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Abstract

Background: Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and
infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure
culture, leaving gaps in understanding of its function in a microbiome context.

Results: Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples,
three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ
activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants,
some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived
genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four
of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid
translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use.
Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C.
parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar
strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes
linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In
gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over
time, accompanied by changes in bacterial and fungal gene expression and proteome composition.

Conclusions: The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory
environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer
into premature infant microbiomes.
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Background
Candida species are the most common cause of invasive
fungal disease [1, 2]. A variety of Candida species cause
candidiasis and are recognized as a serious public health
challenge, especially among immunocompromised and
hospitalized patients [3, 4]. Historically, Candida albi-
cans most commonly has been recognized as the cause
of candidiasis, and as a result, is the focus of the majority
of Candida research [4–6]. However, Candida parapsilo-
sis, despite being considered less virulent than C. albi-
cans, is the Candida species with the largest increase in
incidence since 1990 [6]. Given important differences in
the biology of C. albicans compared to non-albicans spe-
cies, more research on non-albicans Candida species, es-
pecially the subset that poses a serious health risk, is
needed [4].
C. parapsilosis is often a commensal member of the

gastrointestinal tract and skin [6, 7]. Passage from hos-
pital workers’ hands to immunocompromised patients is
thought to be a common cause of opportunistic infec-
tion in hospital settings [8]. C. parapsilosis infections of
premature infants are of particular concern. Indeed, C.
parapsilosis is the most frequently isolated fungal organ-
ism in many neonatal intensive care units (NICUs) in
the UK [3] and is responsible for up to one-third of neo-
natal Candida bloodstream infections in North America
[9]. Adding to the concern is the limited number of anti-
fungal drugs and the increasing prevalence of antifungal
drug resistance in Candida species. An estimated 3–5%
of C. parapsilosis are resistant to fluconazole, the most
commonly applied antifungal [10]. The recent emer-
gence of multidrug-resistant Candida auris with its re-
sultant high mortality rate [11] serves as a warning
regarding the potential for outbreaks of multidrug-
resistant C. parapsilosis. Therefore, understanding be-
havior of C. parapsilosis, both as a commensal organism
and opportunistic pathogen, is incredibly important.
A challenge that complicates understanding of the

medically relevant behavior of Candida in the human
microbiome is that the hosts used in model infection
systems (e.g., rat or murine mucosa) are not natural
hosts to Candida species. Study of Candida in these
models relies on some form of predisposition of the ani-
mal by occlusion, immunosuppression, surgical alter-
ation, or elimination of competing microbial flora [1].
Pure culture experiments, an alternative to model system
studies, are often the most accessible way to study Can-
dida. However, the lack of a microbial community con-
text is a large caveat, considering bacteria could
influence the nutrition, metabolism, development, and
evolution of eukaryotes. Indeed, other microbial eukary-
otes have been shown to be dramatically influenced by
their surrounding microbial communities. Choanoflagel-
lates, the closest known living relative of animals, live in

aquatic environments and feed on bacteria by trapping
them in their apical collar [12]. The Choanoflagellate
Salpingoeca rosetta is primarily a unicellular organism
but formation of multicellular rosettes is induced by a
sulphonolipd (RIF1) and inhibited by a sulfonate-
containing lipid, both produced by the bacterium Algori-
phagus machipongonensis [13]. Furthermore, the bacter-
ium Vibrio fischeri produces a chondroitinase, EroS,
capable of inducing sexual reproduction in S. rosetta
[14]. Together, these results demonstrate the influence
that bacteria can exert on the morphology, development,
and evolution of microbial eukaryotes.
There is more direct evidence motivating study of C.

parapsilosis functioning in situ. For instance, Caenor-
habditis elegans model of polymicrobial infection experi-
ments showed that C. albicans exhibits complex
interactions with Enterococcus faecalis, a bacterial hu-
man gut commensal and opportunistic pathogen. In this
context, C. albicans and E. faecalis negatively impact
one another’s virulence [15], suggesting a mechanism
that promotes commensal behavior in a gut microbial
community context. The decrease in C. albicans viru-
lence was attributed to inhibition of hyphal morphogen-
esis and biofilm formation by proteases secreted by E.
faecalis [15] as well as E. faecalis capsular polysaccharide
[16]. No research has investigated C. parapsilosis in a
microbial community context.
An alternative to studying Candida species in animal

models or laboratory cultures is to use an untargeted
shotgun sequencing approach (genome-resolved metage-
nomics). DNA is extracted from fecal or other samples
and sequenced. The subsequent DNA sequences are as-
sembled, and metagenome-assembled genomes (MAGs)
are reconstructed. Much work of this type has focused
on the bacterial members of the human microbiome;
however, recently developed methods such as EukRep
[17] enable reconstruction of eukaryotic genomes from
metagenomes with greater consistency, including ge-
nomes of Candida species [18]. The availability of ge-
nomes enables evolutionary studies and the application
of other ‘omics’ approaches, such as transcriptomics,
proteomics, and metabolomics, making it possible to go
beyond metabolic potential to study activity in situ. Al-
though there are limitations related to establishing caus-
ality via experimentation, the approaches can provide
insights into metabolism and changes in metabolism
linked to shifts in community composition in human-
relevant settings.
Here, we applied shotgun metagenomics, metatran-

scriptomics, and metaproteomics to investigate the be-
havior and evolution of Candida in the premature infant
gut and hospital environment. Novel assembled C. para-
psilosis and C. albicans genomes were reconstructed and
the metagenomic data analyzed in terms of
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heterozygosity and population diversity. Due to the sub-
stantially less prior research on C. parapsilosis and the
availability of C. parapsilosis-containing samples suitable
for transcriptomics and proteomics, we focused our ana-
lyses on C. parapsilosis and identified genes and gen-
omic regions under diversifying selection. Notably, we
also identified instances of copy number gain of a gene
involved in fluconazole resistance, pointing to a mechan-
ism for hospital adaptation [19]. C. parapsilosis in situ
transcriptomic and proteomic profiles were clearly dis-
tinct from profiles reported previously from culture set-
tings. Substantial shifts in C. parapsilosis expression
occurred with changes in microbiome composition over
a few day period, suggesting the strong influence of bac-
terial community composition on C. parapsilosis
behavior.

Results
Recovery of novel Candida strain genomes
A large dataset of a mixture of previously analyzed and
newly generated infant gut and NICU shotgun metagen-
ome samples were analyzed for the purpose of recon-
structing novel Candida genomes (see the “Methods”
section). Newly generated data includes fecal samples
collected and sequenced from two infants targeted for
having documented Candida infections during fecal

collection. Previously analyzed data includes fecal sam-
ples collected from 163 premature infants primarily dur-
ing the first 30 days of life (DOL) (full range of DOL 5–
121), with an average of 7 samples per infant. In
addition, samples of the Neonatal intensive care unit
(NICU) were taken from six patient rooms within the
hospital housing the infants (Magee-Womens Hospital
of UPMC, Pittsburgh, PA, USA). Finally, publicly avail-
able New York City subway shotgun metagenomes [20]
were included after identifying Candida reads in one of
the samples.
Candida genomes were assembled from samples con-

taining > 2 Mbp of predicted eukaryotic DNA using a
EukRep-based pipeline [17]; see the “Methods” section
for details. Eight new, unique Candida genomes were as-
sembled for this study (Table 1), five C. albicans ge-
nomes, and three C. parapsilosis genomes. Three
additional Candida genomes were assembled but have
been analyzed previously [18] along with the bacterial
component of the samples [21] (see the “Methods” sec-
tion), totaling in 11 Candida genomes reconstructed
from infant gut and hospital room metagenomes. Nine
of the 11 genomes were reconstructed from premature
infant fecal samples; 1 genome was derived from a NICU
room sample S2_005, and 1 from New York City Sub-
way Samples [20]. Genomes representing new strains

Table 1 Overview of Candida strain genomes used in this study

Genome Genus Species Length #
Scaffolds

N50 BUSCO
comp.

Year
sampled

Sample type Reference

C1_006 Candida Parapsilosis 11852211 191 108686 92 2017 Infant fecal metagenome This study

N3_182 Candida Parapsilosis 12563647 342 65710 94 2013 Infant fecal metagenome Olm et al. 2019
[18, 21]

S2_005 Candida Parapsilosis 11573959 1051 14507 93 2014 NICU metagenome Olm et al. 2019
[18, 21]

NYC
Subway

Candida Parapsilosis 7420453 1285 6417 62 NA NYC subway metagenome This study

L2_023 Candida Parapsilosis 4870205 2906 1700 35 2017 Infant fecal metagenome This study

CDC317 Candida Parapsilosis 13030174 9 2091826 93 NA Clinical skin isolate Butler et al. 2009
[22]

GA1 Candida Parapsilosis 13025060 39 1114083 93 NA Clinical human blood isolate Pryszcz et al.
2013 [23]

CBS1984 Candida Parapsilosis 13044404 25 962200 92 NA Olive fruit isolate Pryszcz et al.
2013 [23]

CBS6318 Candida Parapsilosis 13050515 28 1691491 93 NA Healthy skin isolate Pryszcz et al.
2013 [23]

N1_023 Candida Albicans 13456346 1675 15180 94 2012 Infant fecal metagenome This study

N2_070 Candida Albicans 13540857 1614 14761 93 2012 Infant fecal metagenome This study

N5_264 Candida Albicans 11647081 746 27434 85 2015 Infant fecal metagenome This study

S3_003 Candida Albicans 11972257 1049 14710 87 2017 Infant mouth metagenome This study

S3_016 Candida Albicans 10068784 802 19749 86 2018 Infant mouth, skin, and gut
metagenome coassembly

This study

SP_CRL Candida Albicans 12561678 897 22840 91 NA Infant fecal metagenome Olm et al. 2019
[18, 21]
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were named after their sample of origin. For comparison
to isolate genomes, we analyzed 4 previously published
C. parapsilosis and 51 C. albicans isolate genomes.

Candida genomic variability
To characterize genomic variability in the strains of C.
albicans and C. parapsilosis represented by
metagenome-derived genomes, we identified single-
nucleotide variants (SNVs) by mapping reads against
completed reference genomes (strain SC5314 for C. albi-
cans and CDC317 for C. parapsilosis). C. albicans ge-
nomes ranged from 3.2 to 9.9 heterozygous SNVs per kb
(heterozygosity), whereas C. parapsilosis genomes
ranged from 0.12 to 0.38 heterozygous SNVs per kb.
Heterozygous SNVs were defined as SNVs with two or
more alleles detected in a single sample, indicating dif-
ferent alleles between chromosomes. Thus, we infer that,
compared to C. albicans, C. parapsilosis displays very
low genetic variability between its diploid chromosome
pair, which can be indicative of low genetic variability in
the hospital environment and primarily asexual
reproduction [24].
Low heterozygosity in C. parapsilosis genomes has

been reported for previously sequenced genomes [23].

Interestingly, C. parapsilosis genomes derived from our
fecal metagenomes showed even lower overall heterozy-
gosity than pure culture reference genomes (Figure S1).
In general, this would not be expected because within-
sample population diversity due to sampling of a micro-
bial community should inflate measures of genomic het-
erozygosity. Thus, the lower genomic heterozygosity
may be reflective of infants being initially colonized by
essentially a single C. parapsilosis genotype.
Because multiple new strains were sequenced from the

same hospital, the phylogenetic relationships of new and
previously sequenced strains from the same hospital
were of interest from the perspectives of the persistence
of Candida populations in the hospital environment and
transfer from room to human. To place the hospital and
gut-associated sequences in context, we first compared
those genomes to available reference genomes from
NCBI using pair-wise average nucleotide identity (ANI)
and by construction of single nucleotide variant (SNV)
trees (Fig. 1A, Figure S1–S2). L2_023 was not included
due to low sequencing coverage. C. albicans strains were
spread throughout the tree of known C. albicans diver-
sity (Figure S2) whereas C. parapsilosis strains from in-
fant gut and NICU samples were clustered on a single

Fig. 1 Analysis of C. parapsilosis genomic variability reveals a potential hospital associated population and the presence of SNV hotspots. A A
phylogenetic tree of C. parapsilosis strains constructed from concatenated SNVs. Metagenome-derived hospital strains from this study demarcated
as the purple clade. ANI comparisons and a C. albicans SNV tree are also available in Figures S1–S2. B Whole genome SNV density plots for each
C. parapsilosis strain. Strain names in red are strains assembled from samples from infants or the NICU from Magee-Women’s Hospital. SNV
density plotted in 1.3 kb sliding windows. Window size was selected based on ease of visualization. Chromosomes are separated with dashed
lines. Total bar height represents total SNV density, and homozygous SNV proportion is labeled in red whereas heterozygous is black. C Depiction
of SNV hotspot overlaps between each strain. Pairwise overlap was calculated between each strain and plotted. Strain names in red are strains
assembled from samples from infants or the NICU from Magee-Women’s Hospital. D Two example SNV hotspots. Individual SNVs are represented
with red bars
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branch (Fig. 1A) separate from other reference hospital
and environmental strains. Further, the two infant gut
strains, sampled years apart (Table 1), were nearly iden-
tical (99.99% identity). We verified this with whole gen-
ome alignments of the hospital and gut sequences
(Figure S1–S2). We thus infer that the hospital room
and gut C. parapsilosis strains are very closely related
and are indicative of a possible hospital-associated C.
parapsilosis strain sequenced multiple times, years apart.
Based on analysis of population structure of all seven

unique C. parapsilosis genomes (Figure S3), we pre-
dicted six distinct C. parapsilosis ancestral populations.
The exception is the fecal strain N3_182, which appears
to be a recombinant admixture of the ancestral popula-
tions NICU strain S2_005 and the fecal strain C1_006.
Given that N3_182 was sequenced 4 years before C1_
006 (Table 1), both parental strains may have existed in
the hospital environment prior to hybridization. The
findings provide further evidence of distinct hospital-
associated C. parapsilosis strains, a hybrid of which colo-
nized a premature infant. However, it may be difficult to
accurately determine fine-grained population structure
with small genome sample sizes, and future sequencing
of C. parapsilosis genomes may further clarify this
result.

C. parapsilosis SNV hotspots as indicators of genes under
selection
To investigate whether genomes sampled from the hos-
pital could provide evidence of evolutionary adaptation
to this environment, we visualized the spatial distribu-
tion of C. parapsilosis genomic diversity in the newly re-
constructed genomes by mapping reads from each
genome to a reference sequence (CDC317, recovered
from a clinical sample) and calling SNVs. We plotted
the density of SNVs in 1.3 kbp sliding windows across
the genome of each strain (Fig. 1B). Both heterozygous
and homozygous SNVs are largely evenly distributed
throughout the genome, with the exception of a few
small regions with highly elevated SNV counts (regions
of elevated diversity) that we refer to as SNV hotspots
(Fig. 1B).
Interestingly, SNV hotspots show a high level of con-

servation between all strains (Fig. 1C). The one excep-
tion is reference strain GA1 cultured from human blood
[23], which shares only ~ 10% of its SNV hotspots with
any other given strain. Notably, the NYC subway strain
is fairly similar to the clinical reference strain CDC317
used for mapping (few and minor hotspots) whereas our
hospital sequences share SNV hotspots with environ-
mental reference strains CBS1954 and CBS6318 (one
isolated from an olive and the other from healthy human
skin).

To provide a more complete view of SNV hotspots
and ensure they were not an artifact of SNV hotspots
solely present in the CDC317 reference genome, we also
mapped the reads from each population to three other
genomes (environmental strains CBS1984 and CBS6318,
and the GA1 blood isolate, Figure S4). The number of
SNV hotspots ranged from 16 to 45, and the regions
were 5 kb to 24.5 kb in length. Due to the large size of
the SNV hotspots, each hotspot overlaps a number of in-
dividual genes with SNVs spread both within and be-
tween genes (Fig. 1D). In total, 376 genes are present
within a SNV hotspot in at least one strain. No particu-
lar KEGG family or PFAM domain was significantly
enriched in SNV hotspots.

Multicopy RTA3 gene
Another explanation for SNV hotspots could be due to
gene copy number variation, as recent duplications of a
region acquire mutations yet reads from these duplica-
tions map back to a single location. Overall, when win-
dowed genomic coverage is plotted alongside SNV
density (Fig. 2A), this is clearly not the case. However,
across the entire genome two regions of high coverage
(Fig. 2A), indicating high copy number variation, were
identified and neither correspond to SNV hotspots. The
first high copy number region contains an estimated 17–
28 copies of the 18S, 25S, 5S, and 5.5S rRNA genes
(Table S1, Fig. 2B). The variation in rRNA copy number
may indicate a range of maximum growth rates [25].
The second region, which corresponds to the lipid trans-
locase RTA3 gene and flanking sequence, is present in
5–16 copies (Table S1) in strains C1_006, N3_182, L2_
023, S2_005, and NYC_subway but is single-copy in the
four isolate genomes (Fig. 2B). Interestingly, RTA3 has
been implicated in resistance to azole class antifungal
drugs such as fluconazole in C. albicans [19]. The high
copy number RTA3 genes also have no detectable SNVs
and different boundaries in each strain, suggesting the
duplications may be recent and independent events in
each strain.

In situ metatranscriptomics and metaproteomics
Given most work with Candida species is performed in
pure culture or in murine models, little is known about
their behavior in the human gut. We hypothesized per-
forming metatranscriptomics and metaproteomics on in-
fant fecal samples with Candida would reveal unique
transcriptomic and proteomic profiles, indicative of dif-
ferences in metabolism and behavior between culture
and in situ settings. Two candidate infants were identi-
fied: infant 06 with a documented Candida blood infec-
tion (Fig. 3) and infant 74 with a documented Candida
lung infection. Both infants were treated with flucona-
zole shortly after detection of Candida infection (Fig. 3,
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Table S2). Metagenomic, metatranscriptomic, and meta-
proteomic datasets were generated from fecal samples at
five to six timepoints for each infant. In infant 74, no
Candida species were detected in the generated datasets
(Figure S4). However, in infant 06, metagenomic sequen-
cing confirmed the presence of C. parapsilosis (strain
C1_006) in the fecal samples. De novo gene prediction
was performed on the metagenome-derived C. parapsi-
losis genome and the resulting gene models were used
for mapping transcriptomic reads and proteomic pep-
tides (Fig. 3).

In addition to C. parapsilosis, genomes were recovered
for three bacterial species in infant 06: Enterococcus fae-
calis, Lactobacillus gasseri, and Staphylococcus epidermi-
dis. It is not uncommon for only four organisms, or
even fewer, to be present within a premature infant gut
metagenome as the infant gut is normally sterile at birth
and premature infants in particular typically receive anti-
biotics in the first weeks of life [21]. Interestingly, in
every infant where a Candida genome was assembled or
detected through read mapping, E. faecalis was also
present (N = 7). C. parapsilosis is highly abundant

Fig. 2 C. parapsilosis strains have high copy number rRNA and RTA3 loci. A Whole genome windowed coverage of SNP density for C. parapsilosis
strain C1_006. High copy number regions of interest are highlighted with red boxes. B An expanded view of highlighted high copy number
regions from A. Windowed coverage is plotted as 100 bp sliding windows. Metagenome-derived hospital strains from this study labeled in red. C
Boxplot of expression of the RTA3 gene from multicopy strain C1_006 in situ (blue) and strain CDC317 in culture (red). Expression represented as
transcripts per million (TPM). Expression is significantly different between the two groupings (p = 0.004) as determined using the Wilcoxon
ranked-sums test

Fig. 3 In situ metagenomics metatranscriptomics, and metaproteomics of infant 06. Plotted are the relative DNA, RNA, and peptide abundances
for each detected organism after human removal. Plotted on the x axis are the days of life (DOL) samples that were taken
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relative to other organisms in the first 20 days of life be-
fore quickly being replaced or outnumbered, largely by
E. faecalis. Similar abundance patterns have been ob-
served previously for microbial eukaryotes in neonatal
fecal samples [18]. C. parapsilosis transcriptomic abun-
dance shows a similar pattern to the DNA abundance
but transcription remains detectable at later time points
(Fig. 3). In contrast, C. parapsilosis proteomic abun-
dance remained relatively stable over all timepoints.

C. parapsilosis expression in situ vs. culture settings
Given most work with C. parapsilosis has been per-
formed on pure cultures, we wondered if there are dif-
ferences in behavior and metabolism in situ that would
be detectable by comparing transcriptomic datasets. For
comparison, C. parapsilosis strain C1_06 was isolated
from infant 06 fecal material on DOL 12. Transcrip-
tomic datasets were then generated for cultures of the

C1_06 isolate grown in YPD at 30 °C to replicate stand-
ard Candida isolate culture conditions. In addition, we
downloaded raw sequencing reads from publicly avail-
able C. parapsilosis RNAseq experiments [23, 26], in-
cluding datasets from multiple strains (CDC317,
CBS1954, and CBS6318) and varying culture conditions,
including different media, growth temperatures, and
oxygen concentrations. A hierarchical clustering of ex-
pression of CDC317 transcripts reveals a clearly distinct
transcriptomic profile between in situ and all culture set-
tings (Fig. 4A). Importantly, C1_06 culture transcrip-
tomes cluster closer to culture transcriptomes of various
other strains than to C1_06 in situ samples. Notably, in
situ samples are also extremely variable; clustering as far
apart from one another as from the culture samples (Fig.
4A). We quantitatively identified differentially expressed
transcripts between culture and in situ settings with
DESeq2 and found that 53% of transcripts were

Fig. 4 C. parapsilosis displays distinct and highly variable in situ transcriptomic profiles. A Hierarchical clustering of C. parapsilosis TPM values for
C1_006 in in situ samples and pure culture samples under a variety of conditions. B Average log2 fold change in situ vs culture plotted against
the mean of normalized counts for each transcript. Transcripts in red were identified as being significantly differentially expressed by DESeq2. C
Boxplots of expression of categories of genes involved in biofilm formation. Gene lists and categories were obtained from [27]. Regulatory
defective mutants refers to regulatory genes that inhibit biofilm formation when mutated, regulatory enhanced refer to genes that increase
biofilm formation when mutated, and unknown refers to genes involved in biofilm formation but their exact role is unclear
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significantly differentially expressed; 23% up in situ, 30%
down (Fig. 4B), further highlighting the stark differences
between in situ and culture settings.
Biofilm formation is an important virulence factor for

Candida species, often contributing to the development
of systemic infections [27, 28]. We were interested in
whether the expression of virulence factors was enriched
in situ, given the samples were obtained from an infant
with a documented Candida blood infection. We ob-
tained a list of well-characterized biofilm formation
genes from C. albicans [27], identified orthologs in C.
parapsilosis and compared their expression in situ to
culture settings. Biofilm formation showed lower expres-
sion overall in situ (Fig. 4C).
In situ and culture transcriptome samples were differ-

entiable in a principal component analysis (PCA),

paralleling the hierarchical clustering of C. parapsilosis
transcriptomes (Fig. 5A), although C1_006 culture tran-
scriptomes did not cluster as closely to other strain cul-
ture samples in this analysis. We performed a sparse
partial least squares discriminant analysis (sPLS-DA),
treating each transcript as a variable, to try and identify
important features able to discriminate between in situ
and culture in a multivariate space (Fig. 5B, Figure S5,
Table S3). Important features were enriched for mito-
chondrial and aerobic respiration genes (9/50) and
uncharacterized genes (11/50).
We were curious to see if the multicopy RTA3 gene in

infant strain C1_006 (Fig. 2B) showed increased expres-
sion as compared to the single copy RTA3 gene in refer-
ence strain CDC317. Indeed, the expression of the
RTA3 in strain C1_006 is significantly higher (p = 0.004,

Fig. 5 Presence of C. parapsilosis affects bacterial community member’s expression. A PCA of C. parapsilosis in situ and pure culture
transcriptomes. B Depiction of features identified by sPLS-DA for separating C. parapsilosis in situ and pure culture transcriptomes. Plotted are the
feature weights. Black bars are genes that exhibited higher expression on average in situ whereas grey had higher average expression in culture.
Genes labeled in red correspond to proteins of unknown function. C, D PCAs of E faecalis (C) and S. epidermidis (D) transcriptomes from infant
microbiomes both with and without detected C. parapsilosis. Candida-negative transcriptomes were from four different infants (published
previously; Sher et al. 2020) denoted as 64, 66, 69, and 71
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Fig. 2C), suggesting a role of this gene duplication as a
way to increase overall expression of RTA3. Interest-
ingly, there was no significant difference in strain C1_
006 RTA3 expression between culture and in situ set-
tings (Figure S6A), and we did not see an increase in ex-
pression following fluconazole treatment in situ (Figure
S6B), indicating RTA3 expression may be constitutively
higher in C1_006 regardless of condition. However, it is
worth noting we were unable to obtain samples until 7
days after fluconazole treatment and any treatment ef-
fect on expression may have already passed.

C. parapsilosis impact on bacterial expression
E. faecalis, S. epidermidis, and L. gasseri bacteria in in-
fant 06 had transcripts sequenced at high depths at mul-
tiple time points (Fig. 3). So, it was possible to
investigate whether the presence or absence of C. para-
psilosis had a distinguishable effect on their transcrip-
tomic profiles. We compared bacterial transcription in
these samples to transcription patterns of bacteria in the
absence of Candida using previously reported datasets
(21 samples for E. faecalis and 20 samples for S. epider-
midis [29]). The analysis was not possible for L. gasseri
as this bacterium was not present in any of the meta-
transcriptomes used for comparison. The transcriptomes
of S. epidermidis were distinguishable between the pres-
ence and absence of C. parapsilosis, and this effect ap-
pears to be independent of infant of origin and thus the
bacterial strain variant type (Fig. 5C, D). The effect is
also present for E. faecalis, although less clear and could
possibly be explained by variance across infants. This re-
sult suggests C. parapsilosis has a large impact on the
behavior and metabolism of other gut community mem-
bers. In addition, the expression of E. faecalis genes pre-
viously shown to negatively impact C. albicans virulence
[15] showed no significant difference in expression be-
tween C. parapsilosis negative and positive samples.
Important features identified from a sPLS-DA on

Candida-positive vs. Candida-negative samples included
a subset of E. faecalis ribosomal proteins (Table S3, Fig-
ure S5). Additionally, ribosomal proteins all showed
higher expression in situ, suggesting increased E. faecalis
growth rate in the presence of C. parapsilosis. Other im-
portant features included mannitol-specific phospho-
transferase system (PTS) transporters upregulated in
Candida-positive samples and downregulated mannose-
specific PTS transporters (Table S3). Furthermore,
Mannitol-1-phosphate 5-dehydrogenase, an enzyme re-
sponsible for the conversion of D-mannitol to fructose,
was upregulated in Candida-positive samples, indicating
an increased capacity for degradation of mannitol in
addition to import (Table S3). Important features in S.
epidermidis were less clear, but again included a subset

of ribosomal proteins as well as beta-lactamases, both
with increased expression in situ (Table S3).

Transcriptomics enriched gene functions
Given the large differences in transcriptomes between
culture and in situ C. parapsilosis, we looked for func-
tions enriched in either setting (Fig. 6, Table S4).
DESeq2 identified groups of differentially expressed
genes that were too large to be informative, so more re-
strictive cutoffs were used. Up in situ was defined as
having > 3 log2 expression in situ whereas down in situ
was defined as < − 3 log2 expression in situ. Up in situ
was enriched for KEGG families for LSM 2–8 and 1–7
complexes, a family of proteins involved in mRNA me-
tabolism highly conserved in eukaryotes [30], as well as
Cytochrome c oxidase and bc1 complex and proteins
without an annotated KEGG family (Fig. 6, Table S4).
Down in situ is enriched for helicase and polysaccharide
synthase PFAM domains. Additionally, proteins without
an annotated KEGG family (unknown function) were
enriched in both groups (Table S4).

Proteomics
Across the 10 proteome samples from 5 timepoints in
infant 06, 7063 protein groups (groups of similar se-
quences that cannot be distinguished because the pep-
tides are shared) were quantified, with an average of
4872 protein groups at each time point. Among these
were 5312 human and 1751 protein groups from C.
parapsilosis and bacteria (Supplemental Figure S7). Hu-
man protein groups dominate (90% of the peptide abun-
dances in each sample) because the limited amount of
fecal material precluded depletion of human cells before
cellular lysis and protein extraction. Among the quanti-
fied human protein groups, 324 of the 480 involved in
neutrophil degranulation (67%) were identified, with an
average of 294 protein groups detected at each sampling
point. This indicates an active host immune response
[31] (Supplemental Table S5).
While the high representation of human protein

groups reduces the coverage depth of the microbial
membership, it allows for simultaneous examination of
both host and microbiome activities. We quantified 349
C. parapsilosis protein groups across all samples mea-
sured, with a minimum of 126 C. parapsilosis protein
groups per sample. While this represents only ~ 6% of
the predicted C. parapsilosis proteome, the data enabled
observation of stability across time and determination of
some of the general metabolic activities of this organism
(Supplemental Figure S8). We detected evidence for C.
parapsilosis core metabolic activities such as glycolysis,
the TCA cycle, and organic acid metabolism. Repeated
detection of similar abundances of these proteins across
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the 24-day timespan of collected samples indicates the
stability of C. parapsilosis in the gut environment.
The abundant, significantly enriched protein groups

from C. parapsilosis were ribosomal and F-Type ATPase
proteins (Fig. 6), HSP70 and proteins with actin PFAM
domains (Table S4). Protein groups with the most pep-
tide evidence were involved in protection from oxidative
stress (e.g., superoxide dismutase). This suggests that C.
parapsilosis was actively responding to, and adapting to,
environmental stressors. Included in the set of highly
abundant proteins were some encoded in genome re-
gions within SNV hotspots. However, we found no sig-
nificant association between protein abundance and
association with these hotspots. We also examined the
most abundant proteins in the bacterial species. In E.
faecalis and S. epidermidis, proteins of the Lac pathway
were among the most abundant bacterial proteins. This
suggests that lactose may be an important substrate for
these community members in situ.

Discussion
Fungal pathogens are known to have hospital reservoirs.
For example, the water supply system of a pediatric

institute was shown to be a reservoir for Fusarium solani
[32]. A NICU outbreak of the fungi Malassezia pachyder-
matis was linked to the dog of a healthcare worker [33],
although persistence via long-term carriage by a health-
care worker vs. continual passage between infants and
rooms (or a combination of these) could not be resolved.
However, much remains to be learned about where reser-
voirs of hospital-associated fungi are and how long strains
persist in them. In contrast to previous studies of C. para-
psilosis utilizing pure culture and model systems, we
applied genome-resolved metagenomics, metatranscrip-
tomics, and metaproteomics to study C. parapsilosis in
the context of the infant gut and hospital rooms of a neo-
natal intensive care unit. We detected novel, near identical
C. parapsilosis genomes sequenced years apart in separate
infants, suggesting transmission of members of a fungal
population from reservoir to infant or infant to reservoir
to infant. It is worth noting that although the strains are
near-identical, the multicopy RTA3 locus in each strain
had different boundaries and different copy numbers. This
observation suggests that these two strains are very closely
related members of a somewhat more diverse hospital
adapted population.

Fig. 6 In situ enriched gene categories. Diagram depicting C. parapsilosis in the context of the infant gut, highlighting gene categories or families
that were significantly enriched in differentially expressed genes between in situ and culture. Blue letters represent functions with higher
expression in situ, while red represent functions with lower expression in situ. See Table S5 for details. A Ribosomal proteins, B cytochrome c
oxidase subunits, C LSM complexes, D proton antiporters, F E. faecalis mannose transporters, G E. faecalis mannitol transporters, H E. faecalis
subset of ribosomal proteins, I S. epidermidis subset of ribosomal proteins, J C. parapsilosis polysaccharide synthases (downregulated in situ), K C.
parapsilosis helicases (downregulated in situ).
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Population genomic analyses of reconstructed genomes
revealed multiple, independent instances of copy number
gain of the RTA3 gene. RTA3, a lipid translocase, has been
implicated in resistance to azole class antifungal drugs
such as fluconazole in C. albicans [19]. The RTA3 gene is
frequently overexpressed in resistant isolates and in-
creased expression of RTA3 increases resistance to flucon-
azole whereas deletion of the RTA3 gene results in
increased azole susceptibility [19]. Copy gain of this gene
in C. parapsilosis strains may represent a mechanism for
rapid adaptation to fluconazole, the most widely used anti-
fungal in most hospitals [19], as a means by which to in-
crease its expression and thus its resistance. Similar gene
copy number gains have been reported for the human
amylase gene, hypothesized to be in response to increases
in starch consumption [34]. Indeed, RTA3 expression in
situ from strain C1_006, which has RTA3 in multicopy,
was significantly increased as compared to single copy
strain CDC317 in culture [26] (Fig. 2C). The high likeli-
hood that the copy number gain occurred independently
in multiple strains suggests selection for this particular
genomic feature. Identifying mechanisms of antifungal re-
sistance is of particular importance given 3–5% of C.
parapsilosis strains are already resistant to fluconazole
[10] and our relative inability to deal with infections of
drug-resistant fungi.
Examining the genomic distribution of SNVs within

the genomes of each C. parapsilosis strain revealed the
presence of SNV hotspots. Interestingly, no particular
KEGG family or PFAM domain was significantly
enriched within SNV hotspots. This, combined with the
fact that SNVs within hotspots are spread both within
and between genes, may be indicative of the identified
SNV hotspots being recombination hotspots, or loca-
tions where many additional SNVs hitchhike along with
SNVs under selection as many of these SNVs, particu-
larly those in non-coding regions, are likely to have little
to no effect on function.
Many of these SNV hotspots are shared between strains,

some of which are specific to the hospital and infant gut
strains. Unlike C. albicans, C. parapsilosis is not an obli-
gate commensal of mammals [6]. Consequently, some re-
gions of the C. parapsilosis genome may be under
selection for adaptation to the hospital, in addition to the
gut environment. Further supporting the idea that some
genomic innovation is associated with adaptation to the
built environment, the NICU strain clustered the most
closely to the NYC subway strain based on SNV hotspot
overlap (Fig. 1C). These two strains are geographically and
phylogenetically distinct, but the shared regions of diversi-
fication may be related to their common need to adapt to
the built environment.
Metatranscriptomics of infant fecal samples revealed

C. parapsilosis transcriptomes that are both highly

variable and distinct from those of culture samples.
Interestingly, the degree of variance exhibited by tran-
scriptomes of the same population in the same infant
over a few day period was greater than that observed be-
tween C. albicans white and opaque phenotypes (Figure
S9) [35]. The C. albicans white and opaque phenotypes
differ in their appearance [36], mating style [37], and en-
vironmental conditions they are best adapted to [38, 39],
and represent two exceptionally distinct Candida pheno-
types. The high variability in C. parapsilosis is likely the
result of changing conditions presented in the gut, in-
cluding microbial community composition as well as the
developing physiology of the host. Varying stages of in-
fection and/or response to antifungal treatment may also
have had an effect, but more dense time-series and add-
itional infants would be required to elucidate these
effects.
In contrast to the large changes in C. parapsilosis

RNA and DNA relative abundances over time, C. para-
psilosis peptide relative abundance remained stable over
the study period. It is not uncommon to see different
signals from transcripts and proteins [40], in part be-
cause proteins can persist for relatively long periods of
time compared to transcripts. The most abundant pro-
teins in the proteomics dataset have a HSP70 domain
found in heat shock proteins (HSP). In C. albicans, HSP
have been documented to help control virulence by
interacting with regulatory systems and to enable drug
resistance [41].
The presence of C. parapsilosis within infant gut sam-

ples may impact the transcriptomes of bacterial gut
community members. Important features for separating
Candida-positive and Candida-negative E. faecalis tran-
scriptomic samples included a suite of upregulated man-
nitol transporters and downregulated mannose
transporters (Table S3). C. parapsilosis strain SK26.001
is documented as producing mannitol [42] and mannose,
in the form of the polysaccharide mannan which can be
an important component of extracellular polysaccharides
produced by Candida [43]. Interestingly, a characteristic
of E. faecalis is its ability to grow by fermenting manni-
tol [44]. Given the potential for interaction between E.
faecalis and C. parapsilosis, it is possible that the pres-
ence of C. parapsilosis induces a substrate switch in E.
faecalis from mannose, an important component of C.
parapsilosis biofilm matrix, to mannitol, a sugar pro-
duced by C. parapsilosis under some conditions.
Interestingly, statistical tests detected a subset of ribo-

somal proteins as important features for separating
Candida-positive from Candida-negative samples for
both E. faecalis and S. epidermidis (Table S3) based on
transcription. In recent years, ribosomal heterogeneity,
in which ribosomal protein subunits are swapped out or
missing from individual ribosomes, has gained traction
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as a way for organisms to regulate translation [45–47].
Ribosomal heterogeneity may be being utilized as an
additional regulatory measure to adapt to the rapidly
changing gut microbial context. Alternatively, fluctua-
tions in ribosomal subunit abundance could be to main-
tain ribosomal homeostasis [48], or individual ribosomal
subunits could be performing functions unrelated to
protein synthesis [49].
Biofilm formation is an important virulence factor of

Candida infections [50]. Infant 06 had a documented
Candida blood infection, and such infections are com-
monly systemic [51]. Interestingly, despite infection,
Candida biofilm formation genes were relatively less
expressed in situ in the gut of Infant 06 as compared to
expression levels previously reported over a range of cul-
ture conditions. Similarly, genes with a PFAM domain
for polysaccharide synthase, genes potentially important
for the generation of Candida biofilm matrices [43], were
less expressed in situ than in cultures. Thus, biofilm for-
mation may not be an important component of every
infection.
The prevalence of transcripts of uncharacterized genes

in the in situ transcriptomes (Fig. 5B; Table S3) is par-
ticularly interesting. C. parapsilosis and other Candida
species are rarely studied in a microbial community con-
text, leaving gaps in understanding of genes required for
organism-organism interactions. We suspect that some
of the highly expressed genes are important for Candida
interactions with bacteria and other community mem-
bers. Thus, they represent important targets for future
co-culture-based investigations.
A limitation of this study was obtaining fecal samples

with sufficient Candida DNA, RNA, and protein for ana-
lysis. Consequently, although we present the first in situ
metatranscriptomics and metaproteomics for C. parapsi-
losis, the data analyzed is for a single strain in a single
infant. It is perhaps not unexpected that in situ expres-
sion patterns differed significantly from those observed
in culture settings. However, metatransciptomes from
more C. parapsilosis strains and more infants that are
recovered under highly standardized conditions are
needed to determine the contributing factors, such as
the coexisting bacteria and infant gut conditions that
lead to these differences. Development of methods to
more reliably recover low abundance microbial
eukaryotic material in the midst of the bacterially domi-
nated gut will be crucial for further insights.

Conclusions
We applied genome-resolved metagenomics, metatran-
scriptomics, and metaproteomics to recover genomes
for, and study the behavior of, C. parapsilosis in situ. We
showed C. parapsilosis has a highly distinct transcrip-
tomic profile in situ vs in culture. Further, the extreme

variability in the in situ transcriptome data indicates the
considerable effect the gut microbial community and hu-
man host may have on C. parapsilosis behavior and me-
tabolism. Overall, these results demonstrate that in situ
study of C. parapsilosis and other Candida species is not
only possible but necessary for a more holistic under-
standing of their biology.

Methods
Metagenomic sampling and sequencing
All infant fecal metagenomes used in this study were de-
rived from infants housed in the Magee-Womens Hos-
pital (Pittsburgh, PA). This study made use of previously
published infant datasets: NIH1 [52], NIH2 [53], NIH3
[54], NIH4 [55], Sloan2 [53], and SP_CRL [56], as well
as several new datasets including multiple timepoints
from infant 06 and infant 74, and samples L2_023, S3_
003, and S3_016.
For newly generated metagenomic sequencing from

infant 06 and infant 74, total genomic DNA and total
RNA were extracted from previously unanalyzed fecal
samples using Qiagen’s AllPrep PowerFecal DNA/RNA
kit (Qiagen) and subsequently split into DNA and RNA
portions. The aliquot used for metagenomic sample
preparation was treated with RNase A. DNA quality and
concentration were verified with Qubit (Thermofisher)
and Fragment Analyzer (Agilent). Illumina libraries with
an average insert size of 300 bps were constructed from
purified genomic DNA using the Nextera XT kit (Illu-
mina) and sequenced on Illumina’s NovaSeq platform in
a paired end 140 bp read configuration, resulting in at
least 130 million paired end reads from each library.
NICU metagenomic sampling was described and pub-

lished previously [53]. All samples were collected from
the same NICU at UPMC Magee-Womens Hospital
(Pittsburgh, PA). In order to generate enough DNA for
metagenomic sequencing, DNA was collected from mul-
tiple sites in the NICU and combined into three separate
pools for sequencing. Highly touched surfaces included
samples originating from the isolette handrail, isolette
knobs, nurses hands, in-room phone, chair armrest,
computer mouse, computer monitor, and computer key-
board. Sink samples included samples from the bottom
of the sink basin and drain. Counters and floors con-
sisted of the room floor and surface of the isolette. See
previous publication for details [53, 57].

Eukaryotic genome binning and gene prediction
For each sample, sequencing reads were assembled inde-
pendently with IDBA-UD [58]. Additionally, for each in-
fant, reads from every time point were concatenated
together. A co-assembly was then performed on the
pooled reads for each infant with IDBA-UD in order to
assemble sequences from low abundance organisms. The
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Eukaryotic porton of each sample assembly was pre-
dicted with EukRep [17] and putative eukaryotic bins
were generated by running CONCOCT [59] with default
settings on the output of EukRep. To reduce computa-
tional load, resulting eukaryotic bins shorter than 2.5
mbp in length were not included in further analyses.
GeneMark-ES [60] and AUGUSTUS [61] trained with
BUSCO [62] were used to perform gene prediction on
each bin using the MAKER [63] pipeline. In addition, a
second homology-based gene prediction step was per-
formed. Each bin was identified as either C. parapsilosis
or C. albicans and reference gene sets from C. parapsilo-
sis CDC317 and C. albicans SC5314 were used for hom-
ology evidence respectively in a second-pass gene
prediction step with AUGUSTUS [61], as implemented
in MAKER [63].

Bacterial genome binning and gene prediction
For infant 06 and infant 74 metagenomes, bacterial genes
were predicted on whole metagenomes using Prodigal in
metagenome mode (-p meta option; Hyatt et al. 2012).
Predicted proteins were functionally and taxonomically
annotated by searching against Uniprot (The UniProt
Consortium 2017), KEGG (Kanehisa et al. 2016), and Uni-
ref90 (Suzek et al. 2007) with USEARCH (UBLAST) (Ed-
gar 2010). Taxonomy for scaffolds was then determined
by taking the consensus of closest hits of each individual
gene sequence on a contig and determining the winner by
majority. Bacterial genomes were then manually binned
with ggKbase (ggkbase.berkeley.edu) utilizing coverage,
GC, and taxonomic information.

SNV calling and detection of SNV hotspots
In order to call variants in each Candida genome, reads
from the sample in which a particular genome was
binned from, or the publically available reads from SRA,
were mapped back to the de novo assembled genome
using Bowtie 2 [64] with default parameters. The Picard-
Tool (http://broadinstitute.github.io/picard/) functions
“SortSam” and “MarkDuplicates” were used to sort the
resulting sam file and remove duplicate reads. FreeBayes
(Garrison et al. 2012) was used to perform variant call-
ing with the options “--pooled-continuous -F 0.01 -C 1.”
Variants were filtered downstream to include only those
with support of at least 10% of total mapped reads in
order to avoid false positives. SNV read counts were cal-
culated using the “AO” and “RO” fields in the FreeBayes
vcf output file.
SNV density was visualized across the CDC317 refer-

ence genome using a custom python script (https://
github.com/patrickwest/c_parapsilosis_analysis). SNV
hotspots were quantitatively defined with 5 kbp windows
with a slide of 500 bp across the genome, flagging win-
dows with a SNV density at least three standard

deviations above the genomic average SNV density, and
merging overlapping flagged windows. Genes located
within SNV hotspots as well as overlapping SNV hot-
spots between strains were identified with intersectBed
[65].

Candida phylogenetics and population structure
For generation of a SNP tree for both C. parapsilosis and
C. albicans, all publically available genomic sequencing
reads for both species were downloaded from NCBI’s
short read archive (SRA), including 4 isolate C. parapsilo-
sis read sets and 51 C. albicans sets. SNVs were called for
each isolate read set using the same pipeline used for
metagenome-derived genomes, as described above. A SNP
tree was generated for C. parapsilosis and C. albicans
using SNPhylo [66] with settings ‘-r -M 0.5 -l 2’ and ‘-r -M
0.5 -l 0.8’ respectively and visualized using FigTree
(https://github.com/rambaut/figtree/). For genomic aver-
age nucleotide identity (ANI) comparisons, 4 C. parapsilo-
sis and 51 C. albicans reference genomes were
downloaded from NCBI. Subsequently, dRep [67] in the
‘compare_wf’ setting was used to generate ANI compari-
sons for each genome. For inferring C. parapsilosis popu-
lation structure, FreeBayes vcf files were converted to
PLINK bed format with PLINK [68] and used as input for
ADMIXTURE [69]. A total of 3785 SNVs were used to
infer ancestral populations. The predicted number of an-
cestral populations, K, was selected using ADMIXTURE’s
cross-validation procedure for values 1–8.

Detection of copy number variation
Genomic copy number variation within the C. parapsilo-
sis strains was searched for by mapping reads from the
sample the genome was derived from to the C. parapsi-
losis CDC317 reference genome. Windowed coverage
was then calculated across the genome in 100 bp sliding
windows using pipeCoverage (https://github.com/
MrOlm/pipeCoverage) and visualized with Integrated
Genomics Viewer (IGV) [70]. Copy numbers for multi-
copy regions were estimated by dividing the average
coverage of the windows located within the multicopy
region by the average genomic coverage.

Transcriptomic sequencing and analysis
For in vivo metatranscriptome generation, total RNA
was extracted from fecal samples using the AllPrep
PowerFecal DNA/RNA kit (Qiagen) and subsequently
treated with DNase. Purified RNA quality and concen-
tration were measured using the Fragment Analyzer
(Agilent). Illumina sequencing libraries were constructed
with the ScriptSeq Complete Gold Kit (Illumina) without
performing the rRNA removal step, resulting in library
molecules with an average insert size of 150 bp. Sequen-
cing was performed on Illumina’s NextSeq platform in a
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paired end 75 bp configuration, resulting in an average
of 54 million paired end reads per sample.
For culture C. parapsilosis strain C1_06 transcrip-

tomes, strain C1_06 was isolated from the stool of Infant
patient 06 on day 12 of life. Cultures of this isolate were
grown in YPD at 30 °C to mid-log phase. All cultures
were pelleted, washed, and flash frozen in liquid nitro-
gen. RNA was extracted using the RiboPure RNA Purifi-
cation kit (Ambion) and RNA samples were submitted
to the JP Sulzberger Columbia Genome Center for li-
brary preparation and sequencing. Libraries were con-
structed using the Illumina TruSeq RNA library prep kit
v2 and 100 bp single-end reads were sequenced using
the Illumina NovaSeq.
Transcriptomic reads from studies [23, 26] were

downloaded from the SRA. Transcriptomic reads from
each dataset were then mapped to C. parapsilosis refer-
ence strain CDC317 gene models with Kallisto [71] and
transcript per million (TPM) values were used to com-
pare expression levels across samples. Differentially
expressed transcripts were identified using raw read
counts with the R package DESeq2 [72]. Rlog transform-
ation was applied to transcript read counts from each
sample prior to generation of transcriptome PCAs. PCA
plots were generated with DESeq2. Important features
for separating C. parapsilosis in situ and culture as well
as E. faecalis and S. epidermidis Candida-positive and
Candida-negative samples were identified through the
use of a sparse Partial Least Squares Discriminant Ana-
lysis (sPLS-DA) as implemented in the MixOmics pack-
age [73] on rlog transformed transcript read counts.
MixOmics cross-validation (tune.splsda) was used with
settings fold = 3 and nrepeat =50 to estimate the optimal
number of components (features) for separating each
pair of sample types.
Genes were annotated with KEGG KOs and PFAM

domains using HMMER with KOfam [74] and Pfam-A
[75] HMM databases. Subsets of genes of interest (de-
scribed in results) were then searched for significantly
enriched KEGG families or PFAM domains with a
hypergeometric distribution test as part of the R ‘stats’
package [76].

Generation of proteomic datasets
Lysates were prepared from ~ 50 mg of fecal material by
bead beating in SDS buffer (4% SDS, 100 mM Tris-HCl,
pH 8.0) using 0.15–mm diameter zirconium oxide beads.
Cell debris was cleared by centrifugation (21,000×g for
10 min). Pre-cleared protein lysates were adjusted to 25
mM dithiothreitol and incubated at 85 °C for 10 min to
further denature proteins and to reduce disulfide bonds.
Cysteine residues were alkylated with 75 mM iodoaceta-
mide, followed by a 20-min incubation at room
temperature in the dark. After incubation, proteins were

isolated by chloroform-methanol extraction. Protein pel-
lets were washed with methanol, air-dried, and resolubi-
lized in 4% sodium deoxycholate (SDC) in 100 mM
ammonium bicarbonate (ABC) buffer, pH 8.0. Protein
samples were quantified by BCA assay (Pierce) and
transferred to a 10-kDa MWCO spin filter (Vivaspin
500; Sartorius) before centrifugation at 12,000×g to col-
lect denatured and reduced proteins atop the filter mem-
brane. The concentrated proteins were washed with 100
mM ABC (2× the initial sample volume) followed by
centrifugation. Proteins were resuspended in a 1× vol-
ume of ABC before proteolytic digestion. Protein sam-
ples were digested in situ using sequencing-grade trypsin
(G-Biosciences) at a 1:75 (wt/wt) ratio and incubated at
37 °C overnight. Samples were diluted with a 1× volume
of 100 mM ABC, supplied with another 1:75 (wt/wt) ali-
quot of trypsin, and incubated at 37 °C for an additional
3 h. Tryptic peptides were then spin-filtered through the
MWCO membrane and acidified to 1% formic acid to
precipitate the residual SDC. The SDC precipitate was
removed from the peptide solution with water-saturated
ethyl acetate extraction. Samples were concentrated via
SpeedVac (Thermo Fisher), and peptides were quantified
by BCA assay (Pierce) before LC-MS/MS analysis.
Twelve micrograms of each peptide sample was ana-

lyzed by automated 2D LC-MS/MS using a Vanquish
UHPLC with autosampler plumbed directly in-line with
a Q Exactive Plus mass spectrometer (Thermo Scien-
tific). A 100-μm inner diameter (ID) triphasic back col-
umn [RP-SCX-RP; reversed-phase (5 μm Kinetex C18)
and strong-cation exchange (5 μm Luna SCX) chroma-
tographic resins; Phenomenex] was coupled to an in-
house pulled, 75 μm ID nanospray emitter packed with
30 cm Kinetex C18 resin. Peptides were autoloaded,
desalted, separated, and analyzed across four successive
salt cuts of ammonium acetate (35, 50, 100, and 500
mM), each followed by a 105-min organic gradient.
Mass spectra were acquired in a data-dependent mode
with the following parameters: a mass range of 400 to
1500 m/z; MS and MS/MS resolution of 35 K and 17.5
K, respectively; isolation window = 2.2 m/z with a 0.5-
m/z isolation offset; unassigned charges and charge
states of + 1, + 5, + 6, + 7, and + 8 were excluded; dy-
namic exclusion was enabled with a mass exclusion win-
dow of 10 ppm and an exclusion duration of 45 s.
MS/MS spectra were searched against custom-built

databases composed of the concatenated sequenced
metagenome-derived predicted proteomes from all time-
points, the human reference proteome from UniProt,
common protein contaminants, and reversed-decoy se-
quences using Proteome Discover 2.2 (Thermo Scien-
tific), employing the CharmeRT workflow [77]. Peptide
spectrum matches (PSMs) were required to be fully
tryptic with two miscleavages, a static modification of
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57.0214 Da on cysteine (carbamidomethylated) residues,
and a dynamic modification of 15.9949 Da on methio-
nine (oxidized) residues. False-discovery rates (FDRs), as
assessed by matches to decoy sequences, were initially
controlled at 1% at the peptide level. To alleviate the
ambiguity associated with shared peptides, proteins were
clustered into protein groups by 100% identity for mi-
crobial proteins and 90% amino acid sequence identity
for human proteins using USEARCH [78]. FDR-
controlled peptides were then quantified according to
the chromatographic area under the curve (AUC) and
mapped to their respective proteins. Peptide intensities
were summed to estimate protein-level abundance based
on peptides that uniquely mapped to one protein group.
Protein abundance distributions were then normalized
across samples using InfernoRDN [79], and missing
values were imputed to simulate the mass spectrometer’s
limit of detection using Perseus [80] as annotated in the
Reactome database [81].
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