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Comparative metabolomic analysis reveals 
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Abstract 

Background:  Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a 
complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited 
knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical 
interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-
MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial 
cells from six different, co-occurring sponge species.

Results:  Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that 
sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, 
which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine 
and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include 
the antioxidant didodecyl 3,3′-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-
suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members 
in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against 
intruding organisms.

Conclusions:  This study shows how different chemical functionality is compartmentalized between sponge hosts 
and their microbial symbionts and provides new insights into how chemical interactions underpin the function of 
sponge holobionts.
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Background
Sponges (phylum Porifera) are multicellular animals 
that have been evolving since the Precambrian [1]. 
Sponges often form stable associations with diverse, 
abundant and species-specific microbial communities, 
which can account for up to 35% of the total biomass 

of the sponge [2–4]. Mutualistic or commensal inter-
actions contribute to the complex functional unit 
comprising the sponges and its associated microbial 
symbionts, which is often referred to as a metaorgan-
ism or holobiont [4]. Specifically, studies have found 
that sponge-associated microbial symbionts play key 
roles in maintaining the health of their hosts by pro-
viding organic nutrients [5–9], eliminating toxic meta-
bolic by-products [10], protecting the hosts against 
oxidative stress [11], inhibiting parasites and pathogens 
[12], and preventing cellular damage by screening out 
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UV radiation [13]. Symbionts may in return benefit by 
obtaining nutrients [14, 15] and shelter through their 
hosts [16].

Sponges are a rich source of natural products, and tra-
ditional analytical techniques as well as bioassay-guided 
fractionation have been extensively used to uncover a 
remarkable metabolite diversity, including unusual nucle-
osides, terpenes, sterols, cyclic peptides, alkaloids, fatty 
acids, peroxides, and amino acid derivatives ([17–20] 
and MarinLit database http://​pubs.​rsc.​org/​marin​lit/). A 
wide range of therapeutic properties have been ascribed 
to these natural products, including as enzyme regulators 
and inhibitors [21, 22] or as antimicrobial [23–26], anti-
inflammatory [27], anticancer [24, 28], antitumor [29], 
anti-atherosclerotic [30], or antiherpetic [31] agents.

Some metabolites also possess important direct biolog-
ical and ecological benefits for the sponge. For example, 
lysophospholipids (LPLs) may act as signaling molecules 
in the embryogenesis and morphogenesis of the sponge 
Oscarella tuberculate by regulating cell division and 
differentiation, or by simply being a lipid reserve [32]. 
Chemical defense molecules have also been extensively 
studied in sponges. For instance, latrunculin-A, a toxic 
compound from the sponge Latrunculia magnifica, can 
repel and kill fish [33]. Additionally, the siphonodictidin-
containing mucus secreted by the sponge Siphonodictyon 
coralliphagum has been found to inhibit coral growth 
[34], while idiadione and heteronemin that are exuded by 
the sponge Leiosella idia can prevent fouling organisms 
from settling or overgrowing the sponge [35]. However, 
the biological and ecological functions of most sponge-
derived metabolites are poorly understood in compari-
son to their therapeutic or pharmacological applications.

Most chemical analyses have utilized extracts of 
whole sponge tissue (i.e., the mixture of sponge cells and 
microbial cells) and the sponge cells themselves have 
often been intuitively regarded as the producers of any 
metabolite found [36–39]. However, the observation that 
a number of sponge-derived metabolites are structurally 
similar to those found in microorganisms has shifted the 
focus to explore microbial symbionts as major contribu-
tors to the chemical diversity found in sponges [40–45]. 
For example, the structure of sponge-derived halichon-
drin B has been found to resemble the structure of dino-
flagellate-derived polyketides [41]. The presence of genes 
for the biosynthetic pathways or key enzyme for the 
synthesis of sarasinoside [46], polybrominated diphenyl 
ethers [47], and butenolides [26] in sponge-associated 
microbial symbionts also has further supported this 
notion. However, further work is required to define the 
true producers of metabolites to understand how spe-
cific members contribute to chemical functionalities in 
sponge holobionts.

Non-targeted metabolomics involving mass spectrom-
etry (MS) and tandem MS in combination with liquid 
chromatography (LC) or gas chromatography (GC) are 
powerful approaches to profile the metabolite content of 
complex biological samples [48, 49]. Recent studies have 
applied non-targeted metabolomics to probe intraspe-
cific, interspecific, and environmental variation of metab-
olite profiles in sponges. For example, the metabolomes 
of various species of Xestospongia were found to differ 
across four geographical locations and several metabo-
lites were associated with specific environmental condi-
tions [50]. In another study, seasonal changes as well as 
responses to increased water temperature were observed 
in the metabolomes of Haliclona fulva and H. mucosa 
[51]. Furthermore, comparative metabolomic analysis 
of two geographically co-located sponges (Melophlus 
sarasinorum and Ianthella basta) revealed very little 
metabolomic overlap, which was speculated to be due to 
the substantial differences in their associated microbial 
symbionts [46]. Further studies are however required to 
understand the variability and similarity between as well 
as within various sponge species.

Here, we applied non-targeted LC-MS/MS and GC-MS 
to define common and unique metabolites in six sponge 
species (Carteriospongia foliascens, Cliona orientalis, 
Coscinoderma matthewsi, Ircinia ramosa, Pericharax 
heteroaphis, and Stylissa flabelliformis) that co-occur on 
the Great Barrier Reef, Australia, to further the knowl-
edge on metabolome variability in sponges. Metabolite 
profiles from isolated microbial cells and whole sponge 
tissue were analyzed to determine the likely producers 
of these metabolites within the holobiont. To provide an 
improved understanding of the diverse suite of chemi-
cal interactions taking place in sponge holobionts, our 
observations are interpreted in the context of known 
metabolite functions.

Methods
Sample collection and processing
The marine sponges Carteriospongia foliascens, Cliona 
orientalis, Coscinoderma matthewsi, Ircinia ramosa, 
Pericharax heteroaphis, and Stylissa flabelliformis were 
collected at Davies Reef on the Great Barrier Reef, 
Queensland, Australia (latitude −18.8225, longitude 
147.6375) on the 22nd and 23rd of December 2015 using 
previously established methods [52]. Four biological rep-
licates of each sponge species were collected on SCUBA 
at a depth of 5‑9 m and brought back to the surface in 
separated plastic bags filled with seawater. Part of the tis-
sue from each specimen was immediately preserved in 
70% ethanol for species classification and the remaining 
tissue was snap-frozen in liquid nitrogen. Sponge species 
were identified based on their morphological characters 
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[53] by taxonomic specialists at the Western Australian 
Museum (Perth, Australia).

The frozen tissue samples were rinsed with sterile 
seawater and cut into small cubes (~1 cm3). Half of the 
cubes were used for whole sponge tissue analysis, while 
the rest were used to physically fractionate microbial 
cells from sponge cells using established procedures [52]. 
Briefly, the sponge cubes were homogenized, then filtered 
through a 100-μm nylon sterile cell strainer (Corning, 
New York, USA) and the flowthrough was centrifuged to 
obtain the supernatant, which was then successively fil-
tered through 8 μm and 5 μm membrane filters. Recov-
ered microbial cells were then pelleted, rinsed twice in 
sterile buffer (10 mM Tris HCl at pH 8 and 0.5 M NaCl), 
pelleted again, and finally resuspended in 1 mL of sterile 
buffer. Cells were stored at −20 °C.

Sample preparation and LC‑MS/MS analysis
Samples were prepared and extracted following the 
Earth Microbiome Project (EMP) protocol [54]. Briefly, 
whole sponge tissue samples and microbial cell pellets 
were resuspended in 7:3 MeOH:H2O, homogenized in a 
tissue-lyser (QIAGEN) and centrifuged. The supernatant 
was collected, and salts and the most apolar compounds 
were removed by solid phase extraction (SPE) with a 
mixed hydrophilic-lipophilic stationary phase. Samples 
were analyzed by reversed-phase liquid chromatogra-
phy (UHPLC) (Vanquish, Thermo Scientific) coupled to 
a quadrupole-Orbitrap mass spectrometer (Q Exactive, 
Thermo Scientific) operating in data-dependent acquisi-
tion (DDA) mode.

The LC-MS/MS spectrometry data were processed 
and annotated following the EMP method [55]. Briefly, 
the proprietary files were converted to the mzML open 
format, processed with GNPS classical molecular net-
working workflow [56, 57]. The results can be accessed 
at https://​gnps.​ucsd.​edu/​Prote​oSAFe/​status.​jsp?​task=​
eda58​5e315​76451​79395​acfdf​d9620​55 for the original 
job, and https://​gnps.​ucsd.​edu/​Prote​oSAFe/​status.​jsp?​
task=​31a1d​da122​4347b​7beec​3842d​17b87​3e for the most 
recent version of the workflow that offer Metabolomics 
USI views [58]. The mass spectrometry data were depos-
ited on the MassIVE public repository under the acces-
sion MSV000083475. Spectral library matching was 
performed against public MS/MS spectral libraries avail-
able on GNPS and the NIST17 library to obtain level 2 
annotations (putative structure or related (stereo)isomer) 
based on the metabolomics standard initiative (MSI) 
standards [59]. The mass spectra and the spectral match-
ing results are accessible with the Metabolomics USI 
interface using the GNPS job ID and the corresponding 
MF id (e.g., X4151 corresponds to the scan/cluster num-
ber 4151). The computational annotations of putative 

small peptides, which can be classified as level 2/3 anno-
tation (putative/partial structure) based on MSI stand-
ards [59], were performed using the DEREPLICATOR 
algorithm v.1.2.8 [60] on GNPS. Results of the DEREPLI-
CATOR workflow can be accessed at https://​gnps.​ucsd.​
edu/​Prote​oSAFe/​status.​jsp?​task=​31be4​f1f9d​2e46a​99823​
811dd​d0cfd​70.

Sample preparation and GC‑MS analysis
Metabolites were extracted from the samples using the 
MPLEx protocol, a modified Folch extraction method, as 
described previously [61]. A detailed description of the 
sample preparation can be found at [62]. Briefly, whole 
sponge tissue samples and microbial cell pellets were 
resuspended in 3:8:4 H2O:CHCl3:MeOH, then homog-
enized, and centrifuged. The middle layer was collected, 
dried in a vacuum concentrator, and chemically derivat-
ized using a modified version of the protocol described 
by Kind et al. [63]. Specifically, the derivatization process 
was performed by evaporating extract to dryness. Meth-
oxyamine solution was then added and incubated at 37 
°C for 2 h. Samples were then injected in splitless mode 
into an Agilent 7890A gas chromatograph coupled fitted 
with a single quadrupole 5975C mass spectrometer (Agi-
lent Technologies, Inc.).

The GC-MS data were processed following the EMP 
method [55]. Briefly, the proprietary files were converted 
to netCDF file format and the results files were processed 
with MetaboliteDetector [64] to detect, align, and meas-
ure metabolite intensities across samples. The mass spec-
trometry data were deposited on the MassIVE public 
repository under the accession number MSV000083743. 
Metabolites were identified by matching measured reten-
tion indices (RI) and mass spectra to an augmented ver-
sion of the Agilent Fiehn Metabolomics Retention Time 
Locked (RTL) Library [63]. The NIST 08 GC-MS library 
was also used to cross-validate the spectral matching 
scores obtained using the Agilent library. The metabo-
lite intensities and identification results can be accessed 
at ftp://​massi​ve.​ucsd.​edu/​MSV00​00837​43/​updat​es/​
2019-​08-​22_​lfnot​hias_​7cc04​3bc/​other/. The QC files for 
each samples can be inspected at ftp://​massi​ve.​ucsd.​edu/​
MSV00​00837​43/​other/.

Blank subtraction, data filtering, and normalization
Molecular features (MFs) of the LC-MS/MS dataset 
with peak ion intensity two folds higher than their 
mean value across ten blank samples were kept. MFs 
of the GC-MS dataset were retained unless their peak 
ion intensity was higher than that in any of nine blank 
samples. MFs that were present in only one sample 
were removed from further analysis. All missing vari-
ables of ion intensity were replaced by the limit of 
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detection (LoDs; 1/5 of the minimum positive value) 
using MetaboAnalyst v.3.0 [65]. Ion intensity per MF 
was normalized by dividing it by the sum of all MFs’ 
intensity values in a sample.

Statistical analysis and data visualization
Permutational multivariate analysis of variance (PER-
MANOVA, R: vegan v2.5-6, 999 permutations) using 
Euclidean distances of normalized MFs data was used 
to statistically evaluate overall differences in metabo-
lite profiles, and the cluster dendrogram and princi-
pal component analysis (PCA, R: prcomp()) was used 
to visualize the data. Cluster dendrogram was plotted 
using Ward’s minimum variance method (ward.D2) 
[66]. Common and unique MFs across the six sponge 
species were visualized using Venn diagrams (R: venn 
v1.9).

Normality and homoscedasticity of MFs were 
assessed by Shapiro-Wilk’s test and Levene’s test, 
respectively [67]. The percentage of MFs that rejected 
H0 at conventional α = 0.05 relative to the total num-
ber of MFs is presented in Supplemental Table S1. Dif-
ferential abundance analysis of MFs between sample 
types was performed by applying either the unpaired t 
test (parametric, normal distribution) or Mann-Whit-
ney test (non-parametric, non-normal distribution) to 
the MFs, followed by multiple testing correction (Ben-
jamini-Hochberg Procedure). Heatmaps of annotated 
differentially abundant MFs (aDAMs) were plotted 
with the cube-root relative abundance of the ion inten-
sity (R: pheatmap v1.0.1).

Results and discussion
Overview of the dataset
The non-targeted LC-MS/MS metabolomic dataset con-
tained a total of 10,118 MFs from the whole sponge tis-
sue (ST) and microbial cell (MC) samples across the 
six sponge species, and 3422 of them were detected in 
at least two samples and were used for data normaliza-
tion and downstream analysis (Table 1). The ST samples 
contained overall more MFs (2758) compared to the MC 
samples (2129), which is not surprising given that metab-
olites found in the microbial cells would also be part of 
the whole sponge tissue. However, only 53% and 69% of 
the MFs in the ST and MC samples overlapped between 
the two sample types, respectively. The metabolite diver-
sity per species ranged from 773 for C. matthewsi to 1009 
MFs for P. heteroaphis.

Of the 3422 MFs, 229 could be assigned to level 2 anno-
tations with scores between 0.6 and 1. Thirteen MFs were 
assigned to level 2/3 annotations with p values between 
2.2E−34 and 6.9E−12. These combined 242 annotated 
MFs (aMFs) were subjected to biological interpretations 
in the differential abundance analysis (see below in section 
the “Shared or differential abundant metabolites” section 
and Additional file 6: Appendix file 1 for more details).

The non-targeted GC-MS analysis yielded a total 
of 538 MFs from ST and MC samples across the six 
sponge species, and 503 of those were detected in at 
least two samples and were therefore normalized and 
further analyzed (Table  1). Similar to the LC-MS/MS 
analysis, more MFs were detected from the ST sam-
ples (477) in comparison to the MC samples (442). 
However, a much higher proportion of MFs was found 

Table 1  Overall number of MFs in different sample types for each sponge species. MFs were included after application of blank 
subtraction and data filtering. Differentially abundant molecular features (DAMs) detected from the LC-MS/MS analysis were obtained 
from subsets belonging to each sponge species, while those detected from the CG-MS analysis were obtained across all species 
(marked with an asterisk) (see below in the “Shared or differential abundant metabolites” section)

aDAMs Annotated DAMs, N/A Not applicable

Sponge species All species 
combined

C. 
foliascens

C. 
orientalis

C. 
matthewsi

I. ramosa P. 
heteroaphis

S. flabelliformis

Sample types ST MC ST MC ST MC ST MC ST MC ST MC ST MC

LC-MS/MS # Samples in each sample type 24 20 4 3 4 4 4 3 4 3 4 4 4 3

# MFs found 3422 870 907 773 889 1009 858

# DAMs between ST and MC N/A 206 139 119 8 43 303

# aDAMs between ST and MC N/A 13 29 17 2 7 36

# aDAMs more abundant in the 
sample type

N/A 2 11 1 28 15 2 0 2 0 7 1 35

GC-MS # Samples in each sample type 12 11 2 2 2 2 2 2 2 1 2 2 2 2

# MFs found 503 357 373 373 358 379 346

# DAMs between ST and MC* 60 N/A

# aDAMs between ST and MC* 15 N/A
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to overlap between the ST and MC samples (87% and 
94%, respectively) in comparison to the LC-MS/MS 
analysis. The metabolite diversity per sponge species 
ranged from 346 for S. flabelliformis to 379 MFs for P. 
heteroaphis.

Of the 503 MFs, 79 could be annotated using the RTL 
library with scores between 0.6 and 0.97. Another six 
MFs were annotated using the NIST 08 GC-MS library. 
A total of 85 aMFs were subjected to biological inter-
pretation in the differential abundance analysis (see 
below in the “Shared or differential abundant molecular 
features” section and Additional file 6: Appendix file 1).

Shared or differential abundant metabolites
The clustering dendrogram (Fig.  1) and PCA plot (Sup-
plemental Fig.  S1) of the LC-MS/MS data showed 
that metabolite profiles varied more between the 

factor “sponge species” than between “sample type”. This 
observation was supported by the PERMANOVA, which 
showed that sponge species have statistically significant 
differences in their metabolite profiles (p = 0.001, R2 = 
0.370, Df = 5), while there was no statistical support for 
differences between sample types (p = 0.987) or the com-
bination of the two factors (p = 0.999). Further compari-
son found statistical support for differences between all 
pairs of sponge species, except for C. orientalis versus I. 
ramose and C. matthewsi versus I. ramose (Supplemental 
Table S2).

Clustering dendrograms (Fig. 1) and PCA plot (Supple-
mental Fig. S1) of the GC-MS data showed that metab-
olite profiles varied more between sample types than 
across sponge species, which is different to the LC-MS/
MS data. This was supported by a PERMANOVA, which 
showed that  the factor “sample type” was the primary 

Fig. 1  Cluster dendrograms of samples based on LC-MS/MS (A) or GC-MS (B) data. Symbol color indicates sample type. ST, whole sponge tissue; 
MC, microbial cell
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driver (R2 = 0.438, p = 0.001, Df = 1) and “sponge spe-
cies” was the secondary contributor (R2 = 0.249, p = 
0.001, Df = 5) to the statistical differences in metabolite 
profiles of samples.

Presence/absence analysis of the LC-MS/MS-based 
metabolite profiles showed that no or very few metabo-
lites in either the ST or the MC samples were detected 

across all sponge species (Fig. 2). Specifically, 37‑65% of 
all MFs found in ST samples were unique to any given 
species. Only nine MFs were found in all sponge spe-
cies, of which five could be annotated, and these include 
hymenialdisine, 2-methylbutyryl-carnitine, and eico-
satrienoic acid methyl ester or related (stereo)-iso-
mers (Table  2). Hymenialdisine is an alkaloid that was 

Fig. 2  Venn diagrams of common and unique MFs across sponge species. The Venn diagram shows number of common and unique MFs of 
LC-MS/MS and GC-MS datasets that are present in at least one ST or MC sample of each species. The figure in brackets inside the overlapping 
area represents the number of MFs detected in every sample. The number of total MFs found in each species is shown in the brackets on the 
outside of the Venn diagrams. ST, whole sponge tissue; MC, microbial cell; CAR, C. foliascens; CLI, C. orientalis; COS, C. matthewsi; IRC, I. ramosa; PER, P. 
heteroaphis; STY, S. flabelliformis 
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previously found in sponges and has been suggested to 
have antifouling activity [68]. 2-Methylbutyryl-carnitine, 
a short chain acylcarnitine, is produced by many eukary-
otes, including sponges [69]. Eicosatrienoic acid methyl 
ester is an isomeric, methylated derivative of dihomo-
γ-linolenic acid, which has been previously found in 
the sponge Fasciospongia cavernosa [70] and might be 
involved in host defense and immunity [71, 72].

Between 38 and 63% of all LC-MS/MS-based MFs 
found in the MC samples were unique to any given spe-
cies (Fig.  2). Seventeen MFs were found in all sponge 
species with three of them receiving an annotation 
(aMFs), including docosatetraenoic acid and didodecyl 
3,3′-thiodipropionate (DLTDP) (Table  2). The former 
is a compound with potential antibacterial, antibiofilm, 
and anti-inflammatory activities found in a sea anem-
one (Stichodactyla haddoni) [73] and sea hares (Aply-
sia sp.) [74], while the latter is an antioxidant [75] that 
has been isolated from the fungi Geosmithia lavendu-
lan [76]. None of the remaining aMFs listed in Table 2 
have previously been reported to occur in sponges or 
marine samples, nor do they have any known biological 
function.

The GC-MS-based metabolite profiles across sponge 
species showed that the majority of MFs were shared 
between the ST and MC samples and across sponge spe-
cies (Fig. 2). Of the 206 and 229 MFs found across all ST 
and MC samples, respectively, 202 MFs were detected 
in all samples across both sample types, and only seven 
being unique to MC samples. None of these unique MFs 
could be assigned to known structures.

None of the metabolites found in current study 
matched those previously reported from the same sponge 
species in the MarinLit database [77], highlighting the 
high level of novel metabolic diversity found here. How-
ever, our general findings of distinct metabolite profiles 
across sponge species are consistent with patterns seen 
from the MarinLit database, which also showed only a 
limited or no overlap of metabolites between six sponge 
species (Supplemental Fig. S2 and Table S3).

Given that generally very distinct metabolite profiles 
were observed between sponge species in the LC-MS/
MS dataset (Figs. 1 and 2), we next analyzed the differen-
tially abundant metabolites (i.e., annotated differentially 
abundant MFs, aDAMs) between sample types (i.e., MC 
and ST) for each sponge species separately. About 62 ± 
17% (range: 22‑85%) of MFs were normally distributed 
and homoscedastic (Supplemental Table  S1) and there-
fore they were analyzed by unpaired t tests with the Ben-
jamin-Hochberg (BH) corrected p value cut-off of < 0.05. 
The remaining MFs were analyzed by Mann-Whitney 
test with the same corrected p value cut-off. The num-
ber of DAMs ranged from eight for I. ramosa to 303 to 

S. flabelliformis, and the proportions of aDAMs ranged 
from 6% in C. foliascens to 25% in I. ramosa (Table  1). 
For most species, 84‑100% of the aDAMs had a higher 
relative abundance in the MC samples, except for C. mat-
thewsi, where 88% of its aDAMs were relatively more 
abundant in the ST samples (Table 1 and Additional files 
7 and 8: Appendix files 2 and 3).

Multivariate analysis on the GC-MS data showed that 
similar metabolite profiles were present across sponge 
species (Figs. 1 and 2) and therefore we analyzed DAMs 
between sample types across all sponge species. Due to 
the low proportion (about 10 ± 4%, range: 7‑13%) of MFs 
with normal distribution and homoscedasticity (Supple-
mental Table  S1), all MFs were analyzed by the Mann-
Whitney test and a BH corrected p value cut-off of < 
0.05 was used. Sixty DAMs were found across all sponge 
species, with fifteen of them being annotated (aDAMs) 
(Fig.  3). A large proportion (93%) of these aDAMs was 
enriched in the ST samples (Additional file  6: Appen-
dix file 1). All these aDAMs were next investigated for 
their potential biological or ecological role in the sponge 
holobionts.

Compounds indicating metabolic interactions 
within the sponge holobionts
In addition to the observation that 2-methylbutyryl-
carnitine was broadly found in the ST samples across all 
sponge species (see above and Table  2), another short 
chain acylcarnitine, hexanoyl-carnitine (MF id: X3180), 
was found as an aDAM enriched in the ST samples 
of C. foliascens and C. matthewsi (Fig.  4). Carnitine 
(β-hydroxy-γ-N-trimethylammonium butyrate) can be 
used by some bacteria as a source for carbon, nitro-
gen, and energy, or as a protective molecule against 
fluctuations in salinity or temperature [78]. Carnitines 
therefore appear to be common metabolites in sponges 
that could be used by their associated microorgan-
isms as a nutrient source. This is also supported by a 
recent metagenome-based observation that the sponge 
Aplysina aerophoba contains a group of symbiotic bac-
teria that are genetically adapted to metabolize carniti-
nes [79].

Several carbohydrates including fructose, mannitol, 
gluconic acid, glucose, ribose, and scyllo-inositol (stere-
oisomer of inositol) (MF id: G25, G16, G12, G13, G18, 
and G79, respectively) were found to be enriched in the 
ST samples across all sponge species (Fig.  3). Genetic 
evidence has shown that sponge-associated gammapro-
teobacteria [80], Anaerolineae sp., Caldilineae sp. [81], 
and Phyllobacteriaceae [82] are capable of utilizing these 
carbohydrates, and sponges have been proposed to pro-
vide these as carbon and energy sources to their micro-
bial symbionts [81]. This would be consistent with the 
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enrichment and depletion of these carbohydrates in the 
sponge tissue and microbial cell fraction, respectively.

7-Ketocholesterol (7KC) (MF id: X13022) was found 
enriched in the MC samples of C. orientalis. Sterol bio-
synthesis is primarily associated with eukaryotes, and 
only rarely found in bacteria [83, 84]. 7KC is a major 
product of the reaction between cholesterol and oxygen 
radicals, and can cause cellular damage [85]. Interest-
ingly, many bacteria can degrade 7KC by using it as sole 
nutrient [86, 87] and energy source [88]. 7KC has also 
been recently reported in the sponge Axinella sinoxea 
[89], and sterol-degrading microorganisms have been 
found in several marine sponges, such as Sarcotragus sp., 
Petrosia sp., and Aplysina sp. [90].

Together, these observations highlight the potential 
for specific metabolic interactions with benefits to the 
sponge-associated microorganisms. In the case of 7KC 
degradation, the interaction could be mutualistic, as it 
would remove a putative toxic compound from the host.

Molecules with antioxidant activities
An enrichment of loliolide (LOD) (MF id: X735) and 
fucoxanthin (MF id: X24400) were found in the MC 
samples of C. orientalis. LOD is a monoterpenoid previ-
ously found in various plants, algae, and zebrafish, and 
has been described to possess antioxidant activities [91]. 
Fucoxanthin is a major non-provitamin A carotenoid 
with antioxidant activity [92], which is often found in 
brown seaweeds, diatoms, and golden algae [93], and has 
also recently been identified in a bacterial symbiont of 
the sponge Callyspongia vaginalis [94].

Generally, antioxidant compounds scavenge and 
degrade free radicals and other reactive oxygen species 
(ROS) that induce tissue damage [95], and sponges are 
considered to be one of the major sources of natural anti-
oxidants [96]. A variety of antioxidants found in C. ori-
entalis might have a role in protection against oxidative 

stress caused by zooxanthellae Symbiodinium, which 
has been reported to be abundant in and form symbiotic 
relationship with this sponge [97, 98]. The enrichment of 
these specific antioxidant compounds in the microbial 
cell fraction further support the notion that symbionts 
play a key role in providing protection against oxidative 
stress in sponges [11].

Molecules with antagonist properties
Comparative analysis of the LC-MS/MS data showed that 
1-O-hexadecyl-2-O-butenoyl-sn-glyceryl-3-phosphocho-
line (MF id: X22137) and 1-O-hexadecyl-2-O-methyl-
sn-glyceryl-3-phosphorylcholine (MF id: X19814) were 
enriched in the MC samples of C. foliascens and S. flabel-
liformis, respectively. The former is known as a platelet 
activating factor (PAF), while the latter is a methyl-PAF 
with antibacterial activity also previously found in the 
sponge A. sinoxea [89]. PAFs are involved in various 
physiological processes, including antimicrobial defense 
[99, 100]. A recent study also found high levels of PAFs 
in the coral Oculina patagonica when exposed to Vibrio 
coral pathogens [101], indicating potential roles of PAFs 
in pathogen defense in both corals and sponges.

Several MFs annotated as PUFAs were found to be dif-
ferentially abundant in either the whole sponge tissue or 
microbial cells. For example, 9-hydroxy-octadecatrienoic 
acid (9-HOTrE) (MF id: X4151) was found to be enriched 
in the MC samples of C. orientalis, while docosatetrae-
noic acid (MF id: X7396) was found to be enriched in the 
MC samples of C. orientalis, P. heteroaphis, and S. flabel-
liformis. In addition, eicosatrienoic acid methyl ester (MF 
id: X8196) (Table 2) was enriched in the ST samples of C. 
matthewsi (Fig. 4). The given annotation of these metab-
olites in untargeted mass spectrometry could also corre-
spond to closely related (stereo)isomers. PUFAs however 
have been generally reported to play multiple critical 
roles in host defense, including antibacterial, antifungal, 

Table 2  aMFs present in at least one ST or MC sample per sponge species. CAS RN refers to the registration number in the Chemical 
Abstract Service database, while match score refers to annotation confidence (cosine score between the experimental MS/MS 
spectra and the reference library MS/MS spectra). These spectral annotations correspond to level 2 based on MSI standards and could 
correspond to stereoisomers or closely related isomers

MF id aMFs putatively annotated by GNPS workflow CAS RN Sample type Match score

X21343 Didodecyl 3,3′-thiodipropionate oxide 17243140 ST 0.98

X2554 2-Methylbutyryl-carnitine 256928753 ST 0.73

X3329 Phe-Pro N/A ST 0.98

X6702 Hymenialdisine N/A ST 0.66

X8196 Eicosatrienoic acid methyl ester 21061109 ST 0.69

X1253 Val-Pro N/A MC 0.94

X20687 Didodecyl 3,3′-thiodipropionate (DLTDP) 123284 MC 0.99

X7396 Docosatetraenoic acid 28874580 MC 0.90
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and antioxidant activities [72]. The antimicrobial activ-
ity provided by PUFAs could therefore be attributed to 
either the sponge tissues or their associated microbial 
cells, depending on the sponge species.

Both palmitoleic acid (MF id: X3003) and palmitoleic 
acid methyl ester (MF id: X3752) were found enriched 
in the MC samples of C. orientalis and S. flabelliformis. 
The former is a free fatty acid (FFA), while the latter is 
its fatty acid methyl ester (FAME). Again, the given spe-
cific annotation of long chain fatty acids could also reflect 
closely related (stereo)isomers. Bacterial symbionts of 
demosponges are known for their ability to synthesize 
short-chain C15-C20 monomethyl-substituted FFAs [42, 
102], such as palmitoleic acid, which has been previously 

described in the sponges Baikalospongia intermedia [23] 
and Axinella sinoxea [24]. The C16:1δ6 isomer of palmi-
toleic acid is an effective inhibitor against gram-positive 
bacteria in human skin sebum [103]. Although specific 
functions of palmitoleic acid methyl ester are still not 
clear, they might act as an antimicrobial compound as 
increased antimicrobial activity has been found in some 
FAMEs in comparison to their non-methylated counter-
parts [104]. Another FAME, methyl vaccenate (MF id: 
X3457), was found to be enriched in the MC samples of 
C. matthewsi and has been described to have antimicro-
bial activity [25].

The MC samples of C. orientalis and P. heteroaphis 
were enriched with 1-monolinoleoyl-rac-glycerol (mLG) 

Fig. 3  Histogram of aDAMs of the GC-MS analysis. The mean value of relative abundance was calculated based on the ion peak intensity of the 
molecule in each sample type. ST, whole sponge tissue; MC, microbial cell
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(MF id: X9092), which has antibacterial [105], antifun-
gal [106], and antiviral activities [107]. 1-Palmitoyl-rac-
glycerol (monoacylglycerol or MAG) (MF id: X7265) 
and linoleyl alcohols (MF id: X2691) were found to be 
enriched in the MC samples of P. heteroaphis. It has 
been reported that MAG has a strong inhibitory activity 
against biofilm formation [108], and linoleyl alcohols can 
effectively inhibit the growth of Streptococcus mutans 
[109]. An enrichment of brassicasterol (MF id: X11261) 
was found in the MC samples of S. flabelliformis. The 
phytosterol brassicasterol has an antiviral activity by 
inhibiting viral replication [110] and has previously been 
found in seaweed extracts [111]. 2-Butoxyethanol phos-
phate (MF id: X12807), a bioactive fatty acid with antago-
nistic activity [112, 113], was found to be enriched in the 
MC samples of C. orientalis.

Aside from the commonly found hymenialdisine (see 
above and Table 2), debromohymenialdisine (DBH) (MF 
id: X1747) was another compound enriched in whole 
sponge tissue of C. matthewsi and may be involved in 
preventing potential fouling organisms from settling or 
overgrowing the sponges. Both hymenialdisine and DBH 
have previously been isolated from spherulous cells of the 
sponge Axinella sp. [114] and have been found to exhibit 
antifouling activities against the mussel Perna viridis and 
the seaweed Ulva prolifera [68].

Many previous studies have not identified the true pro-
ducers of antimicrobials within the sponge holobiont 
[30, 31]. In the current study, compounds with potential 
antagonistic properties appear to be commonly found in 
the microbial cell fractions and only occasionally in the 
whole sponge tissue. This suggests that these compounds 
are mainly produced by the microbial members in the 
sponge holobiont, and are potentially either involved 

in inter-microbial competitions or in defenses against 
intruding organisms.

Molecules involved in cell‑cell recognition and immune 
suppression in sponges
Comparative analysis of the GC-MS data showed that 
mannose (MF id: G17) was significantly more abun-
dant in ST than in MC samples for all six sponge spe-
cies (Fig.  3). Reaggregation is central to discrimination 
between self and non-self, a process that is vital for mul-
ticellular organisms and allows individuals to avoid inva-
sion and parasitism from other organisms. Sponges can 
be dissociated to the cellular level and reaggregate after-
wards, and an extracellular product named “aggregation 
factor (AF)” is responsible for this species-specific pro-
cess [115]. Mannose was shown to be involved in the 
AF-mediated adhesion of the sponge Microciona prolif-
era and may therefore play an important role in the cell 
reaggregation process [116]. Enrichment of mannose in 
whole tissue of all species highlights its potentially uni-
versal role in cell-cell recognition and adhesion across 
sponges.

The MC samples of I. ramosa and S. flabelliformis were 
enriched with phenylethylamide (PEA) (MF id: X9379), 
a bacterial secondary metabolite also found in the bac-
terial genera Xenorhabdus and Photorhabdus and which 
causes immunosuppression against target insects by 
inhibiting eicosanoid biosynthesis [117]. It has also been 
isolated from the marine actinomycete Salinispora areni-
cola [118] and the soft coral Sinularia flexibilis [119], 
where its bioactivity was unconfirmed. The finding of 
PEA in sponge-associated microbial cells might indicate 
that their host species experience microbially induced 
immunosuppression.

Fig. 4  Heatmap of aDAMs of the LC-MS/MS analysis. Map color displays cube-root transformed, relative abundances. ST, whole sponge tissue; MC, 
microbial cell
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Conclusions
Comparative analysis of metabolomic data from whole 
tissue and microbial cell fractions of six marine sponge 
species revealed numerous metabolites potentially 
involved in biological activities that could contribute to 
the ecological function and survival of the holobionts. 
The putative annotations obtained for these metabolites 
allowed us to generate hypothesis on their function.

All sponge species investigated here appear to have 
metabolic interactions with their symbionts by pro-
viding them with 2-methylbutyryl-carnitine and car-
bohydrates, including scyllo-inositol, gluconic acid, 
ribose, fructose, and mannitol, as potential nutrients. 
The microbial symbionts appear to play a major role in 
response to oxidative stress as the antioxidant DLTDP 
was common to all symbiont communities, while LOD 
and fucoxanthin were specific to the symbiont com-
munities of certain sponge species. Oxidative stress is 
common in shallow-water sponges as a result of pho-
tosynthesis-derived oxygen production by symbionts 
[8, 11, 120] and the associated microbial communities 
likely plays a role in preventing oxidative damage in the 
holobiont.

A number of putatively annotated metabolites are 
known to be involved in chemical defense such as eico-
satrienoic acid methyl ester and hymenialdisine and 
those were common to the whole tissue of all sponge 
species. However, most chemicals with defensive prop-
erties appeared to originate from the microbial symbi-
onts, including docosatetraenoic acid, which were found 
across all sponge species, or PAFs, mLG, and methyl 
vaccenate, which were restricted to specific sponge spe-
cies. These molecules likely play a role in defending the 
sponge holobiont from fouling organisms [68] or micro-
bial pathogens [73].

Finally, mannose was enriched in the tissue of all 
sponge species, which is notable as it likely plays a cen-
tral role in recognizing self from non-self as part of the 
innate immune system. Microbial symbiosis might also 
induce immunosuppression as indicated by the high 
relative abundance of PEA in I. ramosa and S. flabel-
liformis. Sponges are increasingly recognized to have 
sophisticated immune-systems that could contribute 
to the discrimination of symbionts from food micro-
organisms [121, 122]. The stable relationship between 
sponge hosts and their associated symbionts might be 
established via the chemically mediated interactions 
observed here.
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