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Abstract 

Background:  Animal protein production is increasingly looking towards microbiome-associated services such as 
the design of new and better probiotic solutions to further improve gut health and production sustainability. Here, 
we investigate the functional effects of bacteria-based pro- and synbiotic feed additives on microbiome-associated 
functions in relation to growth performance in the commercially important rainbow trout (Oncorhynchus mykiss). 
We combine complementary insights from multiple omics datasets from gut content samples, including 16S bacte-
rial profiling, whole metagenomes, and untargeted metabolomics, to investigate bacterial metagenome-assembled 
genomes (MAGs) and their molecular interactions with host metabolism.

Results:  Our findings reveal that (I) feed additives changed the microbiome and that rainbow trout reared with feed 
additives had a significantly reduced relative abundance of the salmonid related Candidatus Mycoplasma salmoninae 
in both the mid and distal gut content, (II) genome resolved metagenomics revealed that alterations of microbial argi-
nine biosynthesis and terpenoid backbone synthesis pathways were directly associated with the presence of Candida-
tus Mycoplasma salmoninae, and (III) differences in the composition of intestinal microbiota among feed types were 
directly associated with significant changes of the metabolomic landscape, including lipids and lipid-like metabolites, 
amino acids, bile acids, and steroid-related metabolites.

Conclusion:  Our results demonstrate how the use of multi-omics to investigate complex host-microbiome interac-
tions enable us to better evaluate the functional potential of probiotics compared to studies that only measure overall 
growth performance or that only characterise the microbial composition in intestinal environments.
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mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Understanding how feed types and different biotic addi-
tives shape the intestinal microbiota and the biological 
interactions between host and bacteria is of paramount 

importance to continually boost sustainability of animal 
production. Pro- and prebiotics have often been consid-
ered to promote gut health and fish growth by decreas-
ing the prevalence of intestinal pathogens and changing 
the synthesis of bacterial exo-metabolites [1] related to 
health and growth [2–4]. Furthermore, the application of 
biotic additives has also shown an increase of the absorp-
tive surface for nutrient uptake, by increased density and 
length of host villi and microvilli [5, 6]. Bacteria able to 
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increase production efficiency have been heavily investi-
gated in terrestrial livestock, including both omnivorous 
species such as swine and poultry as well as herbivorous 
ruminants such as cattle and sheep. Highly investigated 
probiotic strains include Lactobacillus, Pediococcus, Bifi-
dobacterium, and Enterococcus for ruminants [7–10], 
poultry [11, 12], and swine [13–15]. Further, an investi-
gation of autochthonous probiotics suggested that bacte-
ria that are naturally adapted to the gastrointestinal tract 
of a respective host species are more likely to colonise 
when provisioned as probiotics in the feed [16]. In light 
of this, detailed characterisation of host-microbe interac-
tions, using more holistic approaches, is needed to bet-
ter understand how we can actively optimise beneficial 
services provided by the gut microbiota for livestock 
[17–19].

Despite the projected growth and importance of aqua-
culture in feeding a growing human population [20], 
there is a vast knowledge gap on how the gut microbiota 
support their host fish [21], especially when compared to 
terrestrial livestock where intestinal metagenomes have 
been increasingly investigated [19, 22–25]. It is therefore 
of utmost importance to gain more specific knowledge of 
the functional potential of fish-related gut microbiomes. 
Some feed types containing probiotics have already been 
tested in relation to their effects on growth efficiency 
and disease resilience [26–29]. The probiotic strains con-
sidered for aquacultural species so far are often derived 
from terrestrial species and thus not known to be related 
to the fish gut environment [16]. Even though probiotic 
related lactic acid bacteria, including Pediococcus, Leu-
conostoc, and Lactobacillus previously has shown to be 
present in the gut microbiome of salmonids [5, 30], very 
little is still known about their function in the fish gut 
environment regarding nutrient utilisation and immune 
response modulations [30, 31]. Selection and testing 
strategies need to be optimised further for the follow-
ing reasons; first, fish are exotherms, which means that 
temperature conditions can vary a lot compared to the 
more stable body temperatures of terrestrial animals. 
Second, many farmed fish are carnivorous and known to 
have highly divergent gut microbiota communities com-
pared to their herbivorous terrestrial counterparts [32]. 
Thus, there is a need for more specific knowledge of the 
functional potential of the gut microbiota related to fish 
species. Nevertheless, the type of diet needed to produce 
fish in a sustainable manner is closer to that of terrestrial 
farmed animals than of wild fish, and as such, probiotic 
bacteria that could help the host optimise digestion and 
utilisation of non-fishmeal-based diets would be of great 
interest.

Several studies based on 16S rRNA gene profiling of 
the gut microbiome of salmonids have demonstrated that 

the gut microbiome is highly variable and influenced by 
a variety of external factors, but also that the intestinal 
environment is often characterised by low biodiversity 
of the gut microbiota, and domination by Proteobacteria 
(phylum), Shewanella, and Mycoplasma genera [33–35]. 
One study showed that an increase of insect-based pro-
teins to rainbow trout (Oncorhynchus mykiss) increases 
the relative abundance of Mycoplasma in the gut micro-
biota [34]. Multiple studies have shown that abundance 
of Mycoplasma is positively associated with fish health 
and that it is an often dominant species in the gut 
microbiota of both wild and farmed salmonids [35–42]. 
However, very little is known about the function of this 
Mycoplasma and its metabolic interplay with its salmo-
nid host. Furthermore, the underlying mechanisms of 
the discrepancy of Mycoplasma, being highly dominant 
or totally absent remains unknown, despite recent inter-
ests [42, 43]. To address these unknowns, we advocate for 
approaches to better understand the functional interac-
tions between host fish and their associated microbiota 
species [2].

In this study, we use a non-targeted multi-omics 
approach to unravel the functional effects on the intes-
tinal microbiota and intestinal metabolism when provid-
ing a probiotic to farmed rainbow trout. Specifically, we 
(I) investigate microbial shifts in the gut environment 
caused by probiotic and synbiotic additives using both 
16S rRNA gene profiling and whole-genome metagen-
omics sequencing, (II) investigate the functional diversity 
of the gut microbiota, using metagenomics combined 
with high-resolution untargeted metabolomics, includ-
ing both UHPLC-MS/MS and IC HR-MS/MS, (III) 
investigate the differential abundance of key growth 
and health-related metabolites in light of metagenomic 
profiles among fish reared on feed types with and with-
out biotic additives, and (IV) use novel network-based 
approaches for chemical structural annotation to break 
down unknown metabolite classes and improve knowl-
edge of unknown microbial metabolites, which may be 
correlated with higher performance in rainbow trout.

Results
Feed additives and nutrient utilisation
Feed performance was evaluated based on bulk weights 
and counts of rainbow trout from five replicate tanks for 
each of the three feeding groups tested. Registration of 
feed administered to each tank, as well as near-infrared 
spectroscopically determined content of protein and lipid 
in each feed group was recorded (Fig. 1A–D).

Our findings indicate that nutrient-related phenotypes, 
like lipid and protein metabolism, of juvenile rainbow 
trout can be affected by functional diets. Overall, our 
analyses revealed no significant differences in percent 
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weight gain (WG), feed conversion ratio (FCR), and the 
inverse of FCR, feed efficiency ratio (FER), among feed-
ing groups (Fig. 1A, B). It should be noted that nutritional 
analysis of feed revealed a lower number of calories (MJ/
Kg) and fat content (%) in PRO feed, and a lower amount 
of protein in the CTRL diet (Table 1). This may explain 
some of the observed differences in the performance data 
and complicates the further interpretations of feed effi-
ciency indices (Fig. 1A–D and Supp. Figure S1).

Consequently, the lipid efficiency ratio (LER) suggests 
a significantly more effective conversion of feed lipids 
into biomass in the PRO group (F(2,12) = 9.84, p = 0.0029) 
(Fig.  1C), indicating usage improved efficiency of lipid 
utilisation. Analysis of the protein efficiency ratio (PER) 
showed that the CTRL group had a significantly higher 
efficiency than the other feeding types (F(2,12) = 9.88, p 
= 0.0029) 1D). An accurate LER and PER determination 
would require isoenergetic/proteinic diets and analysis of 
whole-body fat and protein rather than the bulk weight of 
the fish.

Pro‑ and synbiotic additives are associated 
with a reduction in relative abundance of Mycoplasma 
throughout the rainbow trout intestine
During the experimental period, the rainbow trout were 
fed control feed (CTRL), probiotic feed (PRO), and 

synbiotic feed (SYN) (Table 1). Bacterial profiling of both 
the mid and distal intestinal content of a total of 120 
juvenile rainbow trout (n = 40 fish per feed type), using 
the V3–V4 regions of the 16S rRNA gene, resulted in 
382 amplicon sequence variants (ASVs). Filtering of low 
abundant ASV, by removal of ASV lower than 0.1% in 
mean relative abundance and removal of ASVs occuring 
in less than 2% of all samples, resulted in only six ASVs, 
indicating a low divers microbiota. Rarefaction curves 
were used to assess the saturation of recovered ASVs, 
suggesting an adequate sequence coverage for detect-
ing present ASVs (Supp. Figure S2A-B). The five most 
abundant ASVs comprised 85.1% of the total number of 
microbial reads from rainbow trout in this trial, reveal-
ing a low intestinal microbiota diversity (mean effective 
ASV richness of 34.78 ± 15.8 Hill numbers). Taxonomy 
assignment revealed that the five most abundant ASVs 
included genera of Mycoplasma, Pediococcus, Pseu-
domonas, Massilla, and endosymbiont8 (genus of Enter-
obacteriaceae). Bacterial profiling throughout the gut 
revealed significant changes in the microbial composition 
among different diet groups with fish from the CTRL 
group being dominated by Mycoplasma, compared to fish 
from the other two groups that were largely characterised 
by a higher relative abundance of Massilla and endosym-
biont8 (Fig. 2A). Further, the recovered Pediococcus ASV 

Fig. 1  Performance test of feeding trial. Boxplots of growth performance attributes, including A Gain of Weight, B Feed Efficiency Ratio, C Lipid 
Efficiency Ratio, and D Protein Efficiency Ratio. Results from Tukey’s HSD tests for pairwise comparison between feeding groups are shown in 
brackets above boxplots. Feeding groups are visualised as orange for control feed (CTRL), blue for probiotic additive (PRO), and red for synbiotic 
additive (SYN)

Table 1  Overview of the feed types included and the main differences

Ingredient Control samples 
(CTRL)

Probiotic samples 
(PRO)

Synbiotic 
samples 
(SYN)

Core feed composition Fat content (%) (SD ± 1.21) 20.0 17.1 19.7

Protein content (%) (SD ± 1.46) 52.8 57.4 55.1

Calories (MJ/Kg) (SD ± 0.406) 22.37 21.55 22.45

Additives Pediococcus acidilactici MA18/5M (1 × 106 CFU/
gram)

− + +

Galacto-oligosaccharides (GOS) (1%) − − +
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revealed an exact match with the administered probiotic 
strain of P. acidilactici MA18/5M.

Our analysis revealed a clear alteration of the microbi-
ota because of feed type. A principal coordinates analysis 
(PCoA) revealed that 96.4% of the variance of the micro-
biota was explained by two principal components, and 
that the microbiota of CTRL clustered alone, whereas the 
microbiota of PRO and SYN clustered together (Fig. 2B). 
This pattern was repeated for both the mid and distal gut 
sections, but with no significant differences between the 
gut sections (Fig. 2B).

Diversity analysis based on Hill numbers [44, 45] 
revealed that richness was unaffected by gut section and 
feed (Fig.  2C), whereas we found a significantly higher 
microbial diversity in the microbiome in both the PRO 
and SYN groups compared to CTRL when taking rela-
tive abundance into account (Fig. 2D), and especially for 
highly abundant species (Fig. 2E).

Differential abundance analysis of the top 50 most 
abundant ASVs confirmed a significantly higher abun-
dance of Mycoplasma in the CTRL group, indicating that 
feed additives may have a suppressing effect on the pres-
ence of Mycoplasma and Bifidobacterium (top and mid-
dle lateral panels in Fig. 2F). On the other hand, our data 
reveals an increase of the phylum Proteobacteria, the 
class of Clostridiales, the family of Enterobacteriaceae, 
and genera like Pseudomonas, Massilia, Weissella, and 
Staphylococcus in both PRO and SYN compared to CTRL 
(middle and bottom lateral panels in Fig. 2F). The abun-
dance of the probiotic Pediococcus ASV was significantly 
higher in the SYN group, compared to both the CTRL 
and the PRO groups, indicating that the usage of galacto-
oligosaccharides (GOS) as a supplemental prebiotic in 
the SYN group did increase the abundance of P. acidilac-
tici MA18/5M (bottom lateral panel in Fig. 2F).

Mycoplasma abundance is associated with microbial 
pathways of known relevance for salmonid metabolism
A random subset of individuals from each feeding group 
was selected to investigate inherent microbes in the 
rainbow trout intestinal content. Deep sequencing of 
six individuals (from both mid and distal gut) was per-
formed to get a minimal coverage, since the microbial 
biomass in intestinal samples was shown to be low as 
inferred from qPCR quantification of the V3–V4 regions 
of the 16S rRNA gene (Supp. Table  S2.1). To cope with 
the high fraction of host DNA in the gut content samples, 
we aimed to deeply sequence these samples, resulting in 
more than 1.5 Tb of raw sequence data from the six indi-
viduals, including both mid and distal gut sections.

Initial analysis of the metagenomic data revealed a 
saturation of open reading frames (ORFs) for all samples, 
indicating sufficient sequencing depth for the investiga-
tion of the rainbow trout metagenome (Fig.  3A). Sub-
sequently, co-assembly of the 12 samples resulted in a 
recovery of 123,267 contigs, with a N50 on 3117 bp, and 
more than 238,000 ORFs. Annotation of ORFs, using 
cluster of orthologue genes (COGs), resulted in a recov-
ery of 17,354 COGs. Comparison of mean gene coverage 
for COGs among feeding types, indicated a clear differ-
entiation between CTRL and the feeding types including 
additives (PRO and SYN), with the CTRL group hav-
ing the highest coverage of COGs for most categories 
(Fig. 3B).

Furthermore, investigation of COGs composition 
between samples and feeding types showed a high simi-
larity among the four CTRL samples. The CTRL samples 
clustered away from both PRO and SYN, except for one 
SYN sample (Fig. 3C).

We also analysed bacterial single-copy core genes 
(SCG) in the co-assembled metagenome, using hid-
den Markov models (HMMs) to approximate the num-
ber of bacterial genomes present in the microbiome 
and to infer completeness and redundancy of recovered 
metagenome-assembled genomes (MAGs). Density 

Fig. 2  16S rRNA Gene profiling of the gut microbiome across feeding type and intestinal sections. A For the mid and distal gut sections separately, 
the barplots show relative abundance of high abundant bacteria defined as being present in more than 2% of all samples. B Principal Coordinates 
Analysis (PCoA) of the microbial composition in all samples and feeding groups using Unifrac distances. Distribution of individual samples for the 
three feeding groups are plotted for the same axes but shown in separate plots for visual purposes. Grouping of rainbow trout reared on different 
feeding types were visualised as orange for CTRL, blue for PRO, and red for SYN. Shapes indicate different intestinal sections, where the circle 
indicates samples isolated from distal gut content and triangles indicate samples isolated from mid gut content. C–E Boxplots of effective numbers 
of ASVs (Hill numbers) of microbiome across feeding types, including CTRL, PRO, and SYN. Order of effective numbers include C ASV Richness, q = 0, 
D ASV Shannon diversity (q = 1), E ASV Simpson diversity (q = 2). Significance code: [ns] > α = 0.05; [•] < α = 0.1; [*] < α = 0.05; [**] < α = 0.01; [***] 
< α = 0.001; [****] < α = 0.0001. F Heat Tree of species composition of the 50 most abundant ASVs throughout the gut combined with pairwise 
comparisons for the three feeding types, CTRL, PRO, and SYN. The grey tree on the lower left is a taxonomic reference for the smaller unlabelled 
trees. The most abundant genera from figure A are coloured in red and underlined. The colour of each taxon reflects differential abundance 
between the two groups being compared with colours determined by the log2 ratio of median proportions of reads observed in each feeding type. 
The Log2 changes were determined using a Wilcoxon rank-sum test followed by a Benjamini-Hochberg (FDR) correction for multiple comparisons. 
The size of nodes relates to the number of ASVs found within the given taxonomic group

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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analysis of SCG hits resulted in the highest density of six 
SCGs, indicating that no more than six distinct bacterial 
genomes were present in the metagenome of rainbow 
trout (Fig. 3D). This result further confirms the approxi-
mate number of highly abundant ASVs found, using 16S 

rRNA metabarcoding, characterising a low-diversity 
metagenome dominated by few species.

Generation of the curated MAGs and a MAG data-
base resulted in a low diverse binned metagenome of 
5.006 Mb, consisting of no more than 5,574 ORFs from 

Fig. 3  Metagenomic variation across feeding types, recovered from co-assembled samples. A Rarefaction curves of gene calls (ORFs) found 
because of sequencing depth. Curves are coloured according to feeding type, as indicated in legend. B Coefficient plot based on Tukey HSD of 
COG coverage between feeding types. Dots indicate Tukey’s HSD estimate and lines indicate confidence intervals. The shade of green indicates the 
relation between the estimate, confidence intervals, and null, meaning darkest green indicates significant estimates (p < 0.05). C Network of 17,354 
COGs recovered from all samples. Big nodes indicate samples and small nodes indicate COGs. Distance between samples is based on similarity of 
samples. The size of sample nodes is based on the number of COGs connected to samples. The colour of COG nodes is based on the connectivity to 
sample nodes, where sample nodes are coloured as indicated in the legend. D Density plot and bar plot of bacterial SCGs are used to estimate the 
number of genomes in metagenomes. The dashed line in the bar plot indicates the highest density found of counted bacterial SCGs
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two high-quality MAGs, with a completion higher than 
80%, and no redundancy of SCGs. Subsequently, a 
medium-quality MAG with a completion of 52.11% and 
a low redundancy of 4.23 was also resolved (Fig. 4A and 
Table  2). We generated collector’s curves per sample 

to assess sequencing depth, and these indicated that 
saturation was near complete with our given level of 
sequencing (Supp. Fig. S3).

The draft genome for Candidatus Mycoplasma salmon-
inae mykiss (referred to as Mycoplasma in this study) 

Fig. 4  Genome-resolved metagenomics from gut microbiome across feeding type and intestinal sections. A Three metagenome-assembled 
genomes (MAGs) were resolved from the metagenome, consisting of 5.006 megabases (Mb) and 5574 non-redundant genes, which were visualised 
as yellow for Unknown Enterobacteriaceae, green for Candidatus Mycoplasma salmoninae mykiss, and red for Unknown Lactobacillus. Barplots 
indicate relative abundance of the two MAGs within each sample. Grouping of rainbow trout reared on different feeding types were visualised as 
orange for CTRL, blue for PRO, and red for SYN. Intestinal sections (gut sections) are coloured as black for mid gut and grey for distal gut. Heatmap 
visualises a series of genes of interest, which are related to isoprenoid biosynthesis, arginine biosynthesis, and polymer utilisation. Intensity of blue 
colour indicates log10 of coverage of genes across samples. B Volcano plot of differentially abundant metagenomic genes between samples from 
CTRL vs. PRO and SYN. Colouration of nodes indicate significance, whereas red nodes are significant genes after correction and have a log2 fold 
change (FC) > 1. Grey nodes are non-significantly differentiated genes between feeding types.
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has previously been reported [42], but here, we present 
the whole intestinal metagenome data retrieved from 
six rainbow trout, including both the mid and distal gut 
sections. Mycoplasma had an identical match with our 
previously found Mycoplasma ASV from the 16S rRNA 
gene profiling (Table 2). Further, a MAG of an unknown 
genus of Enterobacteriaceae corresponded to the pres-
ence of the endosymbiont8 ASV, which we hypothesise 
to be the corresponding MAG for the endosymbiont8 
ASV (Table  2). Our analyses also resolve a MAG of an 
unknown Lactobacillus (Table 2). Lastly, short-read map-
ping of the metagenome revealed low levels of Pediococ-
cus acidilactici MA18/5M genes present in rainbow trout 
from the PRO and SYN groups, indicating that the probi-
otic strain seems to be present at a low level in the intes-
tinal content of fish exposed to the probiotic strain.

Our metagenomic analysis confirmed the bacterial 
composition found by 16S rRNA gene metabarcoding, 
where Mycoplasma was found to be highly dominant 
in CTRL and especially in the midgut, corresponding 
to 76.8–84.5% of all microbial reads in the midgut and 
between 56.4–68.7% of all microbial reads in the distal 
gut. This Mycoplasma dominance resulted in a Q2–Q3 
mean coverage of 3667–5939X in the midgut samples and 
317–847X in distal gut samples for CTRL, whereas the 
coverage of Mycoplasma in PRO and SYN was extremely 
low, except for one sample in SYN (Supp. Table  S3.1). 
Both Lactobacillus and Enterobacteriaceae were found at 
higher relative abundance in fish from the PRO and SYN 
groups, as a reflection of a reduced Mycoplasma biomass 
(Fig. 4A). Interestingly, the coverage of Lactobacillus and 
Enterobacteriaceae were in general very low and ranged 
from 0.00 to 8.43X Q2–Q3 mean coverage across all sam-
ples for Lactobacillus and 0.00 to 5.16X Q2–Q3 mean 
coverage for Enterobacteriaceae, clearly indicating a low 
bacterial load even when abundance of Mycoplasma was 
reduced.

The functional potential of metagenomes also var-
ied significantly among the feeding groups. Differential 
abundance analysis of the metagenome data revealed that 
670 out of a total of 5574 non-redundant genes were sig-
nificantly more abundant in CTRL (adjusted p-value < 
0.05) (Fig. 2b, Supp. Table S3.2), including genes encod-
ing for arginine biosynthesis pathway, such as arcA, arcC, 

and otc and genes associated with the cellobiose PTS sys-
tem, referred to as cellulosome  (Fig.  4B). Interestingly, 
we found terpenoid backbone synthesis-encoding genes, 
from the non-mevalonate (MEP) pathway, including ispE, 
ispF, ispG, and ispH to be enriched in the CTRL group 
(Fig. 4A, B). These MEP-related genes were all present in 
the Mycoplasma MAG, clearly indicating that the altera-
tions of Mycoplasma abundance are the main driver of 
the observed metagenomic variation among feed groups. 
Surprisingly, we found that genes related to terpenoid 
backbone synthesis had a dramatically higher log2 fold 
change than the rest of the Mycoplasma MAG-related 
genes, which we hypothesise could reflect the presence of 
mobile genetic elements, such as genomic islands or plas-
mids, in Mycoplasma, though this is hard to detect using 
short read metagenomics technologies [46].

Diet and Mycoplasma abundance are associated 
with the intestinal metabolism of rainbow trout
We aimed to generate a comprehensive representation 
of the intestinal metabolomic landscape including both 
ionic properties and polarity in our metabolic analysis. 
We included UHPLC-MS/MS and IC HR-MS/MS data 
generation [47, 48] resulting in a total of 22,222 mass 
spectral features with associated tandem mass spectro-
metric data, which we here use as a proxy for metabo-
lites. Out of the 22,222 metabolites, 12,706 metabolites 
were generated from UHPLC-MS/MS and 9516 metabo-
lites were generated from IC HR-MS/MS.

Using the molecular networks, we retrieved in sil-
ico annotated chemical classes for 7190 metabolites 
(56.59%) of UHPLC-MS/MS. Out of the 9723 metabo-
lites, 741 metabolites were included in the study after 
filtering for false positives and zero elimination. Over-
all metabolic variations revealed a clear differentiation 
among the CTRL, PRO, and SYN (Fig. 5A). Specifically, 
we investigated metabolite classes putatively synthesised 
by enzymes encoded by genes found to be differentially 
abundant in the metagenomes (Fig. 3B and Fig. 4B). We 
found clear differentiations in compositions of putative 
metabolite subclasses between CTRL and the two other 
feed types. This differentiation of metabolites between 
feed types included amino acids, peptides, terpenoids, 
bile acids, alcohols, and derivatives (Fig.  5B–D). The 

Table 2  Overview of MAGs resolved from the rainbow trout metagenome

MAGs No. contigs N50 Total Size (Mb) GC Content (%) Completion (%) Redundancy 
(%)

Enterobacteriaceae 217 11,723 1.53 49.01 97.18 0

Mycoplasma 28 88,883 0.66 25.51 81.69 0

Lactobacillus 1637 1719 2.81 42.56 52.11 4.23
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composition of especially terpenoids did not only cluster 
samples based on feed type alone but also revealed some 
clustering of samples with a high relative abundance of 
Mycoplasma irrespective of feeding types (Fig. 5C).

For UHPLC-MS/MS, 419 (3.29%) could be matched to 
known compounds in the GNPS library. For IC HR-MS/
MS, 282 (2.96%) could be matched to known compounds 
in the mzCloud database, which in total resulted in 240 
known compounds after deduplication of isoforms of 
compounds and filtering (Supp. Table  S3.4). Differential 
intensity analysis of the 240 known metabolites resulted 
in 25 differentially abundant metabolites, whereas 19 of 
these metabolites were more abundant in CTRL (Fig. 5E). 
These included pantothenic acid, indole-3-carboxylic 
acid, 5-methoxyindole, and 5-hydroxyindole-3-acetic 
acid, indicating a higher amount of vitamin B5 and deg-
radation of tryptophan [49] in the gut of rainbow trout 
from the CTRL group. These differences indicate altera-
tions of important immune-related metabolites among 
fish reared on the different feed types [49, 50]. Further-
more, we found an increase of succinic semialdehyde 
in CTRL, indicating butyrate-related short-chain fatty 
acid (SCFA) metabolism occurring in the gut of rainbow 
trout [51], which corresponds to previous findings that 
Mycoplasma dominates the microbiota of both wild and 
farmed Atlantic salmon [36]. SCFAs are known to be the 
end-products of dietary fibre fermentation by gut micro-
biota and have been suggested to be an essential nexus 
between microbiota and different host organ systems 
[52]. We found an increase of lauroyl-carnitine in PRO 
and SYN indicating fatty acid oxidation and thereby an 
increase in lipid metabolism. Furthermore, gluconic acid 
lactone was found increased in PRO and SYN, indicat-
ing induced sugar degradation, which we hypothesise 
is due to sugar formation by present Lactobacillus or P. 
acidilactici MA18/5M, which would make sense for SYN, 
where galacto-oligosaccharides were added to the feed 
(Fig. 4A and Fig. 5E).

Furthermore, differential intensity analysis of metab-
olites with no MS1 spectral hits revealed a total of 168 
metabolites from UHPLC-MS/MS with a significantly 
different abundance between CTRL and the two other 
groups after FDR correction for multiple tests (adjusted 
p-value < 0.05) (Supp. Table  S3.4). Furthermore, we 

found that 89 of the 168 metabolites were abundant in 
the CTRL group, whereas 79 of the metabolites were 
abundant in PRO or SYN. Metabolites more abundant in 
the CTRL group included the metabolite classes: prenol 
lipids, steroids and steroid derivatives, carboxylic acids 
and derivatives, and benzenes and substituted derivatives 
(Supp. Fig. S5, Supp. Table S3.5). These metabolite classes 
indicate a differentiation in steroid and terpenoid pro-
duction in the intestinal environment. Especially prenol 
lipids, which include classes of terpenoids, were found 
to be highly affected by feed type and more abundant 
in the CTRL group thereby mimicking the differential 
abundance of Mycoplasma among feeding groups (Supp. 
Fig. S5). Further investigation of differentially abundant 
metabolites observed across feeding types confirmed 
our previous finding of the CTRL group having a distinct 
metabolomic landscape compared to the PRO and SYN 
groups (Fig. 5A–D, Supp. Fig. S6).

Deciphering unknown metabolites associated 
with intestinal microbiota
To investigate association between specific metabolites 
and presence of microbes, we computed the correlation 
between the relative abundance of the ASVs per sample 
to the concentrations of a subset of the metabolites. We 
restricted our analysis to the 26 samples, which included 
both 16S rRNA gene profiling and metabolomics. The 
26 samples included 10 fish from the CTRL group, nine 
from the PRO group, and seven SYN samples. Filter-
ing out rare ASVs resulted in a total of six ASVs, while 
zero inflation of metabolites validated a total of 569 
metabolites for this association analysis. Association 
tests between metabolite intensities and the relative 
abundances of ASVs revealed four metabolites that are 
significantly associated with the ASV abundances after 
Bonferroni correction [53] (Supp. Table S3.6). We inves-
tigated the top 25 most significantly bacterial associated 
metabolites (BAMs) post Bonferroni correction, using 
an enhanced molecular network [54–58] to infer these 
unknown metabolites in the intestinal metabolomic land-
scape of rainbow trout (Supp. Table S3.7).

Network analysis of 350 metabolites, including the 
top 25 BAMs and their related molecular families, were 
used to decipher molecular structures of unknown 

(See figure on next page.)
Fig. 5  Composition of metabolic putative classes across feeding types and differentiation of known compounds. A–D Principal Coordinate Analysis 
(PCoA) of metabolites across all three feeding types based on 741 of the 9,723 metabolites, which is occurring in more than 50 of the 60 samples. 
Opacity of nodes is related to relative abundance of Mycoplasma. A All classes of metabolites, B Amino acids, peptides, and analogues, C Terpenoids, 
including monoterpenoid, diterpenoids, triterpenoids, and sesquiterpenoids, D Bile acids, alcohols, and derivatives. Grouping of rainbow trout 
reared on different feeding types were visualised as orange for CTRL, blue for PRO, and red for SYN. E Volcano plot of a differential intensity test 
performed between the CTRL feed against the two feed types with biotics additives. The test was based on 240 VSN normalised metabolites with 
a spectral match to known compounds. Metabolites with an adjusted p-value below 0.05 were significant. Size of nodes is dependent on adjusted 
p-value, where big nodes are significantly different between feeding types (p.adj < 0.05) and small nodes are not significant (p.adj > 0.05). The 
colour of nodes are dependent on related metabolic subsystems, which are specified in the legend
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Fig. 5  (See legend on previous page.)
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metabolites (Fig. 6). MolNetEnhancer classified 92.5% of 
the metabolites, where 28.2% of the classifications were 
confirmed by SIRIUS+CSI:FingerID. Of the 25 BAMs 
and their related molecular families, we were able to 
classify 11 BAMs and their related molecular families. 
The molecular families included prenol lipids from ter-
penoid backbone synthesis, which were associated with 
intestinal bacteria. Furthermore, we found a molecular 
family of unknown lipids, with indications of water loss, 
indicating the formation of steroids, suggesting the for-
mation of bacterial-related steroids in the intestinal envi-
ronment (Fig. 6). Interestingly, we found BAMs related to 
networks of benzenoids, including putative stilbenes and 
phenylpropanones, indicating production of antibacte-
rial BAMs in the intestinal environment of rainbow trout, 
which could target bacterial cell walls [59, 60].

Furthermore, we found BAMs in molecular families 
of fatty acyls with a relatively low mass charge, indicat-
ing conjugation of SCFAs. A molecular family of peptide 
structures, containing substructural motifs of SCFA-
related aminobutyrate, indicating degradation, biosyn-
thesis, or conjugation of an aminobutyrate-like peptide 
by bacteria in the intestinal environment. A network of 
putative peptides with BAMs revealed three shared sub-
structural motifs between metabolites, including traces 
of histidine, alkylamine, and creatinine, indicating incor-
poration of ammonia derivatives into peptides by intes-
tinal bacteria in rainbow trout (Fig.  6). These findings 
could potentially  confirm our metagenomic observation 
of arginine biosynthesis, which includes the metabolism 
of ammonia-rich peptides.

Fig. 6  Molecular network showing bacterial associated metabolites and their molecular families with in silico annotation and hypothetical 
structures. Metabolomics-based molecular network of 11 bacterial associated metabolites (BAMs) and their molecular families coloured by putative 
chemical classes retrieved through a consensus of SIRIUS+CSI:FingerID and the GNPS based MolNetEnhancer workflow as indicated in the legend. 
A total of 350 metabolites were selected based on the bacterial association test and cosine relation to BAMs. Neighbour nodes of the significant 
nodes were co-selected to increase knowledge on chemical structural information of BAMs. Small nodes indicate metabolites in a network with 
bacterial associated metabolites. Edges are coloured according to shared motifs from MS2LDA and MotifDB databases or spectral similarity (cosine 
score > 0.7) as indicated in the legend. Unclassified molecular families were removed from the figure to increase clarity. Hypothetical structures 
suggested by in silico are shown and substructural motifs are highlighted with corresponding edge colours in the showed hypothetical structures
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Discussion
We combine a rigorous, comparative feed trial with 
highly robust multi-omic data analysis, including deeply 
sequenced metagenomics, untargeted metabolomics, 
and bacterial 16S rRNA gene profiling of the intestinal 
compartment of rainbow trout. This multi-omics data 
set enabled us to first characterise rainbow trout-asso-
ciated MAGs, including a recently described candidate 
Mycoplasma species, in relation to estimates of nutri-
ent utilisation in rainbow trout. We then complemented 
the metagenome data with metabolomics insights on 
the variation in intestinal metabolites of rainbow trout. 
Together, we show how intake of functional feeds is asso-
ciated with distinct microbiota functions and metabolic 
profiles in rainbow trout.

Our multi-omic investigation revealed significant 
effects of feed additives on the intestinal environment 
in rainbow trout. The growth trial showed an altera-
tion of protein efficiency ratio and lipid efficiency ratio, 
when using probiotic or synbiotic feed diets, though we 
acknowledge that the differences in protein and fat con-
tent in these diets makes it difficult to attribute these 
changes to the additives in the diet only. The experi-
mental setup was not designed to evaluate growth per-
formance and that longer growth trials using diets with 
more similar nutritional content are needed. Therefore, 
the nutrient utilisation data should only be seen as pre-
liminary associations rather than firm conclusions. Inves-
tigations of the microbiome using both genome-resolved 
metagenomics applications and SCGs revealed that only 
six distinct MAGs are present in the gut microbiome; 
here, we were able to recover three of these six putative 
MAGs. The metagenomic analysis was confirmed by 16S 
rRNA metabarcoding, where the top 5 most abundant 
ASVs recruited 85.1% of the metabarcoding data. Hence, 
our analysis revealed a low diverse microbiota, which 
were characterised by the dominance of Mycoplasma. 
Mycoplasma abundance was significantly reduced in 
fish feeding on diets with pro- or synbiotic additives. On 
the other hand, our data revealed an increase in Pseu-
domonas, Enterobacteriaceae, and Massilia. Based on 
these observations, we hypothesise that this probiotic 
induces a change in the microbiota, which can be mir-
rored in the meta-metabolism, potentially affecting both 
PER and LER. While such changes may be beneficial, it 
is interesting to note that previous studies have shown 
that Mycoplasma is consistently present in wild salmo-
nid populations [36, 39, 42]. Further, neutral modelling 
comparing environmental and intestinal frequency dis-
tributions of Mycoplasma has previously suggested that 
Atlantic salmon-associated Mycoplasma are adapted to 
the colonisation of their hosts [61]. Together, our results 
add to previous findings and support the hypothesis that 

this salmonid-associated Mycoplasma genus might be a 
native symbiont to salmonid species.

Previous investigations of P. acidilactici MA18/5M in 
bigger rainbow trout have shown an increase of Myco-
plasma in the gut microbiome, when using P. acidilac-
tici MA18/5M as a feed additive, suggesting that these 
microbial alterations, induced by feed additives, are com-
plex and further dependent on the age of the host, water 
salinity, diet composition of protein and fat, and dose of 
P. acidilactici MA18/5M [31, 62].

Functional insights from metagenomic analyses pro-
vided information on molecular pathways associated 
with the Mycoplasma MAG. The Mycoplasma MAG 
contains genes encoding enzymes involved in arginine 
biosynthesis, cellulosome, and terpenoid backbone syn-
thesis, which is rather uncommon in Mycoplasma [1]. 
The induction of genes involved in terpenoid backbone 
synthesis in the transcriptome of salmonids has previ-
ously been reported to be positively correlated with FER 
[63], suggesting the importance of terpenoid backbone 
synthesis for growth metabolism. Therefore, we hypoth-
esise that the terpenoid backbone synthesis encoded 
by the Mycoplasma genome might add a supplemental 
boost to the metabolism of their salmonid hosts. Subse-
quently, a recent study of Mycoplasma in Atlantic salmon 
correlated terpenoid production to increased pigmenta-
tion of salmon flesh, suggesting Mycoplasma is affect-
ing the metabolism in Atlantic salmon [64]. Barring any 
unknown adverse effects of this dominant component of 
the rainbow trout intestinal tract, such metabolic contri-
butions and apparent degree of host adaptation observed 
for the Candidatus Mycoplasma salmoninae, could sug-
gest a fine-tuning of the performance of the trout from a 
hologenomics perspective [18].

Microbial contributions to the arginine biosynthesis 
pathway can affect host gut health. Microbial func-
tions are likely to either (i) increase arginine analo-
gous like ornithine and citrulline or (ii) decrease the 
amount of toxic ammonia in the intestine of ammono-
telic teleosts such as salmonids through anabolic 
carbamate kinase activity during feeding [65–68]. 
Citrulline and ornithine have previously been found 
more efficient for amino acid uptake in rainbow trout 
[69, 70]. Ammonia reduction could have an impact on 
farmed fish, since they are often fed excessively, which 
suggests that Mycoplasma might serve as an advanta-
geous gut symbiont that increases the tolerance of the 
host fish towards accumulated ammonia or suggests 
that Mycoplasma increase the availability of essential 
amino acids in the gut. Furthermore, we also found 
BAMs related to the incorporation of ammonia-rich 
moieties into putative peptides, further suggesting that 
bacteria in the intestinal environment are potentially 
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detoxifying ammonia levels using several strategies 
[68].

High-resolution omics methods, like untargeted 
metabolomics, hold great potential for a more compre-
hensive understanding of the functional impacts pro-
vided by functional feed. Here, we found an increase 
of several compounds in fish fed live biotic additives, 
including the indication of increased beta-oxidation 
of long-chain fatty acids, by lauroyl−l−carnitine [71]. 
Together with the higher LER found in the PRO group, 
these findings clearly indicate metabolic changes 
because of probiotic feed additives.

The potential of using probiotics to improve growth 
and health in production animals has received 
immense attention across life sciences over the past 
decades. While there are successful examples of biotic 
additives, including a decrease of vertebral column 
compression syndrome [72], increased innate immune 
response in rainbow trout fingerlings [73], modula-
tions of antiviral response [74], and an increase of 
absorptive surface in the host [5, 6] the underlying 
metabolic functions causing improved performance, or 
lack thereof, often remains unknown and especially so 
in the aquaculture field.

Conclusions
Indeed, the microbiome of salmonids, and other com-
mercially important fish species, have mainly been 
described using 16S rRNA gene profiling. These 
studies have led to several interesting and impor-
tant hypotheses of host-microbiome interactions, but 
these hypotheses remain largely speculative as they 
are solely based on compositional data. Our results 
demonstrate how the use of multi-omics to investi-
gate complex host-microbiome interactions enable us 
to better evaluate and explore the functional potential 
of probiotics compared to studies that only measure 
overall growth performance or that only characterise 
the microbial composition in intestinal environments. 
Furthermore, we demonstrate a more hologenomic 
approach to better understand complex host-microbe 
interactions in production animals based on a better 
functional understanding of intestinal microbiomes.

Method and materials
Rainbow trout and trial design
The sourcing of fish and rearing procedures used in 
this study have previously been described in a separate 
study [75]. Briefly, we obtained rainbow trout eggs from 
the AquaSearch FRESH strain (all-female, AquaSearch 
OVA, Billund, Denmark). Eggs were hatched and reared 
at the Bornholm Salmon Hatchery (Nexø, Denmark) 

that has a disease-free record and upon arrival, the eggs 
were disinfected using Desamar K30. Prior to experi-
mental feeding, the fish were transported to the Bio-
Mar A/S research facilities (Hirtshals, Denmark). The 
initial mean weight was 4.3 g, when the fish arrived at 
the research facility at Hirtshals on January 30th, 2019. 
Each tank contained 80 fish at the start of the feeding 
phase. An experimental feeding trial was carried out 
over an 8-week period. Three experimental, proprietary 
feed formulations were selected (Table  1): (I) CTRL;  a 
control feed without any pre- or probiotic additives, (II) 
PRO; control feed plus the commercial probiotic BAC-
TOCELL with Pediococcus acidilactici MA18/5M, and 
(III) SYN;  control feed with a synbiotic additive, con-
sisting of BACTOCELL and galacto-oligosaccharides. 
To minimise tank effects we only sampled from one 
tank per feeding type.

To minimise sampling bias, all feeding types were 
double-blinded before sampling. This was upheld 
throughout the feed trials, sample processing, and anal-
ysis, and finally unblinded post analysis.

Feeding and sample collection
For metabolomic investigation, 50 mg of gut content 
were sampled from the same region of the distal gut 
from 30 individuals, including 10 samples from each 
feeding type. Samples were immediately frozen on dry 
ice and subsequently transferred to a − 80 °C freezer 
within hours. For microbial profiling, a total of 120 
rainbow trout, including 40 individuals from each feed-
ing type, were sampled. Samples were taken from mid 
and distal gut sections at both time points by dissecting 
gut content from both sections, using sterile scalpels 
and tweezers, resulting in 240 samples for microbial 
profiling. Inoculation loops were used to ensure a nor-
malised amount of 100 mg of gut content from each 
sample. All samples were preserved in SHIELD™, pro-
vided by Zymo Research, following the Zymo Research 
standard procedure. Weight, fork length, and qualita-
tive comments regarding wounds were recorded for all 
individuals. All individuals were euthanised, according 
to the approved experimental guidelines, using Benzo-
caine in water prior to dissection, as detailed in a previ-
ous study [75].

Feed performance analysis
Feed performance parameters were analysed for each 
group based on recorded bulk fish weight, numbers of 
individuals, and provided feed during the experimen-
tal feeding period for each of the five replicate tanks in 
each experimental feed group. Furthermore, the specific 
fat and protein content for each experimental feed was 
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determined using near-infrared spectroscopy as part of 
internal quality control at BioMar [76]. Calculations of 
parameters were calculated according to previous study 
[75] (Supplementary information 3.3.6).

Profiling the V3–V4 region of the bacterial 16S rRNA gene
DNA extractions for 16S rRNA gene profiling were car-
ried out using Zymo Research Quick-DNA/RNA (Cat. 
D2131) following suppliers’ recommendation. Prior to 
analysis, all samples were randomised. Extracts were 
quality controlled for inhibitors and optimal PCR set-
tings prior to metabarcoding. Two extraction nega-
tives, two  library negatives, and two PCR negatives 
were included for each plate. Metabarcoding was car-
ried out by amplifying the V3-V4 region of the bacterial 
16S rRNA gene, using the primers 341F (5′-CCT​AYG​
GGRBGCASCAG-3′) and 806R (5′-GGA​CTA​CNNGGG​
TAT​CTAAT-3) [77] combined with unique forward and 
reverse 8-bp tags (Supp. Table  S2.2). All amplifications 
were carried out in triplicates to lower the number cycles 
needed for PCR and to  minimise procedural false posi-
tives [78]. PCR amplification were carried out, using 35 
cycles. Library preparation was carried out using Illu-
mina NEBNext® Ultra™ IIDNA Library Prep Kit. Ampli-
cons were sequenced on an Illumina NovaSeq 6000 
PE250bp to obtain 250bp paired-end reads aiming for a 
minimum 10,000 reads per PCR replica.

Metagenomic data generation
Prior to analysis, all samples were randomised. Extrac-
tion of DNA for metagenomics was carried out using 
ZymoBiomics DNA miniPrep for a total of six rainbow 
trout, where two intestinal sections, including midgut 
and distal gut, were included, resulting in 12 samples 
(Supp. Table  S2.3 for further details). Fragmentation of 
DNA to 400 bp was carried out, using Covaris M220 with 
microTUBE-50 AFA Fiber Screw-Cap. Samples were nor-
malised to a 400-ng input for library preparation. Library 
preparation was based on single-tube library preparation 
for degraded DNA [79] (see Supp. information 2.2). Prior 
to the indexing of libraries, all libraries were analysed 
with quantitative PCR (qPCR) to estimate optimal cycle 
settings on a Mx3005P qPCR System (Agilent Technolo-
gies) (see Supp. Table S2.3).

Purified libraries were indexed and amplified for 
sequencing, using customised index primers for MGI-
2000. Sequencing was carried out, using 150 PE chem-
istry on a MGI-2000 at BGI Europe. Data for five of the 
12 samples were generated for a previous study [42]. The 
remaining 7 samples were processed, and the generated 
data was analysed for this study and has not been pub-
lished prior to this study (see Supp. Table S2.4 for further 
details).

Metabolomic extraction and preparation
A subset of ten samples from each of the three feeding 
types were selected according to Fulton’s condition factor 
(five random samples below K = 2, and five samples above 
K = 2), resulting in a total sample size of 30 samples. To 
minimise batch effects all samples were randomised prior 
to any laboratory processing. Samples were homogenised 
in 100% methanol (MeOH) in a 1:10 sample:solvent 
ratio. Homogenisation was carried out in an OMNI Bead 
Ruptor 24, using dry ice to keep homogenised samples 
around 0 °C to minimise degradation of metabolites dur-
ing homogenisation. Six procedural blanks were included 
in homogenisation. A volume of 100 μl of all samples 
was collected into quality control samples (QC samples) 
used for normalisation to enhance detection of metabo-
lites;; all samples were purified after homogenisation, 
using solid-phase extraction (SPE), 2 mg/HRP-microSPE. 
The SPE was carried out conditioning with 200 μL 100% 
MeOH and washing with 200 μL 0.1% formic acid. Sam-
ples were eluted with 2 × 100 μL MeOH. Samples were 
concentrated using SpeedVac (ThermoFisher Scientific) 
and resuspended in 100 μL 5% MeOH. To correct for 
biases related to injection order, samples were divided 
into two replicates and ordered in an antiparallel order 
prior to nano-flow ultra-high pressure liquid chromatog-
raphy-tandem high-resolution mass spectrometry analy-
sis. Metabolites were detected and quantified using a Q 
Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spec-
trometer (ThermoFisher Scientific) operated in positive 
ion data-dependent acquisition mode (Supp. Information 
2.3). Sample extracts were also analysed for more polar 
metabolites with ion-exchange chromatography hyphen-
ated to a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ 
Mass Spectrometer (ThermoFisher Scientific) operated in 
negative ion data-dependent acquisition mode. A Dionex 
IonPac AS19-4 μm (2 × 250 mm) column was fitted with 
a Dionex AG19-4 μm (2 × 50 mm) Guard and connected 
to an ADRS 600 (2 mm) suppressor. Potassium hydroxide 
was used as an eluent.

Bacterial 16S rRNA gene profiling of taxonomy 
and compositional analysis
Raw sequence data were quality controlled, using 
FastQC/v0.11.8 [80] to remove low-quality reads. Demul-
tiplexing and removal of adaptors and low-quality reads 
were done with AdapterRemoval/v2.2.4 [81], with a 
base quality threshold of 30 and a minimum read length 
of 50bp. Microbial 16S data were further filtered with a 
maximum EE score or 2 for forwards and reverse reads. 
Reads were trimmed according to the error rate algo-
rithm applied in DADA2 [82]. ASVs were clustered, 
using the clustering algorithm implemented in DADA2. 
Taxonomy was assigned through DADA2 using Silva/
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v138, using the implemented classification algorithm in 
DADA2 and the Silva database training set. Post clus-
tering algorithms were applied to minimise false posi-
tives using LULU [83], and subsequently, contaminations 
were removed from samples, using decontam [84]. Lastly, 
ASVs were agglomerated by genera to minimise noise. 
Composition analyses were carried out using phyloseq 
[85] and differential abundance analyses across feeding 
groups were carried out using metacoder using the Wil-
coxon rank-sum test and FDR correction for multiple 
comparisons [86]. Diversity analysis of the gut micro-
biota across feeding types was carried out applying Hill 
numbers, using hilldiv [44, 45, 87].

Metagenomic bioinformatics: filtering, assembly, binning, 
refinement, and functional analysis
A subset of the data generated for this study were used 
for a separate, comparative study. Processing of data is 
presented in Rasmussen et  al.  2021 [42]. Raw sequence 
reads were quality controlled, using FastQC/v0.11.8 [80] 
to assess filtering and quality steps. Removal of adapters 
and low-quality reads were done with AdapterRemoval/
v2.2.4 [81], with a quality base of 30 and a minimum 
length of 50 bp. Duplicates were removed, and reads were 
re-paired to remove singletons, using bbmap/v.38.35 
[88]. In order to increase assembly efficiency by reduc-
ing eukaryotic contaminants, data were filtered for the 
phiX174 genome, human (HG19) genome, and the rain-
bow trout (Omyk_1.0), using minimap [89]. Filtered data 
were both single assembled and co-assembled, using 
MegaHIT/v.1.1.1 [90] with a minimal length of 1000 bp 
per scaffold, using meta-sensitive flag for metagenomic 
purpose and assembled contigs were quality controlled 
with Quast/v.5.02 [91]. To increase effective binning, we 
used the anvi’o pipeline [92], as described in a previous 
study [42]. The relative abundance of each MAG was cal-
culated based on percentage read recruitment across all 
samples from the specific host. Anvi’o was used to pro-
file the scaffolds using Prodigal/v2.6.3 [93] with default 
parameters to identify genes and HMMER/v.3.355 
matching archaeal [94], Protista (based on http://​meren​
lab.​org/​delmo​nt-​euk-​scgs) and bacterial [94] single-
copy core gene collections. Also, ribosomal RNA-based 
HMMs were identified based on https://​github.​com/​
tseem​ann/​barrn​ap. Completeness and redundancy of 
MAGs were calculated based on SCGs in anvi’o data-
bases. Predicted gene functions were annotated using 
Pfam [95], COG [96], and KEGG [97]. Analyses of 
COG coverage in the whole metagenome were car-
ried out, using Tukey’s HSD. The composition of COGs 
across feeding types and samples was carried out using 
a network-based approach by applying Gephi/v0.9.2 [98]. 
Functional networks were generated using the Force 

Atlas 2 algorithm to connect COG functions and samples 
using 20,000 iterations. Differential abundance analysis 
of all genes recovered from MAGs was carried out, using 
generalised linear models (GLMs) in DESeq2 [99] in R. 
We applied a Benjamini-Hochberg false discovery rate 
correction to p-values to account for multiple tests [100].

Metabolomic annotation and metabolite substructural 
analysis
ThermoFisher Scientific UHPLC-Orbitrap-MS/MS RAW 
files were converted into mzML files using Proteo Wizard 
[101]. A molecular network was created using the clas-
sical molecular networking workflow https://​ccms-​ucsd.​
github.​io/​GNPSD​ocume​ntati​on on the Global Natural 
Product Social Molecular Networking (GNPS) platform 
http://​gnps.​ucsd.​edu [58, 102].

In order to enhance the identification of unknown 
metabolites, unsupervised substructures were discov-
ered using MS2LDA [57, 103], and MS2 spectra were 
annotated in silico using network annotation propaga-
tion (NAP) [103]. Furthermore, peptidic natural products 
(PNPs) were annotated in silico, using DEREPLICA-
TOR [104]. Chemical classes were retrieved for all GNPS 
library hits and in silico structures using ClassyFire [54]. 
Finally, all structural annotations were combined within 
one network using MolNetEnhancer [104]. Further anno-
tation of metabolites was carried out, using MetDNA 
[105].

The obtained IC HRMS/MS data processed using 
Compound Discoverer 3.2.0.421 (Thermo Scientific). The 
optimised workflow performed retention time alignment, 
compound identification (detailed in Supp. Table S3.3).

Metabolomic compositional analysis 
of UHPLC‑Orbitrap‑MS and differential intensity analysis 
of UHPLC‑Orbitrap‑MS/MS and IC HR‑MS/MS known 
metabolites
Quality assessment of initial data from UHPLC-
Orbitrap-MS/MS was carried through PCoA plotting 
to ensure proper quality of quality pools, samples, 
and procedural blanks (Supp. Fig. S4). To minimise 
false positive metabolites, we removed high abundant 
(metabolites above 5 × 106 Summed Precursor Ion 
Intensities) metabolites present in procedural blanks, 
which resulted in 9,863 metabolites. Metabolites pre-
sent in > 50 of the 60 samples were kept minimising zero 
inflation in metabolomic data, resulting in 741 metabo-
lites. Procedural replicates were average between indi-
viduals for group comparisons, as the replicates did 
not seem to affect the variation between groups (Supp. 
Fig. S4). PCoA of metabolites were carried out, using 
phyloseq [105]. We carried out a PCoA based on jac-
card distances to minimise biases related to the relative 

http://merenlab.org/delmont-euk-scgs
http://merenlab.org/delmont-euk-scgs
https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap
https://ccms-ucsd.github.io/GNPSDocumentation
https://ccms-ucsd.github.io/GNPSDocumentation
http://gnps.ucsd.edu
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abundance of precursor intensities of unknown metab-
olites generated from UHPLC-Orbitrap-MS/MS.

Detected compounds from UHPLC-Orbitrap-MS/MS 
and IC HR-MS/MS were imputed to minimise zero infla-
tion and normalised with variance stabilising normalisa-
tion, using MetaboDiff [106]. Technical replicates were 
averaged. Precursor intensities of isomers and conjugated 
compounds were summed (detailed in Supp. informa-
tion 3.3). Differential intensity analysis was carried using 
MetaboDiff (Supp. Table  3.4). To increase biological 
inference of compounds, we analysed compounds, using 
MetaCyc [107] (detailed in Supp. information 3.3).

Association between bacterial ASVs abundances 
and metabolites
We restricted our analysis to the 26 samples that had 
their microbiome profiled using the 16S amplicon 
sequencing and had metabolites measured. Of these 26 
samples, including 10 from CTRL, 9 from PRO, and the 
remaining 7 from the SYN group.

We filtered out the rare ASVs and retained only the 
six most abundant ASVs to restrict our analyses to only 
the most relevant ASVs, where we would have statistical 
power to detect associations. Metabolite data were fil-
tered and normalised (detailed in Supp. information 3.3). 
To measure the putative effect of ASVs on metabolite rel-
ative abundances, for each metabolite, we used a stepwise 
regression procedure, using R-package MASS, where we 
started with a linear model where the abundances of all 
six ASVs were used as explanatory variables (detailed 
in Supp. information 3.3). The final model was selected 
when no ASVs could be removed without significant 
reduction in the explanatory power of the model, and no 
ASVs could be added with significant improvement of fit.

Finally, note that we did not include feed type as an 
explanatory variable for the metabolite relative abun-
dances, since the feed type was highly correlated with the 
ASV abundance information. Specifically, the abundance 
of Mycoplasma was indicative of control vs. non-control 
feed type. Thus, given the modest sample sizes in this 
study, we decide to focus our test on the putative effects 
of ASV abundance on metabolite relative abundances.

For each metabolite, we tested the final model obtained 
from the stepwise procedure using a F-statistic to test the 
proportion of variance explained by the chosen ASVs, we 
used the Bonferroni correction for significance adjust-
ment (detailed in Supp. information 3.3).

Metabolomic network analysis of bacterial‑associated 
metabolites and substructural analysis
Networks for selected Bacterial associated metabolites 
(BAMs) were visualised using Cytoscape/v3.8.0 [108]. 

Annotations of BAMs were carried out as detailed 
for UHPLC-MS/MS data and with a combination of 
GNPS network,  MolNetEnhancer, and SIRIUS4 with 
CSI:FingerID [109, 110] (detailed Supp. information 3.3). 
Information of nodes within the metabolic networks is 
detailed in Supp. (Supp. Table S3.7).

Statistical analysis
All statistics were conducted using R (version 3.6.1) and 
Python (version 3.7.4).
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