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Abstract

Background: Nitrogen-fixing prokaryotes (diazotrophs) contribute substantially to nitrogen input in mangrove
sediments, and their structure and nitrogen fixation rate (NFR) are significantly controlled by environmental
conditions. Despite the well-known studies on diazotrophs in surficial sediments, the diversity, structure, and
ecological functions of diazotrophic communities along environmental gradients of mangrove sediment across
different depths are largely unknown. Here, we investigated how biological nitrogen fixation varied with the depth
of mangrove sediments from the perspectives of both NFR and diazotrophic communities.

Results: Through acetylene reduction assay, nifH gene amplicon and metagenomic sequencing, we found that the
NFR increased but the diversity of diazotrophic communities decreased with the depth of mangrove sediments.
The structure of diazotrophic communities at different depths was largely driven by salinity and exhibited a clear
divergence at the partitioning depth of 50 cm. Among diazotrophic genera correlated with NFR, Agrobacterium and
Azotobacter were specifically enriched at 50–100 cm sediments, while Anaeromyxobacter, Rubrivivax, Methylocystis,
Dickeya, and Methylomonas were more abundant at 0–50 cm. Consistent with the higher NFR, metagenomic
analysis demonstrated the elevated abundance of nitrogen fixation genes (nifH/D/K) in deep sediments, where
nitrification genes (amoA/B/C) and denitrification genes (nirK and norB) became less abundant. Three metagenome-
assembled genomes (MAGs) of diazotrophs from deep mangrove sediments indicated their facultatively anaerobic
and mixotrophic lifestyles as they contained genes for low-oxygen-dependent metabolism, hydrogenotrophic
respiration, carbon fixation, and pyruvate fermentation.

Conclusions: This study demonstrates the depth-dependent variability of biological nitrogen fixation in terms of
NFR and diazotrophic communities, which to a certain extent relieves the degree of nitrogen limitation in deep
mangrove sediments.
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Background
Mangroves are highly productive ecosystems with im-
mense ecological values towards shoreline protection,
climate mitigation, and carbon storage [1, 2]. Their high
productivity is greatly attributed to the high nitrogen-
fixing activity of diazotrophs, which contributes to 40–
60% of the total nitrogen required by mangrove ecosys-
tems [3]. However, due to tidal fluctuation and high de-
nitrification rates, mangrove ecosystems are considered
nitrogen-limited [4]. Being the main source of nitrogen
inputs in mangrove ecosystems, nitrogen fixation has
been demonstrated to primarily affect the nutrient status
of sediments [5, 6]. Therefore, as the rate-limiting step
of nitrogen cycling, nitrogen fixation is particularly im-
portant to alleviate the nitrogen limitation of mangrove
ecosystems [7, 8].
Diazotrophs are biological engines to fix atmospheric

nitrogen into mangrove ecosystems [9]. Early evidence
revealed a high rate of biological nitrogen-fixing activity
of diazotrophs in surficial mangrove sediments [10], and
a wide range of Proteobacteria was thought to be the
prevalent diazotrophic groups [11]. Since mangrove eco-
systems are rich in sulfur [12], specific diazotrophs are
expected in such tidal swamp ecosystems. For example,
some sulfate-reducing bacteria (i.e., Desulfobacteraceae,
Desulfovibrionaceae, and Desulfuromonadaceae) were
identified as diazotrophs in mangrove sediments, which
indicated their potential roles in the cycling of multiple
elements [11, 13]. However, such knowledge was almost
inferred from taxonomic information of diazotrophic
communities via either 16S rRNA or nifH gene amplicon
sequencing, and a robust evidence for the activity, diver-
sity, and versatile functions of diazotrophs is still missing
in mangrove ecosystems.
Our current understanding of diazotrophic community

diversity and structure in the mangrove ecosystems is
hitherto mainly limited to the surficial layers (i.e., 0–25
cm) of sediment, where the density of microorganisms is
high [2, 14]. Yet, little is known about diazotrophic com-
munities in deeper (>25 cm) mangrove sediments. In
fact, surficial and deep sediments have a substantial vari-
ation in environmental properties [15], which have been
reported to potentially lead to niche differentiation in
diazotrophic communities [16]. For example, the lower
oxygen concentration in deeper mangrove sediments
tended to facilitate the survival of most diazotrophs [17].
In the sediments with higher salinity, certain diazo-
trophic families (e.g., Alteromonadaceae and Halanaero-
biaceae) adapting to the higher extracellular osmotic
pressure accounted for a higher proportion of total dia-
zotrophs [18]. Similarly, in the sediments with lower
water content, the diazotrophic members resistant to the
decreased osmotic potential increased in abundance [19,
20]. These previous findings indicated that the depth-

dependent variability of environmental properties tended
to alter the diazotrophic community composition in
mangrove sediments. Nevertheless, the relative import-
ance of these physicochemical properties in determining
the in-depth profile of diazotrophic community structure
in mangrove sediments is still unknown.
A central assumption of the progressive nitrogen limi-

tation is that, without changes in exogenous nitrogen ex-
change in an ecosystem, increases in plant nitrogen
uptake require an enhanced soil nitrogen cycling rate
[21]. This indicates a competition between plant nitro-
gen acquisition and microbiome-mediated nitrogen
transformation processes [3, 22]. Nitrogen availability,
driven by the balance among various nitrogen trans-
formation processes, was thought to strongly regulate
the ecological functions in both terrestrial and aquatic
ecosystems [23, 24]. Being a critical connection between
land and ocean [25], mangroves are characterized by ni-
trogen limitation. However, how the biological nitrogen
fixation and its downstream processes in nitrogen cyc-
ling influence the degree of mangrove nitrogen limita-
tion is still a vacancy. To fill this gap, we investigated
the in-depth profile of biological nitrogen fixation and
its downstream processes of nitrogen cycling in man-
grove sediments, which is crucial for our better under-
standing of the prevalent nitrogen limitation across
wetlands.
In this study, we aimed to investigate how biological

nitrogen fixation varied with the depth of mangrove sed-
iments and identify the key factors affecting the in-depth
profile of diazotrophic communities. Through the acetyl-
ene reduction assay, nifH gene amplicon and metage-
nomic sequencing, we analyzed NFR, diazotrophic
communities, and their key functional genes in 100 cm
mangrove sediments, with an interval of 10-cm depth.
Besides, draft genomes of diazotrophs were constructed
to determine their potential metabolic pathways and
adaptation strategies. This study reveals the depth-
dependent variability of biological nitrogen fixation and
diazotrophic communities in mangrove sediments and
advances our understanding of nitrogen limitation
mechanisms in mangrove ecosystems.

Methods
Site description and sampling
The sampling site is located at the Qi’ao Mangrove Wet-
land Park (22° 26′ 12.28′′ N, 113° 38′ 26.12′′ E) of
Guangdong province, China (Additional file 2: Fig. S1),
with a mean annual temperature of 22.4°C and annual
precipitation of 1700–2200 mm. The irregular semidiur-
nal tides were on average 0.17 and −0.14 m of high and
low tide levels, respectively [26]. We collected these par-
tially air-exposed sediments from the dominant species,
Sonneratia apetala, in the Qi’ao Mangrove Wetland
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Park [26]. Three replicate sediment cores were collected
in August 2019 using a 1-m long PVC sampling column
after ebb. The sediment cores were sliced at 10-cm in-
tervals into 10 depths (0–10, 10–20, 20–30, 30–40, 40–
50, 50–60, 60–70, 70–80, 80–90, and 90–100 cm), yield-
ing a total of 30 samples. Sliced sediments were stored
in a portable cooler at 4°C and transported back to the
laboratory within 24 h. Each sample was then divided
into two sub-samples: one was stored at 4°C for physico-
chemical properties analysis, and the other was kept at
−80°C for DNA extraction.

Physicochemical properties analysis
NFR was measured by acetylene reduction assay [27].
Briefly, fresh sediment (10.0 g) was put into a 100-mL
serum vial. The vials were sealed with rubber stoppers,
and 10% of the headspace was replaced with pure and
fresh acetylene (C2H2) before they were incubated in
dark at 25°C. After incubation for 48 h, 200 μL head-
space gas was taken out to measure the concentration of
ethylene (C2H4) by gas chromatograph (HP7890B, Agi-
lent, USA) equipped with a flame ionization detector
and a HP-PLOT MoleSieve5A capillary column (30.0 m
× 530 μm × 50 μm) (Agilent, USA ), and He was used as
a carrier gas [28]. The detailed NFR calculation method
applied in this research is shown in Additional file 1.
Ammonia, nitrite, and nitrate were determined by a

multimode microplate reader (Varioskan LUX, Thermo
Scientific, USA) after extraction from a 2.0-g fresh sedi-
ment with 2 M KCl. Fully digestion method was used to
extract total irons, and AB-DTAP extraction method
was used to extract the available irons from a 0.5-g air-
dried sediment separately [29]. All trace elements were
determined by an inductively coupled plasma-optical
emission spectrometer (ICP-OES, Avio 500, Perkin
Elmer, Singapore). A sequential extraction protocol was
used for ferrous and ferric ions from a 0.5-g fresh sam-
ple [30], and iron content was measured by ICP-OES
(Avio 500, Perkin Elmer, Singapore). The water content
of sediment was measured by drying a 10.0-g fresh sedi-
ment at 105°C to a constant weight. Sediment pH and
salinity were measured with a 2.0-g dry sediment in 1:
2.5 (sediment/water) and 1:5 (sediment/water) suspen-
sion with a pH meter (SevenCompact210, Mettler-
Toledo, USA) and a salinity meter (EUTECH SALT6+,
Thermo Scientific, USA), respectively.

DNA extraction
DNA was extracted and purified with 5.0 g sediment by
a combined protocol of sodium dodecyl sulfate extrac-
tion method (that was modified by grinding and
freezing-thawing) [31] and Power Soil DNA Isolation Kit
(Mo Bio Laboratories, Carlsbad, California, USA). DNA
purity was checked by NanoDrop ND-2000

Spectrophotometer (Thermo Fisher Scientific, MA,
USA), and ratios of 260/280 and 260/230 were about 1.8
and above 1.7, respectively. DNA concentrations were
quantified by a fluorescent method (Qubit 4
Fluorometer, Thermo Scientific, USA).

PCR amplification of nifH genes and amplicon sequencing
The nifH gene was amplified using the specific primer
pair PolF (5′-TGCGAYCCSAARGCBGACTC-3′) and
PolR (5′-ATSGCCATCATYTCRCCGGA-3′) with an
expected fragment length of approximately 320 bp [32].
Both forward and reverse primers were tagged with an
Illumina adapter sequence, a primer pad, and a linker se-
quence. The reaction system for each sample was 50 μL,
including 25-μL Phusion High-Fidelity DNA Polymerase
(NEB, Inc., USA), 2-μL forward and reverse phasing pri-
mer, 5-μL DNA template, and 16 μL RNase-free Ultra-
pure water. The amplification was conducted in a BIO-
RAD T100™ thermal cycler (Bio-Rad Laboratory,
Hercules, USA) under the following conditions: initial
denaturation at 94°C for 5 min, followed by 30 cycles of
94°C for 30 s, 55°C for 30 s, and 72°C for 1 min, with a
final extension at 72°C for 10 min. PCR products were
then purified using AMPure XP Beads Kit (NEB, Inc.,
USA). Purified DNA was quantified by Quant-iT™
dsDNA HS Reagent (Thermo Fisher Scientific, Inc.,
USA) and diluted to a concentration of 2 nM before se-
quencing. Paired-end nifH amplicon sequencing was
performed using an Illumina Hiseq 2500 sequencer (Illu-
mina, Inc., CA, USA) at Personalbio Biotechnology Co.,
Ltd. (Shanghai, China).
The quality filtering and pre-processing of raw se-

quences were performed on Linux and Galaxy pipeline
(http://192.168.3.11:8080/). The primers were firstly
eliminated by Cutadapt [33]. The low-quality sequences
(quality score <20) were removed by Trimmomatic, and
then forward and reverse reads were combined using
FLASH [34]. Combined sequences of <285 bp and >350
bp were eliminated, and sequences with one or more
ambiguous base(s) (“N”) were also removed. The chi-
meras were identified and eliminated using UCHIME
[35]. FrameBot software was used to correct potential
frameshifts caused by sequencing errors [36], and only
DNA sequences that covered >30% of reference nifH
protein translations were retained for further analysis.
Operational taxonomic units (OTUs) were clustered at a
95% cutoff [37] of similarity level with protein reference
sequences by using Quantitative Insights into Microbial
Ecology (QIIME) implementation of UPARSE [38].
Taxonomic assignments for nifH OTUs were carried out
an 80% identity cutoff [39] by searching representative
sequences against reference nifH sequences with known
taxonomic information [40]. For further analysis, all
samples were randomly resampled to the smallest
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individual sample sequencing effort (23,224) as described
before [41].

Shotgun metagenomic sequencing and data analysis
For surficial (0–10 cm), middle (50–60 cm), and deep (90–
100 cm) sediment samples, 1 μg of DNA was used for meta-
genomic sequencing library preparation combined with
NEBNext® UltraTM DNA Library Prep Kit for Illumina
(NEB, USA) as recommended by the manufacturer. Index
codes were added to attribute sequences to each sample.
The samples were purified (AMPure XP system), and the li-
braries were checked using Agilent 2100 Bioanalyzer (Agilent
Technologies, CA) and quantified using real-time quantita-
tive PCR. After cluster generation was performed on a cBot
Cluster Generation System, paired-end reads (PE150) were
performed on the Illumina platform. Low-quality (quality
score ≤38, base N >10 bp, the overlap length between
adapter and reads >15 bp) paired-end reads were filtered.
The metagenomic assembly was performed using MEGA-
HIT (v1.2.9) at default mode [42]. For assembled metagen-
omes, MetaGeneMark (v.2.10) was used to predict open
reading frames (ORFs). A non-redundant gene catalog (Uni-
genes) was built using CD-HIT (v.4.5.8) to predict ORFs
[43]. Functional annotation was performed using DIA-
MOND combined with the Kyto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/pathway.
html) database (release 94.2), and the KOs (KEGG Orthol-
ogy) were divided into higher KEGG categories and KEGG
pathways. Gene abundances were normalized into tran-
scripts per million (TPM) counts. The TPM values could be
applied to metagenomes to remove the effects of total read
counts and gene lengths when comparing the abundances of
genes between samples [44].

Metagenomic binning and metagenome-assembled
genome (MAG) annotation
Genome assembly and binning were performed accord-
ing to the MetaWRAP pipeline [45]. The sequences were
assembled with MEGAHIT (v1.2.9; options: -mink 21
-maxk 141 -step 12) [42] to generate contigs. Genome
binning of assembled contigs was done using MetaBAT2
(v2.12.1) [46] and MaxBin2 (v2.2.7) [47], and the result-
ing bins were consolidated with the Bin_refinement
module. The consolidated bin sets were further im-
proved by the Reassemble_bins module to generate
MAGs. The quality of MAGs was evaluated with
CheckM (v1.0.5). MAGs were analyzed further if their
completeness was more than 50% and their contamina-
tions were below 10%. The abundance of each MAG was
expressed as genome copies per million reads and calcu-
lated with Salmon [48]. Taxonomic assignments of
MAGs were performed using the GTDB-Tk (v0.3.2)
[49]. Gene prediction for MAGs was performed using prod-
igal (v2.6.2, default settings), and the predicted genes were

further annotated using KAAS (KEGG Automatic Annota-
tion Server) [50]. Additionally, we utilized a custom HMME
R as well as the Pfam (release 33.1) and TIGRFAM databases
(release 15.0) to search for key metabolic marker genes using
hmmsearch and custom bit-score cutoffs [51].

Statistical analysis
Pairwise correlations among NFR, physicochemical char-
acteristics, depth, and diazotrophic community diversity
of all 30 samples were performed by linear regression ana-
lysis with GraphPad Prism (v7.0). Pearson’s correlation
analysis was performed to assess the relationships between
NFR and the relative abundances of diazotrophic genera
in SPSS 24.0 (SPSS Inc., USA). The other statistical ana-
lyses were conducted using vegan package (v2.5.6), and
ggplot2 package (v3.3.2) was utilized to visualize data in R
(v4.0.2). The structure of diazotrophic communities was
evaluated based on Bray-Curtis distance among 30 sam-
ples, and their hierarchical clustering was performed using
Bray-Curtis distance and “ward” linkage. We conducted
Linear discriminant analysis Effect Size (LEfSe) on the
website http://huttenhower.sph.harvard.edu/galaxy to
identify discriminative taxonomic differences between two
depth groups (0–50 cm vs. 50–100 cm). Mantel test was
performed to determine the significant associations be-
tween diazotrophic community structure and sediment
properties of 30 samples with 9999 permutations using
vegan package (v2.5.6). As previously described [52, 53],
we performed pairwise comparisons on the functional
genes involved in the nitrogen cycling of sediment sam-
ples from three depths (M1: 0–10 cm, M2: 50–60 cm, M3:
90–100 cm) using STAMP (v2.1.3; parameters: two-
samples analysis, two-sided, Fisher’s exact test,
Asymptotic-CC, Benjamini-Hochberg false discovery rate)
and screened out the functional genes with significant dif-
ferences (p < 0.05).
We constructed a structural equation model (SEM) to

determine the direct and indirect relationships among
sediment physicochemical properties, sediment depths,
diazotrophic community richness and structure on the
in-depth profile of NFR. Water content and salinity of
sediments were chosen in SEM, since both of them were
significantly related to depth and identified as the signifi-
cant predictors of the diazotrophic community structure
based on the linear regression analysis and Mantel test.
SEM can partition direct and indirect effects that one
variable might have on another, estimate and compare
the strengths of multiple effects, and ultimately provide
mechanistic information on the drivers of diazotrophic
communities and NFR [54]. SEM analysis was performed
via the robust maximum likelihood evaluation method
using AMOS 22.0 (AMOS IBM, USA). The SEM fitness
was evaluated on the basis of a non-significant chi-
square test (P > 0.05), the goodness-of-fit index (GFI),
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the comparative fit index (CFI), and the root mean
square error of approximation (RMSEA).

Results
In-depth profile of NFR and physicochemical
characteristics in mangrove sediments
The NFR fluctuated in the range of 0–0.20 nmol/(g*h),
and the average NFR was 0.031 nmol/(g*h) across all 30
samples (Fig. 1a). There was a depth-dependent variabil-
ity of NFR, which reached a maximum at the depth of

90–100 cm. Compared to the surficial sediments (0–50
cm), the deep sediments (50–100 cm) showed a higher
NFR (Fig. 1a). As revealed by the linear regression ana-
lysis, we observed a significantly (R2 = 0.42, p < 0.05)
positive correlation between NFR and depth of man-
grove sediments (Additional file 2: Fig. S2a).
In-depth profile of physicochemical characteristics in

mangrove sediments was examined and shown in Add-
itional file 2: Fig. S3. Salinity in mangrove sediments var-
ied from 2.17‰ to 8.90‰ and increased with depth

Fig. 1 The increased nitrogen fixation rate (NFR) and reduced diversity of diazotrophic communities with depth of mangrove sediments. a The
in-depth profile of NFR, Shannon index, and Chao1 index of diazotrophic communities. Boxplots depict the 25–75% quantile range of the
selected measurements, with the centerline depicting the median (50% quantile). Whiskers show the minimum and maximum values. b
Relationships between Shannon index and Chao1 index of diazotrophic communities and NFR. NFR was represented as acetylene reduction
(nmol C2H4 g

-1h-1) in this research. Black dots represent the mean values of corresponding indicators for each depth. Black lines and gray shaded
areas represent linear regressions and 95% confidence intervals, respectively. R2 was obtained by linear regression analysis and p was obtained by
Pearson’s correlation analysis
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(Additional file 2: Fig. S3f). Conversely, the water con-
tent of sediments, with an average of 52%, decreased
consistently with depth (Additional file 2: Fig. S3e). The
pH, NO3

- concentration, and total Fe concentration de-
creased in the surficial sediments (0–50 cm) and subse-
quently increased with depth (Additional file 2: Fig. S3c,
d, g). Among all the measured physicochemical charac-
teristics, only water content and salinity showed signifi-
cant (p < 0.05) linear correlations with depth (Additional
file 2: Fig. S2b, c).

In-depth profile of diazotrophic communities in
mangrove sediments
To investigate biotic factors contributing to the in-
creased NFR with depth, we analyzed diazotrophic com-
munities in mangrove sediments by sequencing nifH
gene amplicons. A total of 2,253,352 high-quality nifH
sequences were obtained, which were clustered into 974
OTUs and 58 genera after trimming (Additional file 2:
Table S1). Notably, we observed a depth-dependent vari-
ability of diazotrophic communities in mangrove sedi-
ments. The diazotrophic community diversity (Shannon
index) and richness (Chao1 index) in depths below 60
cm were lower than those in upper layers (Fig. 1a), and
both indices showed significantly (p < 0.05) negative cor-
relations with the depth of mangrove sediments (Add-
itional file 2: Fig. S2d, e). Furthermore, the Shannon
index of diazotrophic communities, not Chao1 index,
showed a significantly (p < 0.05) negative relationship
with NFR (Fig. 1b). This indicated that the depth-
dependent variability of NFR in mangrove sediments
was closely related to the shifts in diazotrophic diversity
metrics that combined species richness and evenness
(i.e., Shannon index).

Diazotrophs associated with increased NFR at depth
Taxonomic analysis showed that bacteria (92.53%) domi-
nated the diazotrophic communities in mangrove sedi-
ments, and a few archaea (such as Methanomicrobia
within the Euryarchaeota) (0.18%) were also detected as
diazotrophs (Fig. 2a). At the phylum level, Proteobacteria
was the most prevalent diazotrophs in mangrove sedi-
ments, accounting for 91.73% of the total diazotrophs.
Among Proteobacteria, Deltaproteobacteria occupied the
largest proportion with an average relative abundance of
31.39%, followed by Gammaproteobacteria (30.20%) and
Alphaproteobacteria (21.11%) (Fig. 2a).
As hierarchical clustering identified 50 cm as parti-

tioning depth where the diazotrophs were generally clus-
tered into two groups (Additional file 2: Fig. S4), we
applied the LEfSe to examine the diazotrophic taxa
whose abundance was significantly higher in sediment
depths above or below 50 cm (Fig. 2b). Results showed
that most of the diazotrophs enriched in surficial

sediments (above 50 cm) belonged to Proteobacteria, in-
cluding deltaproteobacterial Anaeromyxobacter and
Desulfarculus, gammaproteobacterial Methylomonas and
Dickeya, alphaproteobacterial Methylocystis and Magne-
tospirillum, and betaproteobacterial Rubrivivax, Pelomo-
nas, and Sideroxydans. Conversely, alphaproteobacterial
Agrobacterium, gammaproteobacterial Azotobacter, and
Dehalococcoides within Chloroflexi appeared to enrich in
deep sediments (below 50 cm) (Fig. 2b).
To further examine whether these deep sediment-

specific diazotrophs played major roles in biological ni-
trogen fixation, we performed Pearson’s correlation ana-
lysis between NFR and abundances of diazotrophic
genera in mangrove sediment profiles (Additional file 2:
Table S2). Specially, two deep sediment-specific diazo-
trophic genera were positively correlated with NFR,
namely Agrobacterium (r = 0.73, p < 0.05) and Azotobac-
ter (r = 0.48, p < 0.05) (Fig. 2b, Additional file 2: Table
S2). Azotobacter had a higher average relative abundance
(11.92%) than Agrobacterium (3.28%) (Additional file 2:
Table S3). Considering these taxa significantly correlated
with NFR and their nitrogen-fixing capacity previously
reported [55, 56], we assumed that both Agrobacterium
and Azotobacter contributed to the increased NFR with
depth of mangrove sediments. Meanwhile, among 9 dia-
zotrophic genera enriched in surficial sediments, Anae-
romyxobacter (r = −0.73, p < 0.05), Rubrivivax (r =
−0.71, p < 0.05), Methylomonas (r = −0.64, p < 0.05),
Dickeya (r = −0.65, p < 0.05), and Methylocystis (r =
−0.77, p < 0.01) showed negative correlations with NFR
(Fig. 2b, Additional file 2: Table S2).

Relationships among sediment physicochemical
characteristics, diazotrophic communities, and NFR
Mantel test was performed to quantify the correlations
between diazotrophic communities and environmental
factors. Result showed that salinity, pH, Fe3+ concentra-
tion, water content, and NH4

+ concentration exhibited
significant (p < 0.05) correlations with diazotrophic com-
munities. Among them, salinity showed a much more
significant (Mantel r = 0.48, p < 0.01) correlation (Add-
itional file 2: Table S4), potentially revealing its import-
ant role in driving the depth-dependent variability of
diazotrophic communities in mangrove sediments.
Further, we used SEM to quantify the contribution of

each potential influential factor (including depth, water
content, salinity, diazotrophic community richness and
structure) to the increased NFR (Fig. 3). Consistent with
the linear regression analysis (Additional file 2: Fig. S2b,
c) and Mantel test (Additional file 2: Table S4), the
depth showed a directly positive effect on salinity and a
directly negative effect on water content, and salinity
exerted a significant effect on the diazotrophic commu-
nity structure (Fig. 3). Among all the observed variables
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in the model, diazotrophic community structure was the
prominent factor that directly influenced NFR, although
depth could indirectly influence NFR by strongly affect-
ing sediment salinity (Fig. 3). Collectively, these results
indicated that salinity-driven diazotrophic community
structure played an important role in determining the
in-depth profile of NFR in mangrove sediments.

In-depth profile of biological nitrogen fixation and its
downstream processes of nitrogen cycling in mangrove
sediments
We proposed an in-depth schema to illustrate metabolic
potentials for various nitrogen cycling processes based
on key N-cycling functional genes across the surficial
(0–10 cm), middle (50–60 cm), and deep (90–100 cm)
sediments (Fig. 4). Notably, a total of eight pathways
consistently revealed a depth-dependent variability in
terms of functional gene abundances (Fisher’s exact test,
p < 0.05), including nitrogen fixation, nitrification, de-
nitrification, dissimilatory nitrate reduction to ammo-
nium (DNRA), assimilatory nitrate reduction, ammonia
assimilation, nitrate assimilation, and organic N
decomposition.
Consistent with the trend of diazotrophic activities

(NFR), the abundance of gene clusters for nitrogen-
fixing (nifH/D/K) increased with depth. Compared to
that in surficial sediments (M1: 0-10 cm), the abundance
of nitrogen fixation genes in deep sediments (M3: 90–
100 cm) increased by 41.9% (Fig. 4c). Such an increasing
trend also occurred in ammonia assimilation and assimi-
latory nitrate reduction (Fig. 4). Particularly, from the
surficial layers to deep sediments, the functional genes
(nasA, narB, and nirA) involved in assimilatory nitrate
reduction remarkably increased by 1.5, 17.6, and 9.3
times, respectively (Fig. 4c). By contrast, the abundance
of functional genes involved in nitrification (aomA,
amoB, amoC, and hao), denitrification (nirK, nirS, norB,
and norC), DNRA (nrfA and nrfH), and organic N de-
composition (ureA, ureB, and ureC) significantly (p <

Fig. 2 Diazotrophic community composition and specific
diazotrophic taxa associated with NFR in mangrove sediments. a
Taxonomic composition of diazotrophic communities across 10
depths of mangrove sediments. Bar width indicates relative
abundance of OTUs from different taxa. b Taxonomic cladogram
based on linear discriminant analysis (LDA-score >2.0) combined
with effect size measurements (LEfSe), which classify discriminative
taxa between surficial sediments (0–50 cm, blue) and deep
sediments (50–100 cm, red). Moving from inside to outside,
cladograms depict domain, phylum, class, order, family, and genus
levels. Taxa with non-significant differences are represented as
yellow circles. In legend, red * represents the diazotrophic genus
having significantly positive correlation with NFR, while blue *
represents the diazotrophic genus showing significantly negative
correlation with NFR. *p < 0.05; **p < 0.01
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0.05) decreased with depth (Fig. 4). Taking the rate-
limiting process of denitrification as an example, the
abundance of napA/B decreased by 21.5% from the sur-
ficial layers to deep sediments (Fig. 4c). Overall, these
functional gene patterns showed that both biological ni-
trogen fixation and its downstream processes of nitrogen
cycling in mangrove sediments exhibited a depth-
dependent variability with divergent trends.

Versatile functions and adaptation strategies of
diazotrophic MAGs
De novo assembly and binning of metagenomic sequen-
cing data from three depths of mangrove sediments
allowed the reconstruction of 3 archaeal and 64 bacterial
MAGs (completeness >50%, contamination <10%; Add-
itional file 3: Supplementary Data 1). Given that metage-
nomic sequencing generated enormous data
accompanied by tremendous undiscovered information,
we inferred their potential physiological capabilities by
annotating genes using the KAAS and TIFRFAM data-
bases. Among all 67 MAGs, three MAGs possessed
genes for nitrogen fixation (nifH/D/K), namely
M2.bin.35, M2.bin.46, and M3.bin.42, which were affili-
ated to Anaerolineae, Geobacteraceae, and Desulfuromo-
nadaceae, respectively (Fig. 5, Additional file 4:
Supplementary Data 2). Interestingly, these three MAGs
consistently contained genes associated with other nitro-
gen cycling processes, such as ammonia assimilation and
the complete DNRA pathway (Fig. 5, Additional file 4:

Supplementary Data 2). Additionally, M2.bin.35 had the
genes involved with a nearly complete denitrification
process except for converting NO to N2O (Fig. 5, Add-
itional file 4: Supplementary Data 2). However, genes re-
lated to nitrate assimilation, assimilatory nitrate
reduction, organic N decomposition, or nitrification
were absent in these three diazotrophic MAGs (Fig. 5,
Additional file 4: Supplementary Data 2).
Further functional annotations showed many poten-

tials of these diazotrophic MAGs. From the perspective
of energy metabolism, three MAGs contained genes in-
volved in the complete or nearly complete carbon fix-
ation pathways (such as Wood-Ljungdahl pathway) (Fig.
5, Additional file 4: Supplementary Data 2), which
allowed them to convert inorganic carbon into organic
molecules such as acetyl-CoA. Via TCA cycle, acetyl-
CoA could be further utilized by these diazotrophs to
generate energy for microbial metabolism (Fig. 5, Add-
itional file 4: Supplementary Data 2). Together with the
detection of fermentation genes encoding lactate de-
hydrogenase (ldh), pyruvate oxidoreductase (porA/C),
and formate dehydrogenase (fodG) (Fig. 5, Additional file
4: Supplementary Data 2), our results suggested a mixo-
trophic lifestyle of these diazotrophs in mangrove sedi-
ments. From the perspective of adaptation strategy,
diazotrophs from the middle and deep mangrove sedi-
ments contained functional genes for anaerobic respir-
ation (hyaB, hybC) and its involved pathways (i.e., sulfur
reduction), as well as anaerobic cobalamin biosynthesis

Fig. 3 Structural equation modeling (SEM) illustrating the direct and indirect effects of depth, sediment properties (water content and salinity),
and molecular attributes (diazotrophic community richness and structure) on NFR. Continuous and dashed arrows represent the significant and
non-significant relationships, respectively. Arrows indicate the hypothesized direction of causation. Blue and red arrows indicate positive and
negative relationships, respectively. The numbers adjacent to arrows are standardized path coefficients proportional to thickness of the lines, with
p values in the brackets. Significance levels are denoted with **p < 0.01; ***p < 0.001. Standardized total effects (direct plus indirect effects)
calculated by the SEM are displayed beside the SEM. The hypothetical model fits our data well as suggested by the goodness-of-fit statistics: chi-
square = 1.374, degrees of freedom = 4, probability level = 0.849, GFI = 0.951, CFI = 1.000, and RMSEA = 0.000
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(Fig. 5, Additional file 4: Supplementary Data 2). The
adaptation of diazotrophs to the low-oxygen deep sedi-
ments was further supported by the genes related to
pyruvate oxidoreductase (porA/C), thioredoxin peroxid-
ase, cytochrome c oxidases (coxA/B), ccb3-type cyto-
chrome c oxidases (ccoN/O/P/Q), and a cytochrome bd
ubiquinol oxidase (cydA) (Fig. 5, Additional file 4: Sup-
plementary Data 2). Furthermore, these diazotrophic
MAGs were found to contain glycine betaine reductase
and glucose/sorbosone dehydrogenase which can
synthesize osmolytes [57, 58] to counteract osmotic
stress in deep sediments with higher salinity. Together,
these results indicated that the halotolerant diazotrophs
in deep mangrove sediments were functionally versatile
and facultative anaerobes.

Discussion
Mangroves are considered as typical nitrogen-limited
ecosystems [59]. Characterizing the biological nitrogen
fixation and diazotrophic communities is, therefore, cru-
cial to fully elucidate the nutrient status and ecological
functions of mangrove ecosystems. In this study, we sys-
tematically examined the in-depth profile of NFR and
diazotrophic communities across 10 depths of mangrove
sediments. One of our prominent findings was that, rela-
tive to surficial sediments, diazotrophic communities are
less diverse in deep sediments, where NFR is higher.
Such depth-dependent variability of biological nitrogen
fixation could be further supported by our metagenomic
sequencing analysis, which revealed an elevated abun-
dance of genes related to biological nitrogen fixation in
deep sediments (Fig. 4). In line with the previous view
that diazotrophs often accounted for a low percentage
(0.95–2.50%) in a microbial community [60, 61], we
found that only 3 out of 67 MAGs contained the
nitrogen-fixation genes in our study. The functional an-
notations of diazotrophic MAGs provide genetic evi-
dence for the functional versatility and adaptation
strategies of diazotrophs under the low-oxygen and
oligotrophic conditions of deep sediments. These results
provide novel insights into the depth-dependent variabil-
ity of NFR and diazotrophic communities and advance
our understanding of the relationship between biological

Fig. 4 In-depth profile of genes related to nitrogen cycling
processes in mangrove sediments. a–c The shifts in functional gene
abundance in surficial vs. middle sediments (a), middle vs. deep
sediments (b), and surficial vs. deep sediments (c). Arrows indicate
the directions of reaction. Red arrows indicate that the gene
abundance increased from the surficial sediment to middle/deep
sediments, and blue arrows indicate a decreasing trend. The genes
adjacent to arrows are representative functional genes for each
process, and the numbers in the brackets mean the increased or
decreased percentages of gene abundance. *p < 0.05; **p < 0.01;
***p < 0.001
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nitrogen fixation and nitrogen limitation in mangrove
ecosystems.
Our in-depth survey of mangrove sediments revealed a

clear divergence of diazotrophic community structure at
the partitioning depth of 50 cm. Although the diversity of
diazotrophic communities was lower in deep sediments
than in surficial ones, the deep sediment-specific diazo-
trophs, including Agrobacterium and Azotobacter, poten-
tially contributed to a higher NFR in deep sediments.
There are two main reasons for this observation. First, due
to the underground root distribution of Sonneratia ape-
tala (about 40–60 cm) [62] and its root radial oxygen loss
[63], we speculate that oxygen concentration decreased
below 50 cm. It has been reported that metalloproteins of
nitrogenase are extremely sensitive to oxygen, and the ac-
tivities of MoFe protein and Fe protein in Azotobacter
were sharply reduced when exposed to air [64]. As a re-
sult, the decreasing oxygen concentration with depth was
thought to ensure the high activity of nitrogenase in deep
mangrove sediments. Second, the lifestyle of diazotrophs
was related to nitrogen fixation efficiency. Previous studies

found that microaerophilic and anaerobic diazotrophs
often exhibit a higher nitrogen fixation efficiency than aer-
obic diazotrophs [65]. In our study, the dominant diazo-
troph in the deep sediments was Agrobacterium sp., which
has been reported to be a typical facultative anaerobe with
the capability of anaerobic respiration in the presence of
nitrate [66]. In line with this opinion, we confirmed the
occurrence of genes related to low oxygen-dependent
pathways in our diazotrophic MAGs (Fig. 5) and deter-
mined a facultatively anaerobic lifestyle of diazotrophs in
deep mangrove sediments. Thus, the deep mangrove sedi-
ments with lower oxygen concentration could provide a
suitable condition for microaerophilic/anaerobic diazo-
trophs to efficiently fix nitrogen [67], which is well con-
sistent with higher NFR in deep sediments. Altogether,
our results showed that changes in nitrogenase activity
and shifts in the diazotrophic communities associated with
mangrove sediments both contribute to the depth-
dependent variability of biological nitrogen fixation ob-
served under the fluctuating oxygen gradients typical of
these environments.

Fig. 5 Metabolic characteristics of three diazotrophs projected on key pathways in mangrove sediments. Dark blue: metagenome-assembled
genomes (MAGs) belonging to M2.bin.35 (Anaerolineae). Light blue: MAGs belonging to M2.bin.46 (Geobacteraceae). Light purple: MAGs
belonging to M3.bin.42 (Desulfuromonadaceae). Black solid arrows indicate the genes/pathways that MAGs possessed, and gray dashed arrows
indicate the missing genes/pathways. A detailed list of genes in these diazotrophs can be found in Additional file 4: Supplementary Data 2
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Located at the transition between ocean and land,
mangrove sediments experienced the tidal fluctuation
day after day [68]. Probably due to the tidal flushing in
surficial sediments and the bottom accumulation pattern
of salinity in depth [69, 70], a continuous increase in sal-
inity with the depth of mangrove sediments was ob-
served in our study. Among the measured variables in
our study, salinity was identified as the most important
contributing factor for shaping the diazotrophic commu-
nity structure in mangrove sediments, as revealed by our
Mantel test and SEM results (Fig. 3, Additional file 2:
Table S4). LEfSe analysis revealed that, Methylomonas,
which was identified as less-salt-tolerant diazotroph [71],
preferred to live in surficial sediments (Fig. 2b). How-
ever, in deep sediments with higher salinity, we observed
that diazotrophic communities were dominated by Azo-
tobacter and Agrobacterium, which belong to more-salt-
tolerant diazotrophs [72, 73]. Such niche partition of
diazotrophs across sediment depths may be closely tied
to their salt-tolerant adaptation strategy. This is because
diazotrophs thriving in higher-salinity sediments could
apply the “low-salt-in” strategy to balance the osmotic
potential of cytoplasm [74]. To support the adaptation
strategy of diazotrophs to higher salinity, we did observe
that diazotrophic MAGs contained genes encoding for
glycine betaine reductase and glucose/sorbosone de-
hydrogenase (Fig. 5), which can synthesize osmolytes to
balance the osmotic pressure created by higher-salinity
habitats [57, 58]. Collectively, our study highlights the
role of salinity in controlling the in-depth structure of
diazotrophic communities and indicates the putative
strategy of diazotrophs for salt tolerance in mangrove
sediments.
Our current understanding of nitrogen-limited degrees

in mangrove ecosystems is hitherto mainly limited to
horizontal scales. For example, early evidence deter-
mined that the degree of nitrogen limitation in the fringe
of mangrove forest is higher than that in the dwarf zone
[24, 75]. Given that the dynamics of biological nitrogen
fixation and its downstream processes in nitrogen cyc-
ling affected the degree of nitrogen limitation [76], we
assumed that the mangrove nitrogen limitation status
would also vary across vertical space, where variable nu-
trient (such as available nitrogen) dynamics and environ-
mental gradients always occurred [77]. To support this
assumption, our metagenomic sequencing analysis re-
vealed that in deep mangrove sediments, the abundance
of functional genes involved in biological nitrogen fix-
ation (nifH) and ammonia assimilation (gltB and gltD)
increased, whereas the abundance of functional genes re-
lated to denitrification (nirK, norB, and norC) deceased.
These findings indicated that in the deeper depth, the
amount of available nitrogen for mangrove growth
tended to increase, and the loss of available nitrogen in

the form of gas (such as N2O and N2) possibly de-
creased. Furthermore, due to the reduction of root dens-
ity in deep mangrove sediments [62], the available
nitrogen demand for mangrove growth decreased.
Altogether, the dynamics of the supply and demand of
available nitrogen across depths indicated a relieved ni-
trogen limitation in deep mangrove sediments.

Conclusions
In summary, this study illustrates the depth-dependent
variability of biological nitrogen fixation in mangrove
sediments from the perspectives of both NFR and diazo-
trophic communities. The diversity of diazotrophic com-
munities decreased with the depth of mangrove
sediments, but the NFR and nitrogen fixation-related
gene abundances increased. The salinity-driven structure
of diazotrophic communities showed a clear divergence
at the partitioning depth of 50 cm, as well as high abun-
dances of Azotobacter and Agrobacterium, suggesting
that Azotobacter and Agrobacterium may contribute
greatly to the elevation of NFR in deep mangrove sedi-
ments. Accompanied by such an elevation, metagenomic
sequencing analysis indicated that available nitrogen loss
by denitrification pathway possibly decreased with depth.
The depth-dependent variability of nitrogen fixation and
its downstream processes in nitrogen cycling indicated
the mitigation of nitrogen limitation in deep mangrove
sediments. In addition, the MAGs of diazotrophs from
deep mangrove sediments suggested their facultatively
anaerobic and mixotrophic lifestyles. Overall, this study
provides new insights into a comprehensive understand-
ing of biological nitrogen fixation and its ecological
functions in mangrove sediments.
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