to public health when present in drinking water, water 
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recreation areas, and aquatic food production systems 
[42, 73–75]. Our results clearly show that biomonitor-
ing of wastewater treatment efficiency via molecular 
methods (“-omics”) can be greatly improved by using 
primer-independent shotgun approaches to ensure ade-
quate detection of parasitic protists. Combining shotgun 
metagenomics with shotgun metatranscriptomics allows 
to monitor both abundance and activity of this important 
group of microeukaryotic parasites. This improvement 
is crucial for reducing the public health risks associated 
with insufficiently treated wastewater.

Abbreviations
WWTPs: Wastewater treatment plants; rDNA: Ribosomal DNA; rRNA: Ribosomal 
RNA; INF: Sewage-inflow; DNF: Denitrification bioreactor; NFC: Nitrification 
bioreactor; EFF: Effluent; OTUs: Operational taxonomic units; MAG: Metagen-
ome-assembled genomes.
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Additional file 1: Supplementary Figure 1. Comparing microbial 
communities between WWTP locations to identify outliers. Graphs 
showing multivariate dispersion (A) and beta diversity (B) of microbial 
community composition at N=11 WWTP locations, based on metagen-
omic data (left-hand side) and metatranscriptomic data (right-hand side). 
For multivariate dispersion (A), NMDS plots were calculated based on 
Bray-Curtis dissimilarities. Lines (color-coded by location) link samples at 
each location to their centromere. For beta diversity (B), boxplots show 
the 25 % and 75 % percentiles and medians of Bray-Curtis dissimilarities. 
Points are color and symbol-coded by WWTP compartments: INF = inflow 
(sewage), DNF = denitrification bioreactor, NFC = nitrification bioreactor, 
EFF = effluent (treated water). In beta diversity based on metatranscrip-
tomic data (lower row, right-hand side), significant differences between 
location “FD” and the other locations are indicated with asterisks (unpaired 
two-sample Wilcoxon test, * p < 0.05; ** p < 0.01; *** p < 0.001). Based 
on these results, location FD was excluded from further analysis. Sup-
plementary Figure 2. Assessment of the variation caused by sampling 
processing (sequencing). NMDS plot based on Bray-Curtis dissimilarities 
derived from metatranscriptomic data, comparing microbial community 
composition across WWTP compartments and locations. The variation 
caused by sample processing is shown for one location, “ZR”, showing 
three sequencing replicates from the inflow (INF) (replicates indicated by 
yellow asterisks). Based on this comparison, we concluded that variation 
caused by sequencing was low. Compartments: INF = inflow (sewage), 
DNF = denitrification bioreactor, NFC = nitrification bioreactor, EFF = 
effluent (treated water). Supplementary Figure 3. Rarefaction curves for 
metagenomic (rDNA) and metatranscriptomic (rRNA) data. Curves show-
ing the number of reads as a function of the number of OTUs identified 
(N=37 samples, i.e. one sample from each WWTP compartment (4) at 
each WWTP location (10), excluding 3 samples because of exceptionally 
low sequencing-depth). Samples are color-coded by compartment: INF 
= inflow (sewage), DNF = denitrification bioreactor, NFC = nitrification 
bioreactor, EFF = effluent (treated water). Supplementary Figure 4. Total 
number of rDNA and rRNA sequences. Boxplots showing the 25 % and 75 
% percentiles and medians of the total number of rDNA (metagenomics) 
and rRNA (metatranscriptomics) sequences for (A) the total community 
and (B) the parasitic community, comparing prokaryotes (blue) and 
eukaryotes (yellow). Compartments: INF = inflow (sewage), DNF = 
denitrification bioreactor, NFC = nitrification bioreactor, EFF = effluent 

(treated water). Supplementary Figure 5. Microbial community structure 
and environmental factors across WWTPs. NMDS biplots based on Bray-
Curtis dissimilarities showing microbial community composition across 
WWTP compartments and locations, in association with environmental 
data. Metagenomic and metatranscriptomic data are shown separately. 
Samples are color-coded and grouped (ellipses) by compartment. Signifi-
cant environmental vectors are shown as arrows (* p < 0.05; ** p < 0.01; *** 
p < 0.001). Compartments: INF = inflow (sewage), DNF = denitrification 
bioreactor, NFC = nitrification bioreactor, EFF = effluent (treated water). 
Environmental vectors: DO = dissolved oxygen, DOC = dissolved organic 
carbon, HRT = Hydraulic retention time, TN = total nitrogen, TP = total 
phosphorus. Supplementary Figure 6. Microbial community structure 
and environmental factors in the separate WWTP compartments. NMDS 
biplots based on Bray-Curtis dissimilarities, showing microbial community 
composition in association with environmental data for each WWTP com-
partment. Metagenomic and metatranscriptomic data are shown sepa-
rately. The distribution of the samples (symbol-coded by WWTP location) 
is visualized by the ellipses. Significant environmental vectors are shown 
as arrows. Compartments: INF = inflow (sewage), DNF = denitrification 
bioreactor, NFC = nitrification bioreactor, EFF = effluent (treated water). 
Environmental vectors: TN = total nitrogen. Supplementary Figure 7. 
Co-occurrence networks of parasitic orders in the four WWTP compart-
ments. Networks showing correlations derived from co-occurrence net-
work inferences for each WWTP compartment, based on metagenomic 
(first row) and metatranscriptomic (second row) data. Only associations 
that involve parasites are shown. Nodes represent genera grouped at the 
order level and trait level (red nodes: parasitic taxa; yellow nodes: free-
living taxa), with node size proportional to the total number of reads for 
each order. Edges represent correlations between taxa (blue lines: positive 
correlations; red lines: negative correlations), with line thickness propor-
tional to the number of genera per order involved. Compartments: INF 
= inflow (sewage), DNF = denitrification bioreactor, NFC = nitrification 
bioreactor, EFF = effluent. Abbreviations for Archaea: E = Euryarchaeota, 
O = Others. Abbreviations for bacteria: A = Actinobacteria, B = Bacteroi-
detes, C = Chloroflexi, F = Firmicutes, O = Others, Pl = Planctomycetes, Pr 
= Proteobacteria, T = Tenericutes, V = Verrucomicrobia. Abbreviations for 
Proteobacteria: Alpha = Alphaproteobacteria, Beta = Betaproteobacteria, 
Gamma = Gammaproteobacteria, Delta = Deltaproteobacteria, O = 
Others. Abbreviations Fungi: Ascomycota = A, Basidiomycota = B, Others 
= O. Abbreviations for protists: Ce = Cercozoa (*including Rosculus), Ci = 
Ciliophora, Co = Conosa, Db = Discoba, Di = Discosea, Ms = Mesomyce-
tozoa, Mt = Metamonada, O = Others, S = Stramenopiles, T = Tubulinea. 
Supplementary Table 1. Microbial community composition after 
quality filtering. Total number and relative number (%) of ribosomal reads 
and OTUs in the metagenomic (rDNA) and metatranscriptomic (rRNA) 
data of 10 WWTP locations, for prokaryotes (bacteria and Archaea) and 
eukaryotes (protists, fungi and microscopic metazoa). Supplementary 
Table 2. Parasitic genera in WWTPs based on both metagenomic and 
metatranscriptomic data. Overview of all parasitic genera identified in the 
WWTP samples. Supplementary Table 3. Comparing the total number 
of rDNA and rRNA sequences. Pair-wise comparison of the total number 
of eukaryotic and prokaryotic sequences for the total community and the 
parasitic community, contrasting the inflow (INF) with the denitrification 
bioreactor (DNF), the denitrification bioreactor (DNF) with the nitrification 
bioreactor (NFC), and the nitrification bioreactor (NFC) with the effluent 
(EFF). Sign test (* p < 0.05; ** p < 0.01; *** p < 0.001). Supplementary 
Table 4. Comparing the abundance of parasitic protists between WWTP 
compartments. Pair-wise comparison of relative abundances of parasitic 
protist taxa in metagenomic and metatranscriptomic data, contrasting the 
inflow (INF) with the denitrification bioreactor (DNF), and the nitrification 
bioreactor (NFC) with the effluent (EFF). Sign test (* p < 0.05; ** p < 0.01; 
*** p < 0.001). Supplementary Table 5. Overview of the most numerous 
orders in WWTPs. Overview of the most numerous orders shown in Fig. 1. 
Numbers show their mean relative abundances across all compartments 
and locations (total N=40 samples) for both rDNA and rRNA data, as well 
as the absolute difference between these relative DNA and RNA abun-
dances, per order.
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