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Abstract 

Background:  The determination of taxon-specific composition of microbiomes by combining high-throughput 
sequencing of ribosomal genes with phyloinformatic analyses has become routine in microbiology and allied sci‑
ences. Systematic biases to this approach based on the demonstrable variability of ribosomal operon copy number 
per genome were recognized early. The more recent realization that polyploidy is probably the norm, rather than the 
exception, among microbes from all domains of life, points to an even larger source bias.

Results:  We found that the number of 16S or 18S RNA genes per cell, a combined result of the number of RNA gene 
loci per genome and ploidy level, follows an allometric power law of cell volume with an exponent of 2/3 across 6 
orders of magnitude in small subunit copy number per cell and 9 orders of magnitude in cell size. This stands in con‑
trast to cell DNA content, which follows a power law with an exponent of ¾.

Conclusion:  In practical terms, that relationship allows for a single, simple correction for variations in both copy 
number per genome and ploidy level in ribosomal gene analyses of taxa-specific abundance. In biological terms, it 
points to the uniqueness of ribosomal gene content among microbial properties that scale with size.
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Background
The rRNA gene approach to microbiome analyses, either 
based on amplicon or metagenomic sequencing, relies on 
the tacit assumption that the counts of this marker gene 
translate into a robust measure or proxy for microbial 
abundance. However, this assumption is often violated. 
Sources of error in gene abundance determination can 
come from analytical procedures such as DNA extrac-
tion, PCR amplification, and sequencing itself [1]. But 
likely as important, systematic biases can be caused by 
the varying abundance of ribosomal genes in the genomes 

of microbes [2]. The concern is evident in the dedicated 
databases that document the variability in ribosomal 
gene copy number per genome (Rg) among microbes [3]. 
Interestingly, Rg seems to correlate with a microbe’s life 
history traits, where fast growth is associated with higher 
values [4–6]. There is also evidence for a certain degree 
of conservation in Rg within bacterial phylogenetic clades 
[7]. On this basis, bioinformatic tools have been devel-
oped to automatically correct ribosomal gene  surveys 
for Rg [8]. The phylogenetic conservation of Rg, however, 
seems only conspicuous among closely related microbes 
[9] and can explain only some 10% of its variability in 
complex, diverse communities [10]. In some eukaryotes 
like Saccharomyces cerevisae, Rg is unstable and can vary 
widely among strains or individuals [11]. Importantly, 
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such corrections would only lead us to a description of 
community composition in terms of relative abundance 
of taxon-specific genome copies. But more useful met-
rics in microbiome community composition analyses are 
either cell number [7] (i.e., individuals) or biomass con-
tributions by each taxon. Given the close to 9 orders of 
magnitude spanned by microbial cell biomass, it can be 
argued that taxon-specific biomass rather than cell num-
ber would be a better descriptor of a taxon’s contribution 
to a community. However, there are still instances where 
number of cells would be preferred (for example, to 
gauge dispersal potential, culturability, or susceptibility 
to deleterious agents like predators or toxicants). In any 
case, to translate genome numbers to cell numbers, one 
needs to take into account the level of ploidy, P, the num-
ber of copies of the genome present in a cell, where the 
number of ribosomal operons per cell, Rc, is the product 
PRg. Surprisingly, P is not typically taken into account, 
perhaps under the assumption that most microbes, like 
Escherichia coli, are monoploid [12, 13]. And yet, in 
bacteria and archaea, P varies far more than Rg [12, 14], 
and most species examined are oligo- or polyploid, with 
some containing in excess of 200 genomes copies per 
cell [15]. If one includes unicellular eukaryotes, the vari-
ation can be 4 orders of magnitude [16]. Clearly, ploidy 
constitutes a very important source of bias for commu-
nity counts in itself [17], affecting estimates from both 
amplicon sequencing and shot-gun metagenomics. The 
variable nature of P could potentially either compound or 
diminish the effect of Rg variability in determining a cell’s 
Rc, as it is not known whether P and Rg correlate or vary 
independently among species; a high P could be associ-
ated with low Rg, and vice-versa. Studies on marine pro-
tists intended to estimate biomass from 18S counts have 
shown that Rc correlated linearly with cell volume (Vc) 
[18] or cell length [19] when plotted on double log scales, 
indicating an Rc dependence on size.

Here, we posited that perhaps there is constancy 
among microbes in the need for ribosomal gene content 
in relation to their cell biomass. In other words, microbial 
species would be under selection to contain a sufficient 
but not excessive Rc  to support the production of their 
typical cell biomass, Bc, so that Rcwould be proportional 
to Bc. Assuming cell density to be invariant (around 
1.008 g  ml−1) [20], Rc would also be proportional to cell 
volume (Vc).

Methods
Dataset
Values for all parameters were gathered or derived from 
the literature. In place of Bc, we used cellular volume, 
Vc, assuming cellular density to be constant (around 
1.008 g  ml−1 [20]). Cell volumes were either taken from 

reported direct determinations or derived from literature 
photomicrographs assuming simple formulae for a vari-
ety of fitting three-dimensional shapes (i.e., sphere, cyl-
inder) or combinations thereof as given in Table S1 (see 
Additional  file  1). When a range of volume values was 
available, we used the average. For Rg, we used values 
given in rrnDB [3] for the same species or strain. If they 
were not available, we used literature values or deter-
mined it by examination of the strain’s publicly available 
genome through BLAST. Ploidy was either taken directly 
from reported values or estimated if cellular DNA con-
tent and genome size were known. If P was variable 
within a species or strain, we used the average level of 
the range given. Rc values were then derived as the prod-
uct of P and Rg, although for many protists, Rc was taken 
directly from experimentally determined values. The 
annotated input data are gathered in Table S1 (see Addi-
tional file 1). The limiting factor to the size of the data-
base was the availability of P determinations, which are 
quite uncommon. In all, we could analyze 107 cases.

Statistics
Power fits of data were run in Excel as linear regressions 
of the ln-transformed data pairs using a least-squares 
model. Statistics are given in Table  S2 (see Addi-
tional file 2). To test the significance of exponent differ-
ences in two separate datasets, we used T tests for the 
slopes of the linear fits.

Estimation of taxon‑specific cell numbers and biovolumes 
from 16S rRNA counts
In a dataset of rRNA gene taxon-specific frequencies, Fr, 
assigned to i taxa whose cell volumes, Vc(i), are known, 
one can directly estimate Rc (i) from Eq.  1 (see the 
“Results” section). The relative contribution to number of 
cells by taxon i, Fc(i), is computed as:

And the relative contribution to biovolume, Fv (i), as:

If a determination of the absolute abundance of the 
total copies of the ribosomal gene for all taxa considered 
in the sample of origin, Rs, is available (from qPCR, for 
example, in units of copies per mass, volume or surface 
sampled), then absolute taxon-specific assignments R(i) 
can be obtained as the product Fr(i)Rs(i). From R(i), 
one can derive absolute values for cells C(i) and biovol-
ume V(i) attributable to each taxon: C(i) = R(i)/Rc (i) and 
V(i) = C(i)Vc(i). The sums 

∑

C(i) and 
∑

V (i) estimate the 

Fc(i) =
Fr(i)

Rc(i)
∑

Fr (i)
Rc(i)

Fv(i) =
Fc(i)Vc(i)

∑

Fc(i)Vc(i)
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absolute number of cells or biovolume (in µm3), respec-
tively, of the entire set of taxa under consideration.

An alternative to using Vc(i), if those are not exactly 
known, is to assign rough discrete size ranges to taxa, 
and to use mean Vc (and Rc) values of the range’s maxi-
mum and minimum. We found it advisable to set var-
iable-width size ranges in such a way that within-range 
variation in resulting Rc values was kept moderate. We 
used the following cell diameter ranges (in µm): 0.2–0.3, 
0.3–0.4, 0.4–0.6, 0.6–0.9, 0.9–1.2, 1.2–1.5, 1.5–2.1, 2.1–
2.9, 2.9–4.1, 4.1–5.8, 5.8–8.2, 8.2–11.6, and 11.6–16.4. 
This set provides within-range variation in Rc of less than 
8% in all cases, which is smaller than the uncertainty of 
our estimates for the normalization constant in Eq. 1 of 
the “Results” section.

Results
Traits that span orders of magnitude are best evalu-
ated as double logarithmic plots, which can be analyzed 
by power function fits. In this approach, the hypothesis 
of proportionality between Vc and Rc we posed should 
have resulted in a power function fit with an exponent 
close to unity. Our analysis (Fig. 1) readily dispelled that 
contention. The fit instead revealed that Rc follows well 
(R2 = 0.86) a power function of Vc with an exponent sig-
nificantly lower than unity, and indistinguishable from 
2/3 (0.66 ± 0.03; ± SE) across nine orders of magnitude in 
cell volume. For volumes expressed in µm3,

where 9.58 ± 1.21 is the estimated normalization con-
stant. One could envision that the scaling relationship 
may have been artifactually distorted at the low range 
of Rc, since it cannot physiologically take values < 1. 
But a reanalysis of the dataset excluding data pairs 
with Rc ≤ 2 did not change the fit significantly in expo-
nent or normalization constant (see Additional  file  2). 
We also tested the hypothesis that exponents for a fit of 
data pairs from eukaryotes (exponent = 0.72 ± 0.05) vs. 
prokaryotes (0.62 ± 0.05) could be different, but this did 
not find strong statistical support in a T test comparison 
(p = 0.20).

Equation 1 can be rewritten as a function of linear cell 
dimensions using a spherical-equivalent cell diameter, 
D
0
c = 2

3

√

3Vc

4π
 so that.

Thus, Rc scales generally not with the volume but with 
the surface area of a microbial cell, which for the pur-
pose of this study means that the bias associated with 
ribosomal gene counts will be size-dependent regardless 
of our choice of abundance estimator. Ribosomal counts 

(1)Rc = 9.58 v
0.66

c
∼= 9.58 V

2/3
c

(2)Rc = 6.25

(

D
0

c

)1.98
∼= 6.25

(

D
0

c

)2

Fig. 1  Relationship between cellular ribosomal gene content (Rc) and cell volume (Vc) in microbes (n = 107), plotted as a log/log graph. The grey 
line is a power fit with the equation displayed in red type (fit statistics are in Table S2, Additional file 2). Data points belonging to eukaryotes are in 
orange, those for archaea in yellow, and bacteria in green. For three species, we plotted datasets to highlight intraspecies variability: Synechococcus 
elongatus (light blue symbols) [28], Colozoum pelagicum (light purple) [19], and Sphaerozoum fuscum [19] (light yellow)
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will overestimate large-celled microbes over small-
celled ones if one is interested in number of cells, the 
bias increasing with the square of linear cell size (Eq. 2), 
a prediction that finds experimental support for specific 
cases in the literature [21]. In terms of biomass, riboso-
mal counts will underestimate the contribution of large 
microorganisms, the bias increasing with the 2/3 power 
of cellular biovolume (Eq.  1). Whichever the desired 
measure of abundance, however, the explicit relationship 
in Fig. 1 provides a means for bias correction in tallies of 
ribosomal genes, as long as cell biovolume is known from 
ancillary data for the taxa detected in the microbiome of 
interest. The correction requires knowledge of neither P 
nor Rg.

A procedural explanation is given under the “Methods” 
section, and we provide an example application in Fig. 2 
using a dataset of phototrophic bacteria from endolithic 
microbiomes within intertidal hard carbonate rocks [22], 
responsible for their micritization and bioerosion [23], 
and useful here because typical cell volumes could be 
assigned to all taxa. The differential outcomes are obvi-
ous: 16S rRNA counts of large-celled cyanobacterial gen-
era severely underestimate their contribution to biomass 

but overestimate their contribution in terms of number 
of cells (see for example, Hyella sp.). The opposite is true 
for alphaproteobacterial phototrophs (see for example 
Rhodomicrobium sp.), most of which are small-celled 
[24]. The distortion is less intense for the Chloroflexi, 
with intermediate cell size (see Roseiflexus castenholzii, 
for example).

We have presented the issue of bias having in mind 
relative abundance tallies of microbiome members, but 
proportional tallies have methodological constraints in 
themselves, because the individual proportions must 
add up to 1, and thus the relative abundances of taxa are 
necessarily not independent of each other. There is clear 
evidence of severely diverging analytical outcomes when 
both relative and absolute abundance are compared in 
the same datasets [25, 26]. Commonly, relative propor-
tions or taxa-specific ribosomal copies are converted to 
absolute abundances with parallel quantification of rRNA 
gene copies by qPCR, either total copies in the commu-
nity analyzed or those of particular taxa [16]. We note 
here that, in view of our results, the latter would require 
allometric correction, whereas the former would not 
(as done in the dataset presented in Fig. 2) and is thus a 

Fig. 2  Estimation of microbial community structure based on experimental ribosomal counts (central column), estimated cell number (left column) 
and estimated biovolume (right column) in a single, exemplary dataset using allometric corrections based on Eq. 1. The dataset is from Roush et al. 
[22] and includes the subset of taxonomically assignable phototrophic bacteria from an endolithic microbiome on coastal marine carbonate rocks. 
Only three exemplary phototrophs are labeled, but full, taxonomically explicit distributional data are in Table S3 (see Additional file 3). For ease of 
comparison, results are graphically presented as relative frequencies, but absolute scales of areal abundance are indicated on the arrow to the right
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preferable approach. However, we also note that the total 
number of ribosomal gene copies in a sample is not a 
good absolute measure of the combined microbial bio-
mass or number of cells present for comparisons among 
samples, as it will be dependent on their inherent cell-
size distribution. Hence, comparisons among samples 
will only be meaningful if carried out after conversion to 
biomass or cell numbers, unless the microbial composi-
tion of the samples is unchanged.

Discussion
The procedure outlined here requires knowledge of mor-
phological metadata in addition to sequencing counts for 
each taxon. Unfortunately, cell volume data are not read-
ily available for many taxa, at least in a compiled format, 
and requires intensive literature searches. In its absence, 
and as an approximation, using a few discrete cell-size 
classes instead of exact values yields useful corrected 
distributions (see Figure S1 in Additional file 4). Yet, an 
effort to bring microbial size data into a consolidated 
platform would be desirable in that it would enable the 
processing of large datasets in an automated, more man-
ageable way.

An additional factor to take into account is the sub-
stantial data spread around the fit leading to Eq. 1, which 
can limit the precision of the correction. An expanded 
dataset should improve predictive accuracy and perhaps 
even precision, but some inherent limitations are also at 
play. P can vary in a single strain with cell cycle [15] and 
growth conditions [27]. We have included the range of 
intraspecies variability on the Vc/Rc space in Fig. 1 for the 
cases  of a single strain of Synechococcus elongatus, and 
of  single cells from natural populations of Sphaerozoum 
fuscum and Colozoum pelagicum. They suggest that a sig-
nificant proportion of spread can be attributed to biologi-
cal intraspecies variability, tempering the prospects for 
improvement with eventually extended datasets. Studies 
on Synechococcus elongatus [28–30] and Saccharomy-
ces cerevisae [31] point to a regulatory interdependency 
of P with cell size, indicating that natural variations in 
ploidy may be met by commensurate variation in vol-
ume, making this much less of a problem. Additionally, 
because the data used here were arrived at through sev-
eral approaches, a dedicated survey based on more con-
sistent analytical procedures may result in tighter fits. 
Finally, part of the variability detected may have been due 
to neglecting contributions of organelle ribosomal genes 
in protists. This is expected to be negligible for large-
celled eukaryotes, but perhaps not so much for the small-
est of them, in which organelles take up a larger portion 
of their cell volume. Indeed, some of these pico-eukary-
otes contribute disproportionately (by defect in Rc) to 
the regression’s sum of squares and may have contributed 

to the somewhat higher exponent in the eukaryote-only 
fit (Additional file 2). In support of this contention, a re-
analysis excluding eukaryotes with Vc < 20 µm3 yields an 
exponent (0.66 ± 0.06; R2 = 0.68), more in line with that 
of Eq.  1, showing no trace of statistical difference (T 
test, p = 0.68) with that of the prokaryote-only fit (Addi-
tional file 2). While the dataset does not allow us to dif-
ferentiate between bacteria and archaea because of the 
low number of archaeal cases in it, given the substantial 
biological differentiation between bacteria and archaea, it 
may be an interesting future exercise.

The preceding discussion on uncertainty in the correc-
tion approach should not be taken as grounds for inac-
tion, given that the range of variation in Vc far exceeds 
that traceable to deviations from the fit, not only among 
microbes at large, but also in specific settings, and the 
spectra of microbial size distribution in microbiomes 
seems to be dynamic. For example, the range of Vc of 
typical bacterioplankton (excluding phototrophs) in 
seawater spans 3 orders of magnitude and its spectrum 
can be modified significantly by factors like grazing 
[32]. Considering photosynthetic plankton would likely 
add another 4–5 orders of magnitude in Vc, and the size 
spectrum of this group is also affected by environmental 
parameters [33]. In the human gut microbiome, our ini-
tial assessments show that microbiome typical bacteria 
span over at least 4 orders of magnitude in volume.

Beyond the pragmatic uses for community composition 
corrections, we see it as unlikely that the apparent scaling 
relationship with cell surface area has no biological mean-
ing. It is tempting to speculate that Rc scales with size to 
maintain an increasing protein content need. Indeed, pro-
tein content scales as a function of cell volume with a sim-
ilar exponent of 0.70 ± 0.06 (R2 = 0.87; 95% CI 0.64–0.75) 
[34]. Because the CI of the exponent for protein content 
per cell and that for Rc in the fit of Fig. 1 [0.72 and 0.61; 
see (Additional file 2)] overlap, the possibility of a connec-
tion to cellular need for proteins cannot be rejected solely 
on this basis. Indeed, in Synechococcus elongatus in the 
laboratory, protein content and P (hence also Rc) strongly 
co-vary with cell volume [30].

Alternatively, and perhaps more trivially, the scal-
ing relationship of Rc with Vc may simply be a reflec-
tion of the size scaling of DNA content per cell. In 
other words, ribosomal genes would follow the trends 
of DNA content as a whole, just like any other universal 
gene would. The allometric relationship between DNA 
content and cell size, however, has not been addressed 
in the literature or has been addressed incorrectly by 
neglecting ploidy [34, 35]. We know that genome size 
scales among bacteria with reported exponents between 
0.21 (R2 = 0.60) [34] and 0.35 (R2 = 0.45) [36]. In our 
dataset, which includes eukaryotes, it does so with an 
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exponent of 0.18 (R2 = 0.34; see Additional file 5). Even 
when these coefficients of correlation are rather poor, 
genome size clearly increases much more weakly with 
Vc than does Rc. Again, this does not take into account P 
variations to yield actual DNA content per cell; it is the 
size of one copy of the genome. A portion of our data-
set can be used to explore the scaling of DNA content 
per cell for prokaryotes (n = 60). To this subset, we can 
add the measured or slightly derived values reported by 
Shuter et al. [35] (n = 39), excluding those that relied on 
assumptions of monoploidy. This combined set yields a 
power scaling fit with R2 = 0.89 and estimated exponent 
of ¾ (0.75 ± 0.03; Fig. 3).

The difference in scaling exponent between genome 
size and cell DNA content (0.18–035 vs. 0.75) gauges the 
importance of P. In fact, in our dataset, P seems to scale 
with Vc as a power law with an exponent of 0.54 (R2 = 0.69; 
Additional file 6). This is consistent with the fact that the 
product of genome size and ploidy yields the cell DNA 
content, as the exponents of the multipliers (0.18 and 0.54, 
respectively) roughly add up to the estimated exponent of 
the product (0.75). That the exponents for DNA content 
per cell (3/4) and Rc (2/3) are significantly different (T test, 
p = 0.02), speaks for respective mechanistic drivers that are 
fundamentally decoupled. In fact, most known allometric 
laws found in nature scale with exponents that are simple 
multiples of 1/4 [37]. It would seem that ribosomal genes 
are, in that sense, unique.

Conclusions
The results presented here uncover surprising basic rules 
on the composition of microbes, rules that ties them all 
together, and that far from being self-evident, pose an intel-
lectual challenge to elucidate. In practical terms, this dis-
covery also provides a rather simple approach to deal with 
biases affecting the use of current omics methodologies for 
the assessment of microbiome composition, which, given 
their extensive use in many areas of microbiology and allied 
sciences, has a large potential for applicability.
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Rg: Ribosomal gene copy number per genome; Rc: Ribosomal gene copy 
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mal gene copies per genome and genome size) as used in the analyses 
presented in Fig.1

Additional file 2:Table S2. Statistics and estimated parameters for power 
fits against Vc.

Additional file 3:Table S3. Explicit dataset used in Fig. ure 2. Original 16S 
rRNA gene amplicon sequencing data, taxonomic assignments, and qPCR 

Fig. 3  DNA content scales with cell volume as a power function with an exponent of ¾. Entries are from a subset of those in Table S1 (n = 60, see 
Additional file 1), and determinations by Shuter et al. [35] (n = 39). Orange points belong to eukaryotic microbes, yellow points belong to archaea, 
and green points to bacteria. Full statistics for the fit (in red type) are given in Table S2 (Additional file 2)
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16S rRNA gene quantifications are from Roush et al. (2020). Estimations 
of taxon-specific cell number and taxon-specific biovolume according to 
Materials and Methods.

Additional file 4: Figure S1. Differences in allometric estimation of micro‑
bial community structure as cell number or biovolume from 16S rRNA 
gene counts in the dataset of Fig.  2 by either assigning measured cell 
volume values to taxa or by assigning taxa to a set of discrete size ranges. 
Left: stack bar graphs for relative proportions of taxa. Right: frequency 
histograms for taxa-specific percentual differences between the two 
approaches.  

Additional file 5:Figure S2. Relationship between genome size and cell 
volume (Vc) in microbes (n = 56), plotted as a log/log graph. The grey line 
is a power fit with the equation displayed in red type (fit statistics are in 
Suppl. Table 2). Datapoints belonging to eukaryotes are in orange, those 
for prokaryotes in green.

Additional file 6:Figure S3. Relationship between ploidy (P) and cell 
volume (Vc) in microbes (n = 56), plotted as a log/log graph. The grey line 
is a power fit with the equation displayed in red type (fit statistics are in 
Suppl. Table 2). Datapoints belonging to eukaryotes are in orange, those 
for prokaryotes in green.
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