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Abstract 

Background:  The ability to quantitatively predict ecophysiological functions of microbial communities provides an 
important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we 
present the quantitative prediction of medium-chain carboxylate production in two continuous anaerobic bioreac-
tors from 16S rRNA gene dynamics in enriched communities.

Results:  By progressively shortening the hydraulic retention time (HRT) from 8 to 2 days with different tempo-
ral schemes in two bioreactors operated for 211 days, we achieved higher productivities and yields of the target 
products n-caproate and n-caprylate. The datasets generated from each bioreactor were applied independently 
for training and testing machine learning algorithms using 16S rRNA genes to predict n-caproate and n-caprylate 
productivities. Our dataset consisted of 14 and 40 samples from HRT of 8 and 2 days, respectively. Because of the 
size and balance of our dataset, we compared linear regression, support vector machine and random forest regres-
sion algorithms using the original and balanced datasets generated using synthetic minority oversampling. Further, 
we performed cross-validation to estimate model stability. The random forest regression was the best algorithm 
producing more consistent results with median of error rates below 8%. More than 90% accuracy in the prediction 
of n-caproate and n-caprylate productivities was achieved. Four inferred bioindicators belonging to the genera 
Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV suggest their relevance to the higher carboxylate pro-
ductivity at shorter HRT. The recovery of metagenome-assembled genomes of these bioindicators confirmed their 
genetic potential to perform key steps of medium-chain carboxylate production.

Conclusions:  Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the 
communities with desired chain elongation functions. Using machine learning, we demonstrated that 16S rRNA 
amplicon sequencing data can be used to predict bioreactor process performance quantitatively and accurately. 
Characterizing and harnessing bioindicators holds promise to manage reactor microbiota towards selection of the 
target processes. Our mathematical framework is transferrable to other ecosystem processes and microbial systems 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  sabine.kleinsteuber@ufz.de; ulisses.rocha@ufz.de
1 Department of Environmental Microbiology, Helmholtz Centre 
for Environmental Research – UFZ, Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6972-6692
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-021-01219-2&domain=pdf


Page 2 of 21Liu et al. Microbiome           (2022) 10:48 

Background
Microbes form complex communities that play essential 
roles in ecosystem functioning. Identifying bioindica-
tors derived from community analysis and using them 
to predict process performance may delineate potential 
cause-effect relationships with ecosystem functioning [1, 
2]. The knowledge gained from prediction can be used 
to generate hypotheses on the role of key species. At the 
ecosystem level, designing effective control strategies 
for key species holds promise to manage the community 
towards the  selection of the target processes, which is 
crucial for microbiota-based biotechnologies [3–5].

Our goals were to investigate how environmental 
manipulations affect ecosystem functioning and to pre-
dict performance metrics of the quantifiable biological 
processes by following microbial community dynamics. 
Model ecosystems offer the opportunity to link micro-
bial diversity and ecosystem functioning in a quantifiable 
and predictable way [6–8]. Such simplified ecosystems 
can still be complex regarding microbial interactions and 
involved metabolic processes [6]. Here, we used anaero-
bic fermentation reactors as model ecosystems and 
considered microbial chain elongation (CE) as the quanti-
fiable model ecosystem process. CE is a microbial process 
that produces medium-chain carboxylates (6 to 8 car-
bon atoms) through reverse β-oxidation [9]. Recently we 
enriched a mixed culture that produces n-butyrate (C4), 
n-caproate (C6) and n-caprylate (C8) from xylan and 
lactate in a daily-fed reactor system [10], to simulate the 
feedstock conditions of anaerobic fermentation of ensiled 
plant biomass [11]. For this bioprocess to be viable, it 
needs to include diverse functions such as xylan hydroly-
sis, xylose fermentation and CE with lactate as electron 
donor. Mixed culture fermentation is characterized by 
different trophic groups that may cooperate or compete 
with each other to metabolize complex substrates [9]. 
Species involved in these interactions can drive shifts in 
community structure and function [1]. During the long-
term stable reactor operation, the community developed 
towards predominating C4 and biomass production at 
the cost of C6/C8 production [10]. The current study was 
conducted on the enriched chain-elongating microbiota 
in two parallel bioreactors to explore how process param-
eter changes shape the existing microbiota to optimise 
the process towards the target products C6 and C8. To 
promote C6 and C8 production and enrich the functional 

groups relevant to process performance, we reduced the 
hydraulic retention time (HRT). HRT refers to the aver-
age time soluble compounds reside in the bioreactor. 
Shortening the HRT is a common operation-based strat-
egy for increasing C6/C8 production [12–16] and a key 
factor influencing microbial diversity [17]. It is relevant 
to the microbial growth rate in reactors without biomass 
retention, and it affects biomass concentration and com-
munity composition [18]. Following variations in diver-
sity induced by HRT reduction, we tested if productivity 
and yield of the target products (C6 and C8) could be 
predicted by using machine learning. To provide insight 
into the community structure and function dynamics, we 
measured process performance and collected samples 
for community analysis using high-throughput sequenc-
ing of the 16S rRNA gene. Community analysis using 16S 
rRNA amplicon sequencing data combined with envi-
ronmental variables can reveal relationships between 
microbial communities and ecosystem functioning. For 
example, Werner et  al. demonstrated strong relation-
ships between the phylogenetic community structure, 
reflected by time-resolved 16S rRNA amplicon data, and 
the methanogenic activity in full-scale anaerobic digest-
ers, by applying constrained ordination [19].

Predictive analytics using machine learning has 
shown promise in microbiota-based biotechnologies 
[6, 20, 21]. The  identification of bioindicators based 
on microbial community data is an important appli-
cation of machine learning predictive models [22]. 
Different machine learning algorithms, such as linear 
regression [23], support vector machine [24] and ran-
dom forest regression [25] have been used in microbi-
ome studies. Our machine learning analysis consisted 
of the identification of the amplicon sequence vari-
ants (ASVs) that were relevant to community dynam-
ics caused by HRT reduction and the prediction of C6/
C8 production based on the selected ASVs (hereafter, 
HRT bioindicators). To determine the HRT bioindi-
cators heuristically, we used the ASVs as features to 
predict the target HRT. We first used the microbi-
ome automated machine learning pipeline (hereafter, 
mAML) [26] to test several different algorithms on 
our dataset for microbiome-based classification tasks. 
Once we had prediction accuracies from the differ-
ent tested algorithms, we selected the algorithm with 
the highest prediction accuracy that can rank feature 

where community dynamics is linked to key functions. The general methodology used here can be adapted to data 
types of other functional categories such as genes, transcripts, proteins or metabolites.

Keywords:  Predictive biology, Carboxylate platform, Model ecosystems, Reactor microbiota, Microbial chain 
elongation
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relevance. Since we want to gain insight into our data 
via the learned relationship between feature and tar-
get variable, it is crucial that the selected algorithm for 
suggesting bioindicators demonstrates  not only high 
prediction accuracies but also is interpretable and can 
rank feature relevance. After determining the HRT 
bioindicators, we created C6/C8 production regres-
sion models using the selected ASVs. It is important to 
mention that our dataset is imbalanced regarding the 
number of samples from the different HRT. The data-
set consists of 54 samples: 14 from HRT 8 days and 
40 from HRT 2 days. Imbalanced datasets can create 
a bias to the learning task, prioritizing the prediction 
of the majority target. Consequently, to create the C6/
C8 production regression model, we also determined 
the differences in the predictive performance of the 
original (unbalanced) datasets and of datasets that 
were balanced by oversampling to verify if our models 
can handle the imbalance found in our data. Finally, we 
used k-fold cross-validation to estimate the stability of 
the model.

Results
Effects of HRT decrease on process performance 
and microbial diversity
The progressive HRT decrease from 8 to 2 days increased 
the C6 and C8 productivities and yields in two independ-
ent bioreactors (Fig. 1). We first shortened the HRT to 6 
days and then to 4 days in bioreactor A, which allowed 
the reactor microbiota to adapt to the new conditions 
and improved productivities of C4, C6 and C8 (Fig. 1a). 
Further HRT decrease to 2 days confirmed the increas-
ing trend in productivity. At the end of the 2-day HRT 
period in bioreactor A, we achieved the highest pro-
ductivities (mmol C L−1 day−1) of C4, C6 and C8 up to 
115.0, 64.1 and 5.9, respectively. To confirm the observed 
effects of HRT shortening on the CE process and reac-
tor microbiota, we executed a fast transition mode in 
bioreactor B and generated a different dataset from the 
parallel system. Comparable increases in productivity 
were observed (Fig. 1b). We obtained maximum produc-
tivities (mmol C L−1 day−1) of C4 up to 102.4, C6 up to 
62.9 and C8 up to 7.0. The C6 and C8 yields (in terms of 
C mole product to consumed substrate ratio) increased 

Fig. 1  Performance of bioreactors. Concentrations of chain elongation products and lactate, as well as productivities and yields of chain elongation 
products in bioreactors A (a) and B (b) during the four HRT phases. Chain elongation products: C4, n-butyrate; C6, n-caproate; C8, n-caprylate
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along with decreasing HRT at the cost of C4 yield (Fig. 1 
and Additional file 1: Table S1). Our results suggest that 
the shorter HRT favored lactate-based CE producing 
C6 and C8 over C4 production. C4 can be produced by 
CE of acetate and from sugars by butyric acid fermenta-
tion [27]. In both bioreactors at 2-day HRT, a temporary 
accumulation of lactate was observed that coincided with 
fluctuations of the C4, C6 and C8 production (Fig.  1a). 
Lactate concentrations were negatively correlated with 
C4 concentrations (Spearman’s rho = − 0.90, P < 0.05) 
and C6 concentrations (rho = − 0.89, P < 0.05), which 
reflects how lactate was produced and converted by 
the reactor microbiota. The HRT reduction resulted in 
higher gas production and hydrogen content (Additional 
file 1: Fig. S1). Besides, an increase in cell mass produc-
tion (Additional file  1: Fig. S2) suggests a facilitating 
effect of short HRT on the growth of enriched popula-
tions with desirable activities; i.e., more biocatalysts were 
available in the high C6/C8 production phase.

The composition and diversity of the reactor micro-
biota varied when decreasing the HRT. Changes in the 
relative abundance of ASVs categorized from phylum to 
genus between the HRT of 8 days and 2 days are shown in 
Additional file 1 (Fig. S3). Alpha diversity metrics showed 
significantly lower observed ASV counts (pairwise t-test, 
P < 0.05) and higher Shannon index values (pairwise 
t-test, P < 0.05) for HRT of 8 days compared with 2 days 
(Additional file 1: Fig. S4). Beta diversity analysis revealed 
a significant difference between the communities at dif-
ferent HRTs (PERMANOVA; Pseudo-F = 103.1, P < 
0.001) but no significant difference between the commu-
nities in both reactors at the same HRT (Pseudo-F = 3.3, 
P > 0.05) (Fig. 2).

Selection of HRT bioindicators
To determine HRT bioindicators, we used HRT of 8 days 
and 2 days as prediction objects and relative abundances 
of ASVs as features. Different algorithms integrated 
into the mAML automated machine learning pipeline 
[26] were tested heuristically  to choose the most fitting 
machine learning algorithm for our dataset. We selected 
random forest since it can rank feature relevance and it 
showed the highest prediction accuracies during the 
5-fold cross-validation process (Additional file  2). We 
measured the prediction strength of our models in two 
folds. First, we trained the models using the data from 
bioreactor A and then tested them using bioreactor B. 
After we trained the models using the data from biore-
actor B and tested them using bioreactor A. We selected 
the 15 top-ranked ASVs that gave the best discrimination 
between the HRT phases, based on higher than 1% of 
the mean decrease in Gini scores for both reactors in the 
prediction accuracy of HRT. The 15 most relevant ASVs 

to identify HRT changes were defined as “A- or B-HRT 
bioindicators”, potentially reflecting the key species cor-
relating with HRT changes in either bioreactor (feature 
importance in Fig. 3). The two bioreactors shared 11 HRT 
bioindicators assigned to nine different genera.

Prediction of process performance
To answer whether HRT bioindicators can be used to 
predict process performance in terms of C6 and C8 pro-
ductivity, we performed a regression analysis. We cre-
ated regression models using the dataset with the original 
distribution of samples, i.e., 14 samples from HRT 8 days 
and 40 samples from HRT 2 days, equally divided among 
the two different bioreactors. We also created regression 
models using artificially balanced datasets. We used the 
Synthetic Minority Oversampling Technique (SMOTE) 
to oversample the training datasets to have 100 samples 
with a balanced distribution of the two HRT classes. 
The datasets from bioreactors A and B were trained and 
tested independently. Consequently, we had the following 
experimental configuration: models were trained with the 
original dataset from bioreactor A/B and tested with the 
samples from bioreactor B/A; models were trained with 
the oversampled dataset from bioreactor A/B and tested 
with the samples from bioreactor B/A. Finally, all created 
models were evaluated with 5-fold cross-validation.

HRT bioindicators were first chosen as features to train 
the models. Considering that community assembly is 
affected by time, we then determined the 15 ASVs most 
relevant to each non-HRT process parameter (i.e., con-
centrations of lactate, C4, C6 and C8; productivities and 
yields of C4, C6 and C8; hereafter, non-HRT bioindica-
tors). Initially, we trained regression models using three 
different machine learning algorithms: linear regression 
algorithm, support vector machine with radial kernel 
and random forest for regression. We used root mean 
squared errors (RMSE) as the evaluation metric, and the 
results are visualized as boxplots in Additional file 1 (Fig. 
S5 for the HRT bioindicators and Fig. S6 for the non-
HRT bioindicators). The random forest regression algo-
rithm performed overall better than linear regression and 
support vector machine with radial kernel. When using 
the HRT bioindicators as features for the regression, the 
random forest algorithm had the lowest RMSE median in 
7 out of the 8 tested configurations, as shown in Addi-
tional file 1 (Fig. S5). In addition, the model trained with 
random forest showed consistency when comparing its 
performance in the original and the balanced datasets, 
which indicates that this algorithm is able to handle the 
imbalance present in our dataset. Therefore, the ran-
dom forest for regression algorithm was selected as the 
best algorithm to determine HRT bioindicators. In our 
case, random forest could explain more than 80% of the 
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variance in C6 and C8 productivities (Additional file  1: 
Tables S2-S3).

Using the selected random forest for  the regression 
algorithm, we evaluated its prediction performance by 
comparing the process parameters’ predicted and meas-
ured values. The average relative root mean square error 
(RRMSE) for the predictions made using the HRT bioin-
dicators was 4.6% (Fig.  4), and the average RRMSE for 
the predictions made using the non-HRT bioindicators 
was 5.8% (Additional file  1: Fig. S7). We further tested 
samples in all HRT phases with HRT and non-HRT 

bioindicators. In all cases, the predicted C6 and C8 pro-
ductivities showed RRMSE below 7.2% (Additional file 1: 
Figs. S8 and S9). Therefore, we considered HRT bioin-
dicators irrespective of time as the ASVs presented in 
HRT bioindicators and not in non-HRT bioindicators 
(feature importance in Additional file  1: Figs. S10 and 
S11). Interestingly, the same four ASVs assigned to the 
genera Olsenella, Lactobacillus, Syntrophococcus and 
Clostridium IV were identified for C6 and C8 productiv-
ity (Fig. 5). We thus hypothesize that species represented 
by these four ASVs determined the increased C6/C8 

Fig. 2  Dissimilarities in bacterial community composition (beta-diversity). Non-metric multidimensional scaling (NMDS) based on Bray-Curtis 
dissimilarities of microbial community composition in bioreactors. a All samples in the four HRT phases were considered for dissimilarity calculation. 
b Samples in the 8-day HRT phase classified to the sampling interval 0–50 days and in the 2-day HRT phase classified to the interval 141–211 days 
were included
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productivities in the CE process manipulated by chang-
ing operational conditions, i.e., shortening the HRT.

Functional role of HRT bioindicators
Genomic information on the species of HRT bioindi-
cators indicated their roles in driving the catabolism 
of xylan and lactate to C6/C8 (Fig.  6). Details of the 
whole genome sequencing can be found in the section 
“Metagenomic analysis” (“Methods” section). Among 
108 metagenome-assembled genomes (MAGs; derep-
licated into 29 species; Fig.  7 and Additional file  3), 
we recovered 12 species with similar phylogenies as 
the four genera representing the HRT bioindicators 
(Table 1). In view of the fermentation process, we anno-
tated the genetic potential for xylan hydrolysis, xylose 
fermentation and CE with lactate (Additional file  1: 
Fig. S12 and Additional files 4, 5, 6 and 7). Specifically, 
Clostridium IV species were reported as lactate-based 
chain-elongating bacteria [28]. Our results suggest 
that four Clostridium IV species (Acutalibacteraceae 
spp. according to GTDB-Tk) can convert lactate to 
C6/C8. Two Syntrophococcus species (Eubacterium_H 
spp. according to EZBioCloud [29]) are potential C6/
C8-producers as they hold complete gene sets encod-
ing enzyme complexes that catalyze CE reactions. This 

genetic potential was also found in genomes of closely 
related Syntrophococcus species (Eubacterium cellu-
losolvens according to EZBioCloud; Additional file  7), 
which was not described before. Lactate formation 
from xylose by lactic acid bacteria can enhance CE by 
providing additional electron donors [30–34]. A recent 
study reported an enriched community dominated by 
Lactobacillus and chain-elongating species, and their 
co-occurrence suggested lactate produced by Lacto-
bacillus to be a key intermediate for C6/C8 produc-
tion [35]. Network analysis of our previous study [10] 
revealed the co-occurrence of Olsenella with potential 
chain-elongating species. Species of Lactobacillus and 
Olsenella are potential xylose-consuming lactate pro-
ducers (Fig.  6b). Genes encoding xylanases were not 
found in Lactobacillus MAGs but in those assigned to 
other bioindicators (Fig. 6a). Taken together, the delin-
eated synergy effects between these bioindicator spe-
cies suggest a division of labor with mutual benefits, 
converting xylan and lactate to C6/C8. A correlation 
network shows HRT, C6 and C8 productivity being 
the most highly connected nodes (Additional file  1: 
Fig. S13). Their co-occurrence with ASVs assigned 
to Clostridium IV, Olsenella and Syntrophococcus 
indicates strong associations among these taxa, the 

Fig. 3  Random forest feature importance of ASVs used to classify the HRT phases (A-HRT bioindicators and B-HRT bioindicators). The top-ranked 
15 ASVs reducing the uncertainty in the prediction of HRT phases (HRT of 8 days and 2 days). According to their ASV abundances distribution, the 
order of features (from top to bottom) was based on their mean decrease in Gini scores, with HRT as the response variable. a Feature importance of 
A-HRT bioindicators. The ASV importance was calculated using the relative abundance data of bioreactor A as a training set and data of bioreactor B 
as a test set. b Feature importance of B-HRT bioindicators. Similar to A-HRT bioindicators, ASV importance of B-HRT was calculated using the relative 
abundance data of bioreactor B as a training set and data of bioreactor A as a test set. The taxonomic classification of ASVs assigned at the genus 
level is provided in parentheses
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Fig. 4  Prediction results of C6 and C8 productivities using HRT bioindicators. a, b Prediction performance of C6 productivity. c, d Prediction 
performance of C8 productivity. We obtained results in a and c by using relative abundance data of bioreactor A for training the model and data 
of bioreactor B for testing. Results using the data of bioreactor B for training and bioreactor A for testing are shown in b and d. The red lines and 
grey shaded areas depict the best-fit trendline and the 95% confidence interval of the least-squares regression, respectively. C6, n-caproate; C8, 
n-caprylate; %Var., explains the variance (%) in C6/C8 productivity of the training set; RRMSE, relative root mean square error

Fig. 5  Phylogeny of HRT bioindicators and non-HRT bioindicators for considering community assembly caused by time. a, b A maximum likelihood 
16S rRNA gene tree showing the ASV species based on the rarefied sequencing data. ASVs are coloured according to the class (a, first inner ring) 
and family (b, second inner ring). c The third inner ring shows the 11 HRT bioindicators identified in both reactors to predict HRT phases of 8 days 
and 2 days. The ASVs identified as HRT bioindicators are shown in bold. Their taxonomic assignments at the genus level are provided in the legend. 
d The four ASVs of HRT bioindicators irrespective of time are shown in red in the outer ring. The ASVs only present in non-HRT bioindicators of C6/
C8 productivity are shown in pink in the outer ring. e Relative abundance dynamics of HRT bioindicators during the whole reactor operation period. 
In the legend, A and B stand for bioreactors A and B, respectively. The four ASVs (in bold) of HRT bioindicators, irrespective of time, assigned at the 
genus level are indicated in parentheses. C6, n-caproate; C8, n-caprylate

(See figure on next page.)
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changing environment and corresponding functions. 
The predictability of C6 and C8 productivities was 
relatively poor when using only the four HRT bioindi-
cators irrespective of time (Additional file 1: Fig. S14). 
Besides, we found redundancy in the main functions of 
catabolizing xylan and lactate to C4, C6 and C8 (Fig. 6), 
with the relevant HRT bioindicators increasing in rela-
tive abundances (Additional file 1: Fig. S15). Thus, the 
involved metabolic pathways seem to be strongly cou-
pled to HRT decrease. The genetic potential overlaps 
with that of other distinct taxa of the reactor micro-
biota, suggesting that HRT bioindicators might be key 
species of the process, but ecological interactions with 
other species are critical to ensure the C6/C8 produc-
tion (functional annotations of xylose fermentation and 
chain elongation in Additional files 6 and 7).

Discussion
Bioreactor performance and community dynamics
Continuous reactor systems maintain cultures in a spe-
cific growth rate and physiological state [36]. Therefore, 
these systems are perfect for the exploration of CE as a 
biotechnological platform for continuous production of 
medium-chain carboxylates [9]. In this study, we used 
continuous anaerobic bioreactors with the enriched 
chain-elongating microbiota [10] as model ecosys-
tems. Two reactors were operated in parallel start-
ing from one inoculum, thus representing biological 
replicates, and with frequent sampling over 211 days. 
We demonstrated that shortening the HRT from 8 to 
2 days improved C6/C8 productivity and caused spe-
cific shifts in the microbial community in both reac-
tors independently of the temporal scheme applied for 

Fig. 6  Genetic potential of metagenome-assembled genomes (MAGs) with the same taxonomy as HRT bioindicators driving the catabolism of 
xylan and lactate to n-caproate and n-caprylate. These catabolic steps were categorised into four main functions of the anaerobic mixed culture 
fermentation. a Hydrolysis of xylan. b Xylose fermentation producing acetate and lactate. c Butyrate formation from lactate and acetate. d Chain 
elongation with lactate as electron donor producing n-butyrate, n-caproate and n-caprylate. Numbers represent the 18 different MAGs with 
similar phylogenies as the HRT bioindicators at the genus level (details in Table 1). The enzyme abbreviations are provided in red letters next to 
the pathways (solid lines). Dashed lines represent multi-enzyme reactions between the two indicated molecules. In (d), “cycle” refers to the reverse 
β-oxidation cycle. The complete metabolic pathways are depicted in Additional file 1: Fig. S12. un., unclassified; XL, xylanase (EC 3.2.1.8); XylT, xylose 
transporter (EC 7.5.2.10, EC 7.5.2.13); LacP, lactate permease (TC 2.A.14); CoAT, butyryl-CoA:acetate CoA-transferase (EC 2.8.3.-); PTB, phosphate 
butyryltransferase (EC 2.3.1.19); BUK, butyrate kinase (EC 2.7.2.7); ACT, acyl-CoA thioesterase (EC 3.1.2.20)
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HRT reduction (i.e., gradual decrease vs. fast transi-
tion mode). As we had stable biomass concentrations 
and detected certain species at all times, we can make 
sure that these species were growing in each bioreac-
tor since otherwise they would have been washed out 
from the reactor microbiome. Using multivariate analy-
sis, we demonstrated that the microbial communities 
established at 8 days HRT were different from those at 
2 days HRT. These analyses also showed that the micro-
bial communities sampled from the two reactors at the 
corresponding HRT regime were not significantly dif-
ferent (PERMANOVA, P < 0.05). Commonly only two 
lab-scale reactors are run in parallel for long-term 
experiments with complex reactor microbiomes [35, 
37–40]. In contrast to natural ecosystems with their 
spatial and temporal heterogeneities and uncontrolla-
ble environmental factors, bioreactors represent highly 
controlled model ecosystems that can be sampled at 
high frequency over long experimental periods, thereby 
accounting for stochastic effects despite the compara-
bly low number of biological replicates. The obtained 

time series data are robust and have been used, for 
instance, to explore pH effects on the CE process [41] 
and to unravel long-term successional patterns of com-
munity assembly in anaerobic processes [42].

Evaluation of the machine learning approach
Machine learning methods can simultaneously incorpo-
rate the relative abundances of multiple ASVs and their 
context-dependency, surpassing traditional statistical 
approaches that consider each ASV in isolation (e.g., the 
empirical Bayes moderated t-statistics) [43]. Multivariate 
analysis has been shown to enable superior performance 
compared to individual analysis in the context of sensi-
tivity, specificity and robustness, as it considers potential 
synergies between the features [44]. Therefore, we used 
a machine learning approach based on the retrieved 16S 
rRNA ASVs in two steps of the study: to identify poten-
tial bioindicators of HRT and to create predictive models 
of n-caproate and n-caprylate productivities.

To identify potential bioindicators, it is necessary to 
assess the value of the features from the microbiome in 

Fig. 7  Phylogenetic tree of the recovered metagenome-assembled genomes (MAGs). a, b A phylogenomic tree based on mash distances showing 
the MAGs taxonomy determined by GTDB-Tk at phylum (a) and family (b) levels. A total of 108 MAGs were recovered and differentiated into 29 
species based on the ANI values. We defined the representative MAG for each species as that showing high quality. Only the representative MAG 
for each species is depicted in the tree. The ENA accession numbers of the representative MAGs are shown in parentheses. MAGs with similar 
phylogenies as HRT bioindicators are indicated by a star
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an unbiased way—identifying not only their statisti-
cal significance but also their prediction accuracy on 
independent samples [45]. Consequently, to increase 
the generality of our approach and to reduce any poten-
tial bias present in the samples, we systematically used 
samples from one bioreactor for training the machine 
learning models while using the samples from the other 
bioreactor for testing the model. On the other hand, 
deploying a machine learning solution is not trivial. To 
avoid over-optimistic results, it is important to consider 

the distribution and format of the training data and  the 
intrinsic differences of the algorithms themselves [46].

When searching for the optimal manner of dealing 
with our data, we faced two potential problems: our data-
set class distribution is imbalanced concerning the HRT 
classes (40 samples from 2 days HRT and 14 samples 
from 8 days HRT), and the total number of samples we 
have, which is 54, may be limiting to train a robust model. 
Most machine learning algorithms evaluate themselves 
during the learning process by comparing the predicted 
target with the original labeled sample. This creates a 

Table 1  Summary of metagenome-assembled genomes (MAGs) with the same taxonomy as HRT bioindicators

Taxonomy refers to the GTDB (Genome Taxonomy Database) phylogenomic classification. ASVs in bold represent the four HRT bioindicators irrespective of time. 
Sequence datasets of genomes in red letters were taken from the databases of NCBI and EzBioCloud. These genomes (in red) were used to affiliate the MAGs of 
Syntrophococcus, Clostridium IV and Clostridium sensu stricto, since their genomes are not available in GTDB. See details of MAGs in Additional file 3: Dataset S1. ASV 
amplicon sequencing variant
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bias in the algorithms towards the majority target [47]. 
In addition, training models with small datasets may cre-
ate overfitted models that are overly sensitive to outliers 
and noise. In this work, we first tested the separability 
of the two classes (HRT of 2 days and HRT of 8 days) by 
empirically testing several machine learning algorithms 
to differentiate those two classes using the samples’ ASV 
composition. As shown in Additional file  2, most algo-
rithms were able to differentiate our targets. This analy-
sis indicates that the features (ASVs) can potentially 
describe the complexity of our problem by characterizing 
the different communities at the two HRTs. We also tack-
led the imbalance and limited samples in our data by pre-
processing our dataset to generate new samples using 
SMOTE. To evaluate the generality of our model, we sys-
tematically used samples from one bioreactor for train-
ing the machine learning models while using the samples 
from the other bioreactor for testing.

Finally, we also integrated a validation strategy into 
our machine learning pipeline. Validation is one of the 
most important techniques when creating a generalized 
model since it estimates the stability of the model when 
dealing with new data. The validation approach we used 
is the k-fold cross-validation. The general idea of using 
k-fold cross-validation was to train our model with a 
selected group of samples from our data and validate it 
with the remaining samples, rotate the training and vali-
dation groups k times until we used all samples to train a 
model, and all samples to validate a trained model. This 
approach provides much more confidence in the results 
by letting us use all the data to train different models [48].

Initially, we wanted to determine potential HRT bioin-
dicators. Therefore, the initial step of our machine learn-
ing pipeline was to heuristically try several different 
classification algorithms to determine which of them can 
better differentiate 2 days HRT and 8 days HRT. To do 
so, we used the mAML pipeline to create classification 
models using several tree-based and non-tree-based clas-
sifiers systematically. Most of the algorithms had more 
than 90% classification accuracy. This indicates that the 
microbiome composition of 2 days HRT and 8 days HRT 
should be considerably different, and thus directly divis-
ible. To select an algorithm, however, we also considered 
the ability of the algorithm to rank feature relevance, 
since we wanted to select the most important ASVs to 
differentiate the target HRT. Random forest has been 
shown to run efficiently and accurately on high-dimen-
sional datasets with multi-features by constructing an 
ensemble of decision trees [49]. Further, it avoids over-
fitting by integrating out-of-bag estimates [49]. Finally, 
other studies that used 16S rRNA sequencing data in 
machine learning solutions also reported random forest 
to show good prediction performance [43, 50, 51]. For 

these reasons, we selected the random forest algorithm 
to extract HRT bioindicators.

Once we selected the potential HRT bioindicators, 
we developed regression models to predict n-caproate 
and n-caprylate productivities. Our machine learning 
solution for creating the regression models attempts 
to consider all the potential problems mentioned (i.e., 
selecting an adequate algorithm, dealing with an imbal-
anced dataset and potentially insufficient number of 
samples, avoiding overfitting and increasing the gener-
ality of the model). We evaluated three different regres-
sion algorithms with different biases: linear regression, 
support vector machine and random forest regression 
algorithm. In all cases, we balanced our dataset and 
increased the number of samples using the SMOTE. Box-
plots were created to interpret the results of the 5-fold 
cross-validation visually.

Subsequently, we compared the results from the mod-
els created with the original and balanced datasets. 
Oversampling techniques of any kind can introduce bias 
to the data and create overfitted models. SMOTE tries 
to reduce oversampling bias by generating similar but 
not equal samples. Ideally, collecting more real samples 
should solve this problem in future studies. For instance, 
in Fig. S5, one can see that linear model regression 
caused a drastic reduction in RMSE when comparing 
S5e (trained with imbalanced dataset) and S5f (trained 
with balanced dataset). This indicates that linear model 
regression could not intrinsically deal with the imbalance 
in our dataset, and the model created using the balanced 
dataset may have been overfitted. Although not as dras-
tic as the linear model, the other two tested regression 
algorithms (SVM with radial kernel and random forest) 
also reduced their RMSE when trained with the SMOTE 
datasets. This reduction could be attributed to the bal-
ancing method that did not introduce much variance to 
the dataset since the new samples are slightly different 
from the original ones. However, random forest showed 
consistently good predictive performance. Hence, this 
may indicate that random forest for regression can nat-
urally deal better with our imbalanced dataset. Conse-
quently, we decided to use random forest for regression 
and our original data samples distribution to create our 
final prediction models. It is also relevant to mention that 
we trained the prediction models with samples from one 
bioreactor and tested with the other, thereby reducing 
the risk of overfitting.

However, random forest is not the only machine 
learning algorithm used for predictive analytics in 
microbiome studies. For example, with an integra-
tion of the phylogenetic tree information into the 
predictive framework, the recently proposed phylog-
eny-regularised sparse generalized linear model [52] 
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and regression model [53] showed superior prediction 
power in real microbiome dataset applications. Using 
human gut microbiome data for continuous age predic-
tion, the so-called glmmTree model achieved the best 
performance as indicated by the highest R2 of 70% and 
the lowest predicted mean square error of a median 
value 1.3, with a 5-fold cross-validation being applied 
[52]. The random forest algorithm used in this study 
achieved results comparable to the glmmTree model 
with R2 over 80%.

Function of bioindicator species in chain elongation
Mining the functional potential of MAGs affiliated 
to bioindicators may indicate key functions of these 
species in the CE process. In particular, the MAGs of 
the lactate-based CE species such as Clostridium IV 
revealed all genes necessary for lactate oxidation and 
CE by reverse β-oxidation. To validate this hypoth-
esis, we also annotated the genome of the chain-elon-
gating Ruminococcaceae bacterium CPB6 affiliated 
to Clostridium IV [28], which contains complete gene 
sets encoding enzyme complexes for converting lactate 
to C6. Interestingly, our results revealed novel species 
with the genetic potential for chain elongation. Our 
results may guide other researchers studying CE to 
characterize novel chain-elongating bacteria in previ-
ously reported CE microbiomes.

Here, we used metagenomics to unravel the function 
of key species in CE that were inferred from 16S rRNA 
sequencing data. Details of the whole genome sequenc-
ing can be found in the section “Metagenomic analysis” 
(“Methods” section). This functional analysis is more rea-
sonable than inferring the function of species based on 
the 16S rRNA sequencing data, but the genetic potential 
alone does not guarantee that the respective metabolic 
process is performed [54]. Therefore, follow-up stud-
ies involving multi-omics are necessary to verify if the 
genetic potential found in the MAGs corresponds with 
active pathways. Besides multi-omics experiments, the 
novel genetic information related to the CE process could 
be validated in wet-lab experiments using defined mixed 
cultures of isolated strains representing the bioindicator 
species [55]. By constructing synthetic microbial consor-
tia with different combinations of those representative 
bioindicator species and monitoring their growth and 
metabolic behavior under controlled conditions, mecha-
nistic and metabolic modeling could be used to verify the 
ability of our machine learning framework to predict eco-
physiological functions from 16S rRNA sequencing data.

Engineering microbial communities for bioprocesses 
with distributed pathways
In engineered and natural ecosystems, phylogenetic 
diversity can be linked to ecosystem processes in which 
microbial communities perform key functions [56]. The 
machine learning approach used in the current study 
enabled the quantitative prediction of community func-
tioning (i.e., CE) in the anaerobic bioreactor system 
(Fig.  8). Converting xylan and lactate to medium-chain 
carboxylates is a complex metabolic process consisting 
of mainly four functions; i.e., xylan hydrolysis, xylose fer-
mentation, C4 formation from lactate and acetate and 
CE with lactate producing C4, C6 and C8, with more 
than 30 enzymes being involved. We showed that alter-
native pathways can be used for this complex conversion 
(Additional file 1: Fig. S12). Because of this complexity, it 
is likely that the observed increase in C6/C8 productivity 
after shortening HRT from 8 to 2 days was not driven by 
a single microorganism but by the joint effort of multi-
ple species within our bioreactors. However, not all spe-
cies in the bioreactor were directly involved in CE. Our 
feature selection approach helped us identify the species 
linked to metabolic pathways potentially involved in CE. 
This was possible because we included quantitative meta-
data such as time-series data of substrate and product 
concentrations, which facilitated to filter species linked 
to the CE process. A similar analysis identified key spe-
cies that could predict the overall quality of soils [25]. In 
the latter study, the authors showed that using the soil 
bacterial community indicators associated with metadata 
of soil physicochemical variables facilitated to predict the 
soil quality with 50–95% accuracy [25].

We also provided new biological insights into the 
reactor microbiomes of lactate-based CE. The impor-
tance of in  situ lactate formation in the lactate-based 
CE process has been emphasized by several studies 
[30–35]. Our results indicate that species of the gen-
era Lactobacillus and Olsenella are potential xylose 
degraders but Lactobacillus species  cannot utilize the 
polysaccharide xylan due to the lack of genes encoding 
xylanases. This result indicates different functional roles 
of lactic acid bacteria in the degradation of biomass 
residues containing hemicellulose, which was reported 
to be more degradable than cellulose during acidogenic 
fermentation of maize silage [57]. These new insights 
into the microbial ecology of the CE process may open 
doors for further valorisation of carbohydrate-rich 
waste streams. For example, bioaugmentation of xylan-
hydrolysing lactic acid bacteria such as Olsenella spe-
cies in CE communities may optimize the breakdown 
of hemicellulosic compounds. In addition, we demon-
strated that C4 is not only produced by CE of acetate 
but also from xylose by butyric acid fermentation [27], 
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which competes with CE in the recovery of carbon 
from sugars. This xylose fermentation to C4 was also 
described as a  competing process in other CE studies 
[10, 58]. Currently, it is still a challenge to steer the CE 
community functioning to only medium-chain car-
boxylates in the mixed culture fermentation, but the 
direction of creating synthetic microbial consortia with 
modularity (e.g., spatial niches) could be a wise option 

to mediate a multi-step bioprocess and to utilize meta-
bolic diversity in any single reactor system [59].

In our engineered ecosystems with well-controlled 
conditions (temperature, pH and no immigration of 
other microbes; Fig. 8a), HRT was the most influencing 
factor controlling community assembly (Fig.  8b). How-
ever, we cannot exclude the impact of other determin-
istic factors like microbial interactions within temporal 

Fig. 8  Overview of the quantitative prediction of process performance in the anaerobic bioreactor system. a Anaerobic mixed culture fermentation 
of lactate and xylan for the production of n-caproate (C6) and n-caprylate (C8) by lactate-based chain elongation. Based on the recovery of 
metagenome-assembled genomes, the left panel shows the bioindicators capable of performing key steps of the fermentation. b Reducing the 
hydraulic retention time (HRT) as an operation-based strategy to optimise the process performance and to manage the reactor microbiota towards 
desired functions. Shortening the HRT from 8 to 2 days enhanced productivities of C4, C6 and C8. The enriched reactor microbiota comprised 
functional groups involved in xylan hydrolysis, xylose fermentation and chain elongation with lactate, presented by a co-occurrence network of 
environmental factors (controlled conditions with only reducing the HRT), ecosystem functioning (process performance) and microbial community. 
The full network is shown in Additional file 1: Fig. S13. c Predicting performance of ecosystem processes with random forest analysis. We developed 
a random forest two-step workflow to predict the HRT phases and carboxylate production quantitatively by using relative abundance data of the 
16S rRNA-derived species (ASVs, amplicon sequence variants)
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patterns, particularly for such a long-term reactor experi-
ment. When the random forest regression models took 
time instead of HRT into account, the results indicated 
that the non-HRT bioindicators might result from the 
intrinsic community dynamics alone. Thus, prediction 
results of the HRT bioindicators can be biased by these 
autoregressive data present in time series. Even though 
the HRT bioindicators irrespective of time seem to be 
key species for the increase in C6/C8 productivity caused 
by HRT decrease, we cannot ignore the contribution of 
the non-HRT bioindicators to community assembly and 
functioning, particularly with functional redundancy 
shown in the main functions of the CE process. There-
fore, the  effects of compositional stochasticity on com-
munity assembly also need to be considered [60, 61]. 
Further studies on these ecological principles will help 
manage reactor microbiota towards beneficial traits, such 
as high specificities for C6/C8 production.

Conclusions
The continuous reactor systems with enriched communi-
ties facilitated the selection of reactor microbiomes with 
desired CE functions (i.e., high C6 and C8 productivities). 
We demonstrated that 16S rRNA amplicon sequencing 
data could be used to predict CE process performance 
quantitatively (> 90% accuracy). The described machine 
learning framework (Fig.  8c) may be suitable for other 
ecosystem processes and more complex communities. 
For that, it would be necessary to design experiments 
with (i) sufficient temporal and/or spatial resolution, 
(ii) parallel sampling for amplicon sequencing data and 
metadata from desired ecosystem processes and (iii) cor-
relation of phylogenetic diversity with the ecosystem pro-
cesses. Our approach was based on phylogenetic diversity 
(relative ASV abundances) that, in some ecosystems, may 
correlate with ecosystem processes where microbiota 
perform key functions. Due to the use of unbalanced 
datasets, the high dimensionality and more direct link 
with different ecosystem processes found in omics data, 
our general methodology can be adapted to other data 
types, including functional genes, transcripts, proteins or 
metabolites. Our approach opens new doors for predic-
tion and hypothesis testing in microbiome research. Fur-
ther studies are needed to reveal which data types reflect 
different ecosystem processes and communities with dif-
ferent levels of complexity.

Methods
Reactor operation and monitoring of process parameters 
and community composition
The inoculum was initially taken from a continuous lab-
scale bioreactor that produced C6 and C8 by anaerobic 
fermentation of lactate-rich corn silage [11]. Enrichment 

was performed in a reactor that was daily fed with 
mineral medium (pH 5.5; Additional file  1: Table  S4) 
containing water-soluble xylan (more than 95% xylo-
oligosaccharides, from corncob; Roth, Karlsruhe, Ger-
many) and lactic acid (85%, FCC grade; Sigma Aldrich, 
St. Louis, USA) as defined carbon sources and produced 
C4, C6 and C8 over 150 days [10]. For the present study, 
two 1-L bioreactors (A and B; BIOSTAT® A plus, Sarto-
rius AG, Göttingen, Germany) were filled up with 0.5 L 
of the enriched culture. Both bioreactors were daily fed 
with 0.125 L medium containing 1.47 g lactic acid and 
1.25 g xylan, without withdrawing effluent. After 4 days, 
the contents of both bioreactors were mixed by pumping 
them three times from bioreactor A to B and back while 
keeping anoxic conditions. Eventually, they were equally 
distributed to both bioreactors, which is considered the 
starting point (day 0) of the experiment.

We employed semi-continuous stirred tank reactors for 
anaerobic fermentation, which were operated at 38 ± 1 °C 
and constantly stirred at 150 rpm. The pH of the reactor 
broth was automatically controlled at 5.5 by addition of 1 
M NaOH. For each bioreactor, the produced gas was col-
lected in a coated aluminium foil bag that also served for 
compensating underpressure in the reactor system. The 
bag was connected after a MilliGascounter® (MGC-1; Rit-
ter, Bochum, Germany) that measured on-line the volume 
of the produced gas. A gas-sample septum was placed in 
the gas pipe of each bioreactor.

In the beginning, both bioreactors were operated as 
duplicates with an equal HRT of 8 days. For daily feed-
ing, 1.47 g lactic acid and 1.25 g xylan were supplied in 
mineral medium. After 51 days, we gradually decreased 
the HRT of bioreactor A from 8 to 6 days, and further to 
4 days and 2 days while  the operation of reactor B was 
continued at HRT of 8 days as a control as shown in 
Additional file 1: Table S5. Next, we shortened the HRT 
of bioreactor B from 8 to 2 days in a fast transition mode 
and with the same substrate load as in bioreactor A, in 
order to reproduce the HRT transition in the second 
reactor. Considering the effect of time on community 
assembly, we conducted unequal HRT changes in the 
two bioreactors and aimed to delineate the model predic-
tion strength with the two different datasets. Finally, both 
bioreactors were operated in parallel at an HRT of 2 days 
until day 211.

Gas samples were taken through the septum twice per 
week. Samples for measuring optical density (OD) and 
for DNA extraction were collected twice per week from 
the reactor effluent. Concentrations of xylan, carboxy-
lates and alcohols were measured in the effluent super-
natants [10]. In total, effluent samples were collected on 
59 time points for each bioreactor. At the beginning and 
the end of the experiment, pelleted biomass from the 
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effluent was used to determine the cell dry mass as previ-
ously described [10]. For microbial community analysis, 
pelleted cells from 2 mL effluent were washed with 100 
mM Tris-HCl pH 8.5 and stored at − 20 °C until DNA 
extraction.

Analytical methods
Daily produced gas volume was monitored with the 
MGC-1 and normalized to standard pressure and tem-
perature [30]. Gas composition (H2, CO2, N2, O2 and 
CH4) was determined by gas chromatography in tripli-
cate [62]. Concentrations of carboxylates and alcohols 
were analyzed in triplicate by gas chromatography [10]. 
The concentration of xylan was measured by a modified 
dinitrosalicylic acid reagent method [10]. Cell mass con-
centration was calculated from OD values that were cor-
related with the cell dry mass [10]. The calculated mean 
correlation coefficients were 1 OD600 = 0.548 g L−1 for 
bioreactor A and 1 OD600 = 0.537 g L−1 for bioreactor B.

Microbial community analysis
Total DNA was isolated from frozen cell pellets sam-
pled twice per week using the NucleoSpin® Microbial 
DNA Kit (Macherey-Nagel, Düren, Germany). Meth-
ods for DNA quantification and quality control were as 
described previously [63]. For high-throughput ampli-
con sequencing, V3–V4 regions of the 16S rRNA genes 
were PCR-amplified using primers 341f and 785r [64]. 
Sequencing was performed on the Illumina Miseq plat-
form (Miseq Reagent Kit v3; 2 × 300 bp). A total of 
12,168,404 sequences ranging from 57,612 to 389,963 
pairs of reads per sample (mean: 135,205; median: 
122,367) were obtained.

The demultiplexed sequence data were processed with 
the QIIME 2 v2019.7 pipeline [65] using the DADA2 
plugin [66]. The DADA2 parameters were set as fol-
lows: trim-left-f 0, trim-left-r 0, trunc-len-f 270, trunc-
len-r 230, max-ee 2 and chimera-method consensus. 
A total of 4,194,700 sequences ranging from 13,518 to 
138,498 reads per sample were retained, with a mean 
of 46,608 reads per sample. The generated feature table 
indicates the frequency of each ASV clustered at 100% 
identity. Taxonomic assignment was done with a naïve 
Bayes classifier trained on 16S rRNA gene sequences of 
the database MiDAS 2.1 [67] and curated using the RDP 
Classifier 2.2 with a confidence threshold of 80% [68]. 
For downstream analyses, ASVs of all samples were rar-
efied to a sequencing depth of 13,518 reads (rarefaction 
curve reached the plateau, Additional file 1: Fig. S16). We 
obtained a total of 71 unique ASVs in 90 samples (ASV 
table and taxonomy table in Additional file 8).

Alpha diversity based on rarefied ASV data was evalu-
ated by the observed ASV counts and the Shannon index 

[69], which were determined using the R package phy-
loseq v1.30.0 [70]. Dissimilarities in bacterial community 
composition (beta-diversity) were calculated using Bray-
Curtis distance [71] based on rarefied ASV abundances 
and visualized as nonmetric multidimensional scal-
ing (NMDS) plots. Statistical analyses of beta-diversity 
results were performed using permutational multivariate 
analysis of variance (PERMANOVA) [72] in the R pack-
age “vegan” (v2.5.6, “adonis” function, Monto-Carlo test 
with 1000 permutations); P values were adjusted for mul-
tiple comparisons using the false discovery rate (FDR) 
method [73].

Network analysis
The co-occurrence network analysis was performed 
using the method described by Ju et al. [74]. Briefly, we 
constructed a correlation matrix by computing possible 
pairwise Spearman’s rank correlations using the rarefied 
ASV abundances and abiotic parameters (HRT; concen-
trations of C4, C6, C8 and lactate; productivities and 
yields of C4, C6 and C8). Correlation coefficients below 
− 0.7 or above 0.7 and adjusted P-values (FDR method) 
lower than 0.05 were considered statistically robust. Net-
work visualization and topological feature analysis were 
conducted in Gephi (v0.9.2) [75].

16S rRNA phylogenetic analysis
The 16S rRNA gene sequences of ASVs were aligned 
using the SINA alignment algorithm [76] via the SILVA 
web interface [77]. We additionally used SINA to search 
and classify the sequences with the least common ances-
tor method based on the SILVA taxonomy. For each 
query sequence, the minimum identity was set to 0.95 
and the five nearest neighbors were considered. The tree 
was reconstructed based on the aligned sequences and 
their neighbors, with RAxML using the GTR​CAT​ model 
of evolution. Later only ASV species of this study were 
kept in the generated tree for easier viewing. The tree was 
visualized using iTOL [78].

Metagenomic analysis
Six samples from the previous enrichment experiment 
[10] were selected for whole-genome sequencing, which 
was performed by StarSEQ GmbH (Mainz, Germany) 
using the Illumina NextSeq 500 system (NEBNext Ultra II 
FS DNA library prep kit; 2 × 150 bp) with at a minimum 
of 20 million reads per library generated. Quality check 
and reads trimming were performed using metaWRAP 
(v0.7, raw read QC module) [79] and TrimGalore (v0.4.3) 
[80]. Reads of human origin were discriminated from 
microbial reads using BMTagger (v3.101) [81]. All adapt-
ers were removed and the resulting reads were assembled 
using metaSPAdes (v3.11.1) [82]. Paired-end reads were 
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aligned back to the assembly using BWA (v0.7.15, mem 
algorithm) [83]. Binning of assembled contigs was per-
formed using the metaWRAP modules metaBAT (2.12.1) 
[84], MaxBin (2.2.4) [85] and CONCOCT (1.0.0) [86]. 
The metaWRAP-Bin_refinement module was applied to 
separate the overlaps between two bins. Quality of MAGs 
was checked using CheckM (v1.0.7) [87]. MAGs were 
classified in high or medium quality regarding complete-
ness, contamination, quality score (completeness − 5 × 
contamination) and strain heterogeneity [88]. The follow-
ing thresholds were used for high quality: quality score > 
50, completeness > 80, contamination < 5 and strain het-
erogeneity < 50; and for medium quality: quality score > 
50, completeness > 50 and contamination < 10. One bin 
with lower quality was removed from the analysis. The 
taxonomy was assigned using GTDB-Tk (v0.3.2) [89]. 
Genome metrics were calculated with the statswrapper 
tool in the BBTools suite [90]. A phylogenomic tree based 
on Mash distances was generated with Mashtree (V1.1.2) 
[91] and visualized in iTOL [78]. Miscellaneous visuali-
zations of the dataset metrics were performed in R with 
the packages ggplot2 (v3.3.0) and DataExplorer (v0.8.1). 
Species differentiation was performed using fastANI [92] 
and aniSplitter.R (http://​github.​com/​felip​borim​789/​aniSp​
litter/). Genomes were annotated with Prokka (v1.14.6) 
[93]. Functional annotation of genes relevant to xylan 
hydrolysis, xylose fermentation and chain elongation was 
curated using Swiss-Prot, COG and GenBank [94–96]. 
Default settings were chosen for all tools unless other-
wise specified.

Determination of bioindicators of HRT changes
To select the machine learning algorithm for differenti-
ating the HRT phases of 8 days and 2 days, the mAML 
automated machine learning pipeline [26] was used to 
test several different algorithms on our microbiome 
data  heuristically. We selected the algorithm with the 
highest prediction accuracy to  rank feature relevance. 
ASV relative abundances were used as features to train 
and test the different classifiers included in the mAML 
pipeline. After the initial algorithm selection process, the 
random forest algorithm (randomForest R package, v4.6-
14) [97] was chosen to determine the HRT bioindicators 
due to its high accuracy and ability to rank feature rel-
evance. Considering how we replicated the HRT chang-
ing mode in both bioreactors (Additional file 1: Table S5), 
the whole operation period was divided into four sam-
pling intervals: 0–50 days, 51–100 days, 101–140 days 
and 141–211 days. Based on the results of community 
analysis, we chose the ASV data of both bioreactors in 
the sampling intervals of 0–50 days and 141–211 days to 
determine the HRT bioindicators, and we used data of all 
samples in the four HRT phases as controls. To delineate 

the model prediction strength, we trained the classifier 
with ASV data of one bioreactor and tested in the other 
bioreactor and vice versa. For random forest classifica-
tion analysis, importance of the different features (ASVs) 
was measured by the Gini index (mean decrease in Gini, 
default in randomForest R package, where larger values 
indicate a variable to be more important for accurate 
classification [98]).

The random forest classifier was trained on the training 
set, with 2000 trees and 40 variables (with the lowest out-
of-bag estimated error rates achieved) being selected ran-
domly for each tree. Explained variance (% Var. explained 
in R) was used to measure the model performance on the 
training set [97]. We predicted the accuracy by measur-
ing how well the features can classify the HRT phases on 
the test set [98]. We first computed the feature impor-
tance of all 71 ASVs. Then in each step, the ASVs having 
the smallest importance were eliminated and a new for-
est was built with the remaining ASVs. For both biore-
actors, the features were selected when their Gini scores 
were higher than 1% of the sum of the Gini scores of all 
ASVs (Additional file  9). Feature selection based on the 
random forest classifier with its associated Gini index 
has shown abilities to identify optimal feature subsets in 
high-dimensional data [99]. Finally, we selected the 15 
top-ranked ASVs leading to the model of lowest  error 
rate for classifying the HRT phases of 8 days and 2 days. 
In each bioreactor, the 15 ASVs that best discriminated 
between HRT phases were referred to as A-HRT bioin-
dicators or B-HRT bioindicators (bioreactors A and B, 
respectively). ASVs common to both sets were defined as 
HRT bioindicators (workflow of random forest classifica-
tion in Additional file 1: Fig. S17).

Quantitative predictions based on HRT and non‑HRT 
bioindicators
The data of bioreactor A and bioreactor B were used for 
training and testing the regression models independently. 
Due to the unbalanced ratio of HRT 8 days (14 samples 
with 26%) and HRT 2 days (40 samples with 74%), we 
also created models using balanced training datasets. The 
artificially balanced datasets were created based on the 
HRT class information and using SMOTE implemented 
in the R package UBL (v0.0.6) [100]. The balanced data-
sets had 52 and 48 samples for HRT 2 days and 8 days, 
respectively. For the process parameters to be predicted, 
four training datasets were considered: only with samples 
from bioreactor A, only with samples from bioreactor B 
and the balanced version of these two datasets. Initially, 
three algorithms including linear regression, support 
vector machine with radial kernel and random forest for 
regression (implemented in R package ranger, v0.12.1) 
[101] were employed as a heuristic approach to evaluate 
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their predictive performance based on the metric root 
mean square error. The training and benchmarking pro-
cesses were performed using the R package mlr (v2.18.0) 
[102]. All algorithms were validated using a 5-fold cross-
validation approach. We selected the algorithm present-
ing better overall prediction performance and trained it 
with another round of 5-fold cross-validation. After, the 
random forest regression analysis was used to predict the 
process parameters specified as concentrations of lac-
tate, C4, C6 and C8, and productivities as well as yields 
of C4, C6 and C8 (experiment summary and metadata 
table in Additional file 10). Alpha diversity metrics (i.e., 
observed ASV counts) was also considered a parameter 
in the quantitative prediction. Here, the relevance of 
the different ASVs to the prediction was determined by 
the  residual sum of squares (IncNodePurity, default in 
randomForest) for the regressions. Explained variance (% 
Var. explained in R) was used to measure the model per-
formance on the training set [97]. We predicted the accu-
racy by measuring how well the features can explain the 
variance of these process parameters on the test set [98]. 
The hyperparameters of random forest trained models 
(e.g., number of trees) were tuned heuristically during 
cross-validation.

We performed the quantitative prediction by applying a 
two-step regression analysis with 5-fold cross-validation 
(workflow in Additional file 1: Fig. S18). First, HRT bioin-
dicators were used to predict the data of different process 
parameters in the sampling intervals of 0–50 days and 
141–211 days. Data of all samples in the four HRT phases 
were considered controls. Relative abundance dataset of 
bioreactor A was used as training set and that of bioreac-
tor B was used as test set and vice versa. Next, consider-
ing community assembly caused by time, we determined 
the ASVs (non-HRT bioindicators) that could predict the 
numeric values of each process parameter, using data of 
samples in the intervals of 0–50 days and 141–211 days. 
For each process parameter, we started with computing 
the feature importance of all ASVs and further selected 
the 15 top-rated ASVs as the bioindicators of this non-
HRT parameter. Datasets of bioreactors A and B were 
independently used for training and testing. As controls, 
we used the non-HRT bioindicators of each parameter 
to predict the corresponding data of all samples in the 
four HRT phases. The final set of ASVs presented in HRT 
bioindicators and not in non-HRT bioindicators were 
considered HRT bioindicators irrespective of time.

Evaluation of prediction accuracy
When in both training sets the HRT bioindicators and 
non-HRT bioindicators explained more than 80% of 
the variance in a process parameter, we proceeded only 
with those parameters. To compare the predicted and 

measured values for these process parameters, we con-
sidered the following performance metrics for reflect-
ing the error of the model in predicting consecutive 
data: RRMSE, cutoff < 10%; R squared, slope and inter-
cept of the least squares line of best fit. The final values 
of RRMSE were averaged among the 100 random forest 
replicates, with four ASVs for HRT bioindicators and five 
for non-HRT bioindicators randomly sampled at each 
replicate.
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