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Abstract

unclear.

prevent male infertility.

Background: Male fertility impaired by exogenous toxins is a serious worldwide issue threatening the health of the new-
born and causing infertility. However, the metabolic connection between toxic exposures and testicular dysfunction remains

Results: In the present study, the metabolic disorder of testicular dysfunction was investigated using triptolide-induced
testicular injury in mice. We found that triptolide induced spermine deficiency resulting from disruption of polyamine
biosynthesis and uptake in testis, and perturbation of the gut microbiota. Supplementation with exogenous spermine
reversed triptolide-induced testicular dysfunction through increasing the expression of genes related to early and late
spermatogenic events, as well as increasing the reduced number of offspring. Loss of gut microbiota by antibiotic treatment
resulted in depletion of spermine levels in the intestine and potentiation of testicular injury. Testicular dysfunction in
triptolide-treated mice was reversed by gut microbial transplantation from untreated mice and supplementation with
polyamine-producing Parabacteroides distasonis. The protective effect of spermine during testicular injury was largely
dependent on upregulation of heat shock protein 70s (HSP70s) both in vivo and in vitro.

Conclusions: The present study linked alterations in the gut microbiota to testicular dysfunction through disruption of
polyamine metabolism. The diversity and dynamics of the gut microbiota may be considered as a therapeutic option to
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Background

Infertility is a worldwide clinical issue affecting approximately
12% of the reproductive-aged couples, among which males
contribute to nearly 50% of all cases [1]. Moreover, the risks
of deformities and defects for the new-born caused by dys-
functional male fertility are also critically important. Growing
evidence revealed that in recent decades the sperm quality of
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men has declined in both industrialized and developing
countries, which has raised concerns from the academic
community to whole society [1, 2]. Accordingly, most cases
of abnormal male reproduction in humans, except for gen-
etic defects, are derived from exogenous chemical exposures,
including endocrine disrupters and therapeutic drugs, par-
ticularly for chemotherapy [3, 4]. It was firmly established
that chemical exposures impair male fertility by damaging
testicular cells and the hormonal environment, resulting in
decreased semen quality and testicular dysfunction [5].
Triptolide (TP) is a diterpene that was extracted from
Tripterygium wilfordii Hook F in 1972, and is widely
used as antineoplastic, antispermatogenic, and immuno-
suppressive therapies. Testicular dysfunction is a com-
mon side-effect of TP and its commercial drugs both in
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rodent experimental models and humans [6]. Continu-
ous administration of TP significantly suppresses the
marker-enzymes of spermatogenesis and testosterone
levels, reduces sperm counts, diminishes the testis indi-
ces (testis weight/body weight x 100%), and damages the
microstructure of testis in mice [7]. The severe testicular
toxicity induced by TP largely limited its clinical use in
humans despite its notable therapeutic effects on inflam-
matory, autoimmune diseases, and cancers [8, 9]. The
mechanism underlying testicular toxicity triggered by
this typical toxicity remains unclear. Oxidative stress
and its activation of signaling pathways, such as the nu-
clear factor-E2-related factor 2 (Nrf2)-mediated antioxi-
dant response were thought to be the major reason,
which could be prevented by N-acetyl-L-cysteine and
resveratrol treatment in mice [10]. Uncovering the tes-
ticular toxicity of TP was helpful to explore the process
of male infertility.

Gut microbiota, the second largest genome of the host,
was reported to impact the physiological function of
liver, gut, brain, immune cells, and certain endocrine
gland [11-17]. Gut microbiota plays an important role
in testis. Disruption of the gut microbiota by di-(2-ethyl-
hexyl) phthalate was shown to alter the male reproduct-
ive system in rats [18], and the gut microbiota also
modulated the permeability of the blood-testis barrier
and performed a role in the regulation of endocrine
functions of the testis in mice [19]. Additionally, the gut
microbiota may have potential role in the treatment of
male infertility in a metabolic syndrome sheep model
[20]. Spermine can be synthetized through endogenous
polyamine metabolism and obtained from the dietary
uptake and gut microbiota, such as Actinobacteria, Fir-
micutes, Proteobacteria, and Bacteroidetes [21]. The
functions of spermine includes antioxidation, regulation
of ion channels, inhibition of lipid synthesis, and main-
taining the normal physiology of reproduction [22].

In the current study, spermine deficiency in testis and
gut microbiota was closely linked to testicular dysfunc-
tion. Gut microbiota was found to play an important
role in protecting against TP-induced testicular injury
mainly through modulation of polyamine metabolism.
Thus, caution for the clinical use of TP and its prepara-
tions is warranted. Furthermore, supplementation with
spermine and the intervention of gut microbiota using
prebiotics and probiotics may be a promising strategy to
improve the function of testis.

Results

Testicular dysfunction accompanied by metabolic
disorder

TP caused severe testicular injury in mice (8- to 10
weeks old, 25-30 g) after intraperitoneal injection at
0.2 mg/kg for 14 days. Although the body weight and
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organ indices (organ weight/body weight x 100%) of
epididymides, seminal vesicles, and preputial gland
were maintained, the testicular index was markedly
reduced after TP treatment (Fig. la and Supplemen-
tary Figure la). H&E staining and immunohistochem-
istry (IHC) showed that TP reduced the tubular
diameter and epithelium height of testis and time-
dependently attenuated the differentiated spermato-
gonium (marked by C-kit), meiotic spermatocyte
(marked by synaptonemal complex protein 3 (Scp3)),
late meiotic spermatocytes (marked by cyclic AMP-
responsive element modulator (Crem)), round sperm-
atid (marked by Crem and Acr), elongating spermatid
(marked by Acr), and sertoli cell (marked by Vim)
(Fig. 1b, ¢, e and Supplementary Figure 2). IHC
showed that spermatogonial stem cell (marked by in-
hibitor of differentiation 4 (Id4)) decreased mildly, al-
though the marks of spermatogonical stem cell Id4
mRNA and B lymphoma Mo-MLYV insertion region 1
(Bmil) mRNA levels were decreased (Fig. 1d and
Supplementary Fig. 2). Differentiated spermatogonium
(marked by C-kit) was the most sensitive cell in our
study, which was the first to disappear at day 6 after
TP treatment (Supplementary Figure 2). Furthermore,
TP reduced the expression of mRNAs involved in late
spermatogenic events including bromodomain testis-
specific factor (Brdt, involved in the generation of
male gametes in post-meiotic cells), tudor domain-
containing 7 (Tdrd7, involved in dynamic ribonucleo-
protein remodeling of chromatoid bodies during
spermatogenesis), a disintegrin and metallopeptidase
domain 3 (Adam3, involved in sperm assembly and
sperm-zona pellucida binding), transition protein 2
(Tnp2, involved in histone displacement), and sperm-
atogenesis associated 19 (Spatal9, involved in
mitochondria adhesion of the sheath during sperm-
atogenesis) mRNAs (Fig. 1d).

UPLC-QTOF-MS-based metabolomics was con-
ducted to uncover the metabolic features of the
mouse testis following testicular injury. Principal com-
ponent analysis (PCA) and S-plot in both ESI+ and
ESI- modes demonstrated that the TP group clearly
separated from the control group as a result of sev-
eral reduced metabolites, including glutathione, creat-
ine, adenosine, S-adenosylmethionine, and spermine
(Fig. 1f). VIP values and statistical significance of the
altered metabolites were displayed in Supplementary
Figure 1b. Pathway enrichment showed that glutathi-
one metabolism, malate-aspartate shuttle, urea cycle,
and spermidine and spermine biosynthesis were
disrupted by TP (Supplementary Figure 1lc). Detailed
information for metabolite identification is shown in
Supplementary Table 1. Spearman’s correlation ana-
lysis revealed a strong correlation between testicular
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Fig. 1 TP induced testicular toxicity and metabolic disruption. a Tissue index (tissue weight/body weight x 100%). b, ¢ H&E staining, tubular diameter, epithelium
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injury and metabolites, including glutathione, adeno-
sine, carnitines, valine, and compounds involved in
spermine metabolism (Fig. 1g). These results showed
that TP caused severe testicular injury and affected
various metabolic pathways, especially for spermine
metabolism.

Polyamine metabolism was suppressed in both testis and
gut microbiota following testicular injury

According to the metabolomics outcome of testis, fur-
ther studies focused on spermine metabolism. Ornithine
decarboxylase 1 (OdcI) and adenosylmethionine decarb-
oxylase 1 (Amd1) participate in polyamine biosynthesis,
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which were inhibited by TP (Fig. 2a and Supplementary
Figure 3a). Odcl1 regulating gene ornithine decarboxylase
antizyme 1/3 (Oazl/3) and antizyme inhibitor 1/2
(Azin1/2), as well as polyamine influx transporter
(Slc22a16) mRNAs were also decreased following tes-
ticular injury (Fig. 2a and Supplementary Figure 3a).
Conversely, the mRNA levels of spermine oxidase
(Smox) gene encoding enzymes that convert spermine to
spermidine were increased (Fig. 2a and Supplementary
Figure 3a). Enzyme activity of ODC and spermidine/
spermine-Nl—acetyltransferase (SSAT) was measured to
confirm their functions. ODC activity was inhibited sig-
nificantly by TP, and SSAT activity could be increased
slightly (Fig. 2b). The decrease in gene expression was
also in concordance with the metabolome. The levels of
substrates for polyamine synthesis including arginine,
proline, and ornithine were increased in testis while
spermine and spermidine were reduced after TP expos-
ure (Fig. 2a and Supplementary Figure 3d). The MS/MS
of spermine and spermidine are displayed in Supplemen-
tary Figure 3b. Correlation analysis found that spermine
and spermidine levels were positively related to testis
index (Supplementary Figure 3c).

Considering that gut microbiota-derived polyamines
are a critical source for the host polyamine pool [23]
and influence the physiology and disease of the host
[24], the composition of gut microbiota and their metab-
olites were investigated. PCA score plots of cecum con-
tent showed that metabolite levels were markedly
disrupted by TP treatment, including amino acids and
bile acids (Fig. 2¢, d), while spermine and spermidine
were reduced after TP treatment (Fig. 2e). The identifi-
cation of the altered metabolites is listed in Supplemen-
tary Table S2. Metagenomics revealed that TP raised the
relative abundance of Firmicutes and reduced Bacteroi-
detes and Proteobacteria in cecum lumen (Fig. 2f, g). Ex-
cept for phylum, microbial community in class, order,
family, genus, and species were all disrupted by TP (Sup-
plementary Figure 4a). Notably, Bacteroidales (order),
Parabacteroides (genus), and Parabacteroides distasonis
(species) belonging to Bacteroidetes were decreased fol-
lowing TP-induced testicular injury (Fig. 2h and Supple-
mentary Figure 4b). Parabacteroides distasonis and most
other strains of Bacteroidetes are involved in polyamine
production [25]. Taken together, these data indicated
that impaired polyamine biosynthesis of both testis and
gut microbiota as well as the damaged polyamine uptake
system in testis resulted from testicular dysfunction.

Supplementation with polyamines ameliorated testicular
dysfunction

Since polyamines were reported to play an essential role
in reproductive processes and embryo/fetal development
[26], we hypothesized that spermine might play a critical
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role in TP-induced testicular injury. Morphological ana-
lysis found that spermine increased the size of testis but
did not influence epididymides, seminal vesicles, and the
preputial gland (Fig. 3b). Spermine improved differenti-
ated spermatogonium (marked by C-kit), meiotic sperm-
atocyte (marked by Scp3), late meiotic spermatocytes
(marked by Crem), round spermatid (marked by Crem
and Acrosin), elongating spermatid (marked by Acrosin),
and sertoli cell (marked by Vimentin) induced by TP
(Fig. 3b). Testis indices and sperm counts in epididy-
mides also supported the protective effect of spermine
against testicular injury (Fig. 3a). Hormonal levels
(luteinizing hormone (LH), follicle stimulating hormone
(FSH), and testosterone) were not influenced by TP,
while spermine could increase testosterone levels and
testosterone- and androsterone-synthesis related gene
mRNAs encoding the hydroxysteroid dehydrogenases
HSD3B1 and HSD17B11. Spermine also reduced inflam-
mation factor (lcarm mRNA) and improved oxidative
stress (Cat, Sodl, Gpxl mRNAs, CAT activity, malon-
dialdehyde (MDA), and GSH levels). Furthermore,
spermidine could also improve TP-induced testicular in-
jury (Supplementary Fig. 5d).

Testicular metabolomics revealed that spermine ad-
ministration to TP-exposed mice rendered them closer
to the control group as revealed by the PCA score plot
(Fig. 4a) as a result of significantly recovered metabo-
lites, including glutathione, taurine, malic acid, carnitine,
nicotinamide adenine dinucleotide (NAD+) and sperm-
ine in the testis (Fig. 4a). However, the concentration of
spermine in testis, while statistically higher in the sperm-
ine + TP (SP + TP) group, was still lower than that in
the vehicle-treated group, although spermine adminis-
tration significantly increased N-acetylspermidine levels
(Supplementary Figure 5a). In addition, mRNA levels of
genes involved in early and late spermatogenic events
and ATP utilization were also improved by spermine
treatment (Fig. 4b and Supplementary Figure 5b). More-
over, spermine increased heat shock protein 70 family
gene mRNA levels (heat shock protein family A member
2 (Hspa2), Hspa4, Hspa4l, HspaS, and Hspa9) and
protein levels (HSPA2, HSPA4L, and HSP70) after TP
exposure, even under normal physiological conditions
(Fig. 4c). The results indicated that increased HSP70s
might be associated with the improvement of testicular
dysfunction.

An intergenerational experiment was used to investi-
gate the performance of offspring from male mice
treated with TP and spermine. The results demonstrated
that spermine increased the size of the litter reduced by
TP (Fig. 4d) and normalized the plasma metabolome
that was disrupted by TP (Fig. 4e). Four metabolites
were upregulated, which were glutamine, methionine, 2-
aminooctanoic acid, and LysoPC (20:2), and malic acid
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(See figure on previous page.)

Fig. 2 Polyamine metabolism was suppressed in both testis and gut microbiota following testicular dysfunction. a Pathway of spermine metabolism in testis (n =
6). b ODC and SSAT activities (n = 6). TP (0, 40, 160, 640 nm TP) was incubated with testicular extracts in vitro. ¢ PCA score plot for cecum content metabolome
(ESH and ESI- modes, n = 6). d Changed metabolites in cecum content include bile acid and amino acid (n = 6). @ Spermine and spermidine levels in cecum
content revealed by targeted analysis (n = 6). f Relative abundance of phylum in cecum content (n = 6). g Cladogram for gut microbiota (control group vs TP
group, n = 6). h Relative abundance of advantaged germs in polyamine biosynthesis (n = 6). *P < 005, **P < 001, and **P < 0001

was downregulated (Fig. 4f). Organ indexes of heart,
brain, testis, liver, kidney, and lung were not changed in
the TP and SP + TP groups (Supplementary Figure 5c).
These results suggest that spermine plays an important
role in attenuating testicular dysfunction and increases
the lower litter numbers found after TP treatment.

HSP70s regulated by spermine protected against
testicular injury

To reveal the potential mechanism of spermine in tes-
ticular toxicity in vitro, TM4 cells derived from sertoli
cells, which are widely used for investigating testicular
toxic mechanism of TP were employed [10, 27], and ini-
tially treated with spermine and TP for 24 h. Spermine
remarkably reversed the TP-induced cytotoxicity as re-
vealed by cell viability, lactate dehydrogenase (LDH)
levels, MDA levels, ATP levels, expression of the
mitochondrial-related mRNAs, and mitochondrial mem-
brane potential (Supplementary Figure 6a—c). Spermine
was found to play an important role in cell proliferation
since eflornithine, an inhibitor to polyamine biosyn-
thesis, profoundly restricted the growth of TM4 cells
(Supplementary Figure 6d). The damage could be re-
versed by spermine supplementation (Supplementary
Figure 6e). Furthermore, eflornithine potentiated TP-
induced cytotoxicity (Supplementary Figure 6f).

It was reported that levels of the polyamine exporter
TPOL1 in yeast was negatively correlated with the protein
levels of HSPs [28], and HSPs played an important role in
testicular toxicity in mice [29, 30]. Therefore, the relation-
ship between HSPs and spermine was evaluated. Spermine
could enhance and eflornithine could reduce the expres-
sion of HSP70s, including Hspa2, Hspa4, and Hspa4l
mRNAs as well as HSP70, HSPA2, HSPA4, and HSPA4L
proteins (Fig. 5a, c). More importantly, the protective ef-
fect of spermine was absent in TM4 cells and mice when
VER155008, a HSP70s inhibitor, was introduced (Fig. 5b,
d). These results showed that the protective effect of
spermine on testicular injury was dependent on HSP70s.

Loss of gut microbiota aggravated testicular injury

In order to determine the role of spermine and gut micro-
biota on testicular dysfunction, bacteria in the intestinal
tract were depleted by antibiotics (ampicillin, neomycin,
metronidazole, and vancomycin) and reconstructed by gut
microbial transplantation (Fig. 6a). Total bacteria and
spermine in the cecum lumen were decreased after

antibiotics treatment, which were recovered by gut micro-
bial reconstruction (Fig. 6b, ¢ and Supplementary Figure
7a). The loss of gut microbiota potentiated TP-induced
testicular toxicity as revealed by the improved testis index,
sperm counts in epididymides, expression of genes in-
volved in early and late spermatogenic events, H&E stain-
ing, hormonal levels, inflammation factors, and oxidative
stress (Fig. 6d—f and Supplementary Figure 7b—e). These
pathological manifestations could be improved following
gut microbial transplantation from untreated mice (Fig.
6d—f and Supplementary Figure 7b—e).

Furthermore, supplementation with exogenous sperm-
ine elevated the testis index and attenuated the abnor-
mal histopathological changes induced by antibiotics
and TP (Fig. 6g, h). The expression of mRNAs encoded
by genes related to spermatogenesis, ATP utilization,
and HSP70s (Hspa2, Hspa4, Hspall, Hspa4l, Hspa5, and
Hspa9) were increased by spermine intervention (Fig. 6i,
j and Supplementary Figure 8). The abundance of gut
microbiota was thus linked to testicular injury through
spermine production.

Testicular injury was improved by Parabacteroides
distasonis transplantation

To validate whether spermine derived from the gut micro-
biota was able to attenuate TP-induced testicular toxicity,
Parabacteroides distasonis, a spermine-advantaged strain
found to be decreased with testicular dysfunction, was
transplanted to antibiotic-treated mice (Fig. 7a). As ex-
pected, Parabacteroides distasonis in the cecum lumen
was significantly increased after transplantation, although
the total number of bacteria was not significantly changed
(Fig. 7b). Parabacteroides distasonis transplantation in-
creased polyamine levels in testis and cecum as revealed
by the increased spermine and putrescine levels (Fig. 7c).
Improved histology, testis indices, testicular testosterone
levels, expression of genes involved in early and late sper-
matogenic events, inflammatory factors and oxidative
stress indicated that Parabacteroides distasonis could im-
prove testicular damage caused by TP (Fig. 7d—h and Sup-
plementary Figure 9). These results demonstrated that
spermine-producing gut bacteria can protect testis from
toxic exposures.

Discussion
It is necessary to determine the harmful factors such as
life styles and drugs that can influence human fertility in



Zhao et al. Microbiome

(2021) 9:224

Page 7 of 18

g0
204 =+
© 0.2 =

0.04— : . :

Control TP SP+TP  SP
'EJ 250 ek
&  r—
. st
x * %
o 1501 .
L]

£ 1o ==
el &
2 ol— v . -
L Control TP SP+TP  SP

(2]
$

Jek

Yy
 bofet
§

3
>

SP+TP  SP

-
-
1

-
o
1
o

E
sthi
1t

7 T J T T
d Control TP SP+TP  SP
e 6.4 *
2 f 1
£T 55{ e le® <
ig -
‘_250- .
32
g_as- z
2 40— . : .
& R &
& B
2 15um Controlmm TP
g
; mm SP+TP mm SP *
>
3 10
3 &
(4
= 5 o aa b
g m,
2 0
N N N N
\(‘9 o J,’go &'\ o
PO ENN
¥
es3
e
s
K
[
2
=
3
4

Cat Sod1

Icam

Gpx1

b @
9

Control

3.

)
£

5

T T * s . =
K — 24 )
1.0 . .2 3 e 18

. E ®
% %2 ol® 5 1.0
@ 0.5 L x
- 3 1 ®» 0.5
S = '§0 o

0.0 T T T T 0 T T ~ T 0.0 T T
Control TP SP+TP sP Control TP SP+TP SP Control TP SP+TP sP

Fig. 3 Spermine ameliorated testicular injury. a Testis index and sperm counts in epididymides. b Size and histology of testis (Id4 for spermatogonial stem cell;
C-kit for differentiated spermatogonium; Scp3 for meiotic spermatocyte; Crem for late meiotic spermatocyte and round spermatid; Acrosin for haploid cell;
Vimentin for sertoli cells). ¢ Serum LH and FSH levels. d Testosterone levels and steroidogenic genes. e Inflammation factor and oxidative stress in testis. *P <

005, P < 001, and ***P < 0001 (n = 6)
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(See figure on previous page.)

Fig. 4 Spermine ameliorated metabolites and influenced the offspring. a PCA score plot for testis metabolome (integration of ESI+ and ESI-) and
metabolites improved by spermine (control vs TP: **P < 0.01, and ***P < 0.001; TP vs SP+TP: eP < 0.05, @eP < 0.01, and eeeP < 0.001; red represented
the increase, while green represented the decrease, n = 6). b mRNA level of genes related to early and late spermatogenic events (n = 6). ¢ mRNA and
protein level of HSP70s (n = 6). d Total pups for each group and pups for each female mouse. @ OPLS-DA score plot for plasma metabolome of the
offspring (ESI+ and ESI- modes, n = 7). f Metabolites improved by spermine in plasma of the offspring (n = 7). *P < 0.05, **P < 0.01, and ***P < 0.001
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order to avoid the damage from toxic exposures, espe-
cially for individuals who are planning a pregnancy. In
the present study, spermine deficiency in testis caused
by both the host and gut microbiota was found to

induce testicular injury in mice. Supplementation with
exogenous spermine or transplantation with a bacterial
strain favoring in spermine production reversed testicu-
lar dysfunction as revealed by histological injury, testis
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index, sperm counts, and downregulated mRNA levels
of genes involved in early and late spermatogenic events,
including Cd2, 1d4, Bmil, Brdt, Tdrd7, Adam3, Tnp2,
and Spatal9 that are elevated upon TP exposure. Cd2,
Id4, and Bmil marks spermatogonial stem cells [31-33].
TP decreased Id4 and Bmil mRNAs, indicating that TP
impairs spermatogenic stem cells, but surviving sper-
matogenic stem cells were also found by IHC which may
imply the potential for reversibility of the TP effects.

In mammalian cells, spermine is produced initially by
ODC, a rate-limiting enzyme in the biosynthesis pathway,
followed by successive reactions of aminopropyl transfer
via spermidine synthase (SRM) and spermine synthase
(SMS). Conversely, spermine can be directly converted
into spermidine without acetylation by SMOX or cata-
lyzed by SAT to form N'-acetylspermine, which is easily
transported by SLC3A2. On the other hand, spermine is
transported by SLC22A16, an important transporter for
polyamine uptake system, and eventually enters the meta-
bolic cycle [34, 35]. The mRNAs levels of Odcl and
Slc22a16 were decreased by TP, indicating that the bio-
synthesis and uptake system of spermine were impaired.
Further experiments showed that spermine derived from
either supplementation or gut microbiota could amelior-
ate testicular dysfunction. However, the testicular injury
did not rebound to normal levels following spermine sup-
plementation, accompanied by the lower concentrations
of spermine than the control group. Based on the above
observation, we assumed that the effect of spermine on
testis might be indirect which need further research in the
future: spermine might be transferred from other tissues,
such as the surrounding tissue, blood circulation, and
cecum through several polyamine transport protein [36],
which was stored in the form of putrescine, spermidine,
and N-acetylspermidine in Supplementary Figure 5a. The
increased polyamine levels in testis after spermine supple-
mentation might come from endocytosis, although
Slc22a16 mRNA level was inhibited by TP [37]. These
data demonstrated that spermine could protect against
TP-induced testicular injury, suggesting a role for sperm-
ine in testicular function.

Spermine is present in many organisms including animals
and some bacteria including Actinobacteria, Firmicutes, Pro-
teobacteria, and Bacteroidetes [21]. As a positively charged
amine ubiquitous in all organisms, spermine functions range
from antioxidation, regulation of ion channels and bone de-
velopment, inhibition of lipid synthesis, anabolic effects, mat-
uration of the gut and immune system, and maintaining the
normal physiology of reproduction [22]. The functions of
polyamine synthesis genes (ODC, AMD, OAZ, AZIN, and
SMS) on male reproductive system were evaluated using
knock-out mice [38—44]. ODC and AMD were key enzymes
in polyamine biosynthesis which were inhibited by TP. Previ-
ous study found ODC and ADM were correlated with the
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development of the spermatid and played an essential role
for cell survival during early murine development [38—40].
Furthermore, OAZs and AZINs were modulators of ODC.
TP inhibited Odcl, Oazl and 3, Azinl, and 2 mRNA levels,
which confirmed previous data using other drugs that re-
sulted in testicular toxicity like cyclophosphamide [41].
OAZ3 knock-out male mice were found to be infertile and
produced aberrant spermatozoa [42]. AZIN2 knock-out male
mice were fertile, but they decreased testicular putrescine
and testosterone levels and the sperm motility [41]. Targeted
disruption of SMS, a spermine synthesis gene, in embryonic
stem cells failed to produce viable mice or led to neurological
dysfunction, decreased body size, poor bone development,
short life span, deafness, and sterility [43, 44]. All these previ-
ous studies showed that polyamine participated in testicular
injury. In the present study, the spermine and polyamine-
produced strain Parabacteroides distasonis was found to
ameliorate testicular injury caused by TP, which could im-
prove seminiferous tubules, counts of germ cells, and pro-
mote the expression genes involved in spermatogenesis.
Furthermore, spermidine, the precursor of spermine, can also
ameliorate testicular injury caused by TP in Supplementary
Fig. 5d. Previous study reported that spermine and spermi-
dine could show the similar effect in preventing bone loss
and ameliorating aging-induced dementia [45, 46]. The in-
crease of acetylated polyamines levels after TP treatment
might majorly come from the increase of SSAT enzyme ac-
tivity in Fig. 2b. On the other hand, the increased acetylpo-
lyamine levels might come from the change of transfer
through several polyamine transport protein families, includ-
ing ATP-binging cassette transporters and protein potential-
dependent solute carriers [36].

Gut microbiota-derived polyamines are a critical source for
the polyamine pool of the host even though the uptake sys-
tems in organs are strictly regulated. Bacteria colonizing the
intestinal tract produce polyamines mainly through trans-
amination of the ingested amino acids by catalytic enzymes,
particularly for arginine [23, 24]. Growing evidence demon-
strated that supplementation with arginine and/or the pro-
biotic strain Bifidobacterium animalis subsp. lactis LKM512
suppressed colonic cell senescence and prolonged life span
dependent on the gut microbial polyamine production in
mice [47, 48]. In our study, spermine and spermidine were
decreased in cecum lumen after TP exposure, which may re-
sult from suppression of the gut microbiota involved in poly-
amine production. Perturbation of gut microbiota was
identified as a destructive factor for testicular health evi-
denced by the antibiotics-enhanced testicular injury and
bacterial-improved influence of Parabacteroides distasonis
transplantation. These findings innovatively connected dis-
rupted gut microbial metabolism and testicular dysfunction.

In this study, HSP70s regulated by spermine were
demonstrated to protect against testicular injury. Treat-
ment of TM4 cells with the HSP70s inhibitor
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VER155008 suppressed the growth of cells and increased
cellular MDA and LDH levels. It was reported that levels
of the polyamine exporter TPO1 in yeast was negatively
correlated with the protein levels of HSPs, including
HSP70s, HSP104s and HSP90s [28]. HSP70s plays an
important role in maintaining the normal physiology of
male reproduction. Targeted gene disruption of Hsp2 re-
sulted in impaired meiosis, germ cell apoptosis, and male
infertility in mice [29]. An increased number of male
mice deficient in Hspa4 displayed impaired fertility,
lower testis size, and anormal testicular histology [30].
In this study, the suppression of HSP70s in testis at least
partially contributed to testicular injury, and spermine
may exert its protective effect through upregulating the
expression of the genes encoding HSP70s. Downregula-
tion of HSP70s contributed to the therapeutic effects of
TP on cancers since anti-cancer drugs targeting HSP70s
were developed [49]. Thus, the double-edged sword ef-
fect of polyamines in life science seems to be associated
with the expression of HSPs.

A pharmacologic approach used for male contraception
remains a longstanding challenge in medicine. A previous
study found that triptonide is a reversible non-hormonal
male contraceptive agent in mice and non-human pri-
mates, and the male fertility recovered within 3—-6 weeks
following cessation of triptonide [50]. Triptonide appears
to target junction plakoglobin and disrupts its interactions
with SPEM1 during spermiogenesis, which contributed to
its male infertility in mice and cynomolgus monkeys [50].
TP, an antispermatogenic agent, has a similar structure as
triptonide. The reversibility of TP-induced testicular tox-
icity was also observed in our study (Fig. le). Therefore,
studies on the role of TP in testicular function could be
beneficial to develop male contraceptives in humans be-
cause of its reversibility.

Conclusions

In conclusion, spermine deficiency resulting from inhib-
ition of polyamine biosynthesis and uptake in testis, and
perturbation of the gut microbiota contributed to testicu-
lar dysfunction, which could be improved by spermine
supplement or gut microbial transplantation. The protect-
ive effect of spermine and gut microbiota to mitigate TP-
induced testicular injury largely depends on upregulation
of HSP70s. The interaction between gut microbiota, TP,
and testicular injury is shown in Fig. 8. The diversity and
dynamics of gut microbiota could be considered as a strat-
egy to prevent male reproductive disorders.

Methods

Animals

Specific pathogen-free (SPF) C57BL/6] mice (8—10 weeks
old) were purchased from Liaoning Changsheng biotech-
nology Co., Ltd. (Liaoning, China), and maintained under

Page 13 of 18

a standard 12-h light/12-h dark cycle environment with
free access to water and rodent chow. All animal experi-
ments were approved by the West China Hospital, Si-
chuan University.

TP treatment and spermine supplement

To study TP-induced testicular toxicity, reversibility, and
time-dependent effects, mice were randomly assigned
into two groups (n = 6): (1) control; (2) TP. TP group
mice were intraperitoneally injected with TP (0.2 mg/kg,
dissolved in 1% DMSO) daily for 14 days [51], and the
dose of TP in clinics was 3.3 pg/kg in human (corre-
sponding to 0.03 mg/kg in mice) [52]. Control mice were
treated with 1% DMSO alone for 14 days. Part of the
mice were killed at the 14th day to evaluate testicular
toxicity (n = 6). After 14-day treatment, TP treatment
was discontinued for 2 months to evaluate the reversibil-
ity (n = 6). To evaluate the time-dependent effect, 0, 2,
4, 6, 8, 10, 12, and 14 days testicular samples were col-
lected after TP treatment (1 = 6).

To further investigate the protective effect of spermine
on TP-induced testicular injury, mice were randomly
assigned to four groups (n = 12): (1) control; (2) TP; (3)
SP+TP; (4) spermine (SP). The SP and SP + TP groups
were treated with spermine-containing water (0.3 mM)
for 17 days [45]. After spermine treatment for 3 days, the
TP and SP+TP groups were intraperitoneally injected with
TP (0.2 mg/kg) daily for 14 days. Twenty-four hours after
the last dose of TP, mice (n = 6) were killed by CO, as-
phyxiation and samples were collected. Another batch of
male mice (n = 6) were matched with the normal female
mice (1 male matching 2 female) for 3 months to study
the growing performance of the offspring. Afterwards,
body weights, numbers, organ indexes, and plasma metab-
olome profiles of the first litter (8 weeks old) were investi-
gated (n = 7). Organ index was calculated by organ
weight/body weight x 100% [53]. Plasma metabolome was
carried out as previous study [54].

Spermidine supplementation

To investigate the protective effect of spermidine on TP-
induced testicular injury, mice were randomly assigned
to two groups (n = 6): (1) TP; (2) SPD + TP. The SPD +
TP group was treated with spermidine-containing water
(0.3 mM) for 17 days [45]. After spermidine treatment
for 3 days, the TP and SPD+TP groups were intraperito-
neally injected with TP (0.2 mg/kg) daily for 14 days.
Twenty-four hours after the last dose of TP, mice were
killed by CO, asphyxiation and samples were collected.

Gut microbial depletion and transplantation

To determine the function of gut microbiota on TP-
induced testicular injury, mice were randomly assigned
to 6 groups (1 = 6): (1) control; (2) TP; (3) antibiotics +
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Fig. 8 TP influenced gut microbiota and the function of testis. TP decreased the levels of ODC and SLC22A16 in testis, which impaired the biosynthesis of
spermine and its uptake. ODC is responsible for the generation of putrescine from ornithine, which is further transformed into spermidine and spermine.
Parabacteroides distasonis that produces spermine was decreased following TP exposure. The decrease of spermine concentration in testis resulted in the

downregulation of HSP70s and testicular injury
A

TP (A + TP); (4) antibiotics + TP + microbial trans-
plantation (A + TP + Recon.); (5) antibiotics (A); (6) an-
tibiotics + microbial transplantation (A + Recon.).
Antibiotics including ampicillin (0.25 mg/mL, Sigma),
neomycin (0.25 mg/mL, Sigma), metronidazole (0.25
mg/mL, Sigma), and vancomycin (0.125 mg/mL, Sigma)
were dissolved in autoclaved water and supplied ad libi-
tum to eliminate gut microbiota of mice [51]. For micro-
bial transplantation, fresh gut microbiota from the
donor mice was prepared by suspending 50 mg cecum
content in 1 mL sterilized PBS followed by centrifuga-
tion at 1000xg. The volume of microbial suspension was
200 pL/mouse [55]. A + TP, A + TP + Recon., A, and A
+ Recon. groups were treated with antibiotics for 7 days.
After antibiotics treatment for 7 days, gut transplant-
ation was conducted for 3 days starting from the 8th day
in the A + TP + Recon. and A+Recon. groups. Starting
from the 11th day, the TP, A + TP, and A + TP +
Recon. groups were intraperitoneally injected with TP
(0.1 mg/kg) daily for 14 days. Because antibiotics in-
creased TP toxicity and caused some premature mouse
death, a lower dose 0.1 mg/kg TP was used.

For validating the function of spermine on the gut
microbiota and TP-induced testicular injury, mice were
randomly assigned to 5 groups (n = 6): (1) control; (2)

TP; (3) 21 days antibiotics + TP (A21 + TP); (4) sperm-
ine + 21 days antibiotics + TP (SP + A21 + TP); (5) 21
days antibiotics (A21). Spermine (0.3 mM) was co-
dissolved with antibiotics in the drinking water and mice
allowed free access for 21 days. After antibiotics treat-
ment for 7 days, the TP, A21 + TP, and SP + A21 + TP
groups were intraperitoneally injected with TP (0.1 mg/
kg) daily for 14 days.

Microbial depletion was quantified by bacterial 16S
rRNA copies using qPCR. Parabacteroides distasonis
(ATCC8503) was used for standard curve construction
by diluting DNA in a gradient from 10* to 10° copies/
mL template. The DNA concentrations were measured
by NanoDrop (Thermo Fisher Scientific, Germany).
QPCR primers for eubacteria and Parabacteroides dista-
sonis were listed in Supplementary Table 3.

Parabacteroides distasonis transplantation

Parabacteroides distasonis was obtained from American
Type Culture Collection (ATCC8503), which was cul-
tured in brain-heart infusion medium (Huankai, China)
at 37 °C in an anaerobic chamber for 24 h. Bacterial pel-
lets were collected by centrifuging at 8000xg for 10 min
at 4 °C. After resuspended in sterilized oxygen-free PBS,
cultured bacterial cells were administrated orally to
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mouse at 0.2 mL containing 2 x 10® CFU. The experi-
mental groups were set as follows (n = 6): (1) control;
(2) A+TP; (3) antibiotics+TP+Parabacteroides distasonis
(A + TP + Pd.); (4) antibitoics + TP + heat-killed Para-
bacteroides distasonis (A + TP + Pd.-H). After antibi-
otics treatment for 7 days, A + TP, A + TP + Pd,, and A
+ TP + Pd.-H groups were given Parabacteroides dista-
sonis transplantation and TP treatment (0.1 mg/kg) daily
for 14 days starting from the 8th day. Heat-killed Para-
bacteroides distasonis was treated parallelly.

HSP70 inhibitor treatment

To investigate the effect of HSP70 on the protective ef-
fect of spermine, mice were randomly assigned to three
groups (n = 6): (1) TP; (2) SP + TP; (3) VER155008 + SP
+ TP. TP, SP + TP, and VER155008 + SP + TP groups
were given VER155008 (20 mg/kg, dissolved in 10%
DMSO + 5% Tween80) [56], spermine-containing water
(0.3 mM), and TP treatment (0.2 mg/kg) daily for 14
days. Testis, cecum contents, and plasma were collected
24 h after the last dose of TP.

Untargeted metabolomics study and polyamine
determination

To prepare the testis samples, 30 mg testis was extracted
with 300 puL 50% acetonitrile containing 5 uM chlor-
propamide as internal standard. After centrifugation at
18000xg for 20 min, the supernatant was mixed with
50% acetonitrile at a ratio of 1:1 followed by vortexing
and centrifugation as above. Cecum content samples
and the conditions for UPLC-QTOF-MS were prepared
using a method described in a previous study [54].

Polyamine in cecum contents was extracted based as
described in a previous study [57] and analyzed by
UPLC-QTOE-MS. In brief, 50 mg of cecum content was
mixed with 500 pL 5% perchloric acid solution without
any previous derivatization followed by 20 min shaking
and centrifugation at 18000xg for 20 min.

Raw data were processed with Agilent MassHunter
Worksation Software and MetaboAnalyst 4.0 [58]. Mass
Profinder Software (Agilent, USA) was utilized to gener-
ate a data matrix. SIMCA-P + 13.0 (Umetrics, USA) was
applied to multivariate statistical analysis including PCA
and orthogonal partial least squares-discriminant ana-
lysis (OPLS-DA). Altered metabolites were matched on
the Human Metabolome Database. The chemical struc-
tures of the altered metabolites were identified by MS/
MS spectrogram and authentic standard in Supplemen-
tary Tables 1 and 2. Pathway enrichment was conducted
with MetaboAnalyst 4.0.

ODC and SSAT activities and biochemical assessment
After 1 h incubation with TP at 37 °C, ODC and SSAT
activities were measured according to previous studies
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[59, 60] and the detailed methods were provided in the
Supplementary Information. CAT and MDA (Nanjing
Jiancheng Bioengineering Institute, China), LDH (Cay-
man, USA), mitochondrial membrane potential (Bey-
time, Shanghai, China), and ATP (Beytime, China) were
measured following the manufacturer’s instructions.
GSH levels were measured by UPLC-QTOEF-MS.

Microbial genomic DNA extraction and high-
throughput sequencing

Microbial genomic DNA in cecum content was ex-
tracted using the Stool Genomic DNA kit (CWBIO,
China) according to the manufacturer's instructions. 16S
rRNA was carried out with Illumina HiSeq platform,
and the procedure of high-throughput sequencing and
bioinformatics analysis was performed by Beijing Gen-
omics Institute (Shenzhen, China).

Semen evaluation, morphological, and histological
examination

Epididymides were sheared with a surgical scissors in
600 pL PBS and incubated in 37 °C for 10 min to allow
sperm to release. Subsequently, 10 uL stock solution was
diluted to 1 mL with PBS and an optical microscopy-
based hemocytometer was used to assess sperm concen-
trations. Hematoxylin and eosin (H&E) staining was car-
ried as detailed in a previous report [54]. Morphological
analysis of the male reproductive system included evalu-
ation of testis, epididymides, seminal vesicles, and the
preputial gland.

QPCR, immunohistochemistry, ELISA, and western blot
analyses

QPCR and western blot analyses were performed as detailed in
a previous report [61]. Related primers were listed in Supple-
mentary Table 3. Target mRNA levels were normalized to
those of 18S. The following antibodies were used:
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (14C10,
CST), HSP70 (4872, CST), HSPA2 (MAB6010, R&D Systems),
HSPA4 (3303, CST,), HSPA4L (PA5-100822, ThermoFisher),
Vimentin (ab92547, Abcam), Id4 (YT2272, Immunoway), C-
kit (ab231780, Abcam), Scp3 (ab97672, Abcam), Crem (sc-
390425, Santa Cruz), Acrosin (NBP2-14260, Novus). Serum
LH (CEA441Mu, Cloud-Clone), serum FSH (CEA830Mu,
Cloud-Clone), and testicular testosterone (582701, Cayman)
were measured by ELISA kits.

TM4 cells culture and treatment

TM4 cells were obtained from the ATCC (Manassas,
VA, USA) and cultured in DMEM/F12 containing 2.5%
fetal bovine serum and 5% horse serum. The drug con-
centration was selected as follows: 80 nM TP (corre-
sponding to about 0.02 mg/kg TP in mice) [10]; 1.56
uM, 3.12 uM, and 6.25 pM spermine [45]; 10 uM, 100
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puM, and 1000 uM eflornithine [62]; 0.5 uM and 25 pM
VER155008 [63, 64]. TM4 cells were treated with drugs
for 48 h in eflornithine-related experiments and treated
for 24 h for other experiments. Cell viability was
assessed using a method described in a previous study
[10]. Total RNA was extracted from TM4 cells using
TRIzol reagent (Lifetechnologies, USA) to measure gene

expression.

Statistics

Data analysis and visualization were performed by Graph-
Pad Prism v.6 (GraphPad, USA) and OriginPro2018 (Ori-
ginLab, USA). A two-tailed student’s ¢ test was applied to
assess the significant difference between two groups,
whereas one-way ANOVA followed by Tukey’s post hoc
test was applied to multiple treatment comparison. Data
were expressed as mean + SD and P value less than 0.05
was considered as statistical significance. The sample size
of mice (n = 6) was chosen based on previous animal stud-

ies [65, 66].
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