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Diurnal variation in the human skin
microbiome affects accuracy of forensic
microbiome matching
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Abstract

Background: The human skin microbiome has been recently investigated as a potential forensic tool, as people
leave traces of their potentially unique microbiomes on objects and surfaces with which they interact. In this
metagenomic study of four people in Hong Kong, their homes, and public surfaces in their neighbourhoods, we
investigated the stability and identifiability of these microbiota traces on a timescale of hours to days.

Results: Using a Canberra distance-based method of comparing skin and surface microbiomes, we found that a
person could be accurately matched to their household in 84% of tests and to their neighbourhood in 50% of
tests, and that matching accuracy did not decay for household surfaces over the 10-day study period, although it
did for public surfaces. The time of day at which a skin or surface sample was taken affected matching accuracy,
and 160 species across all sites were found to have a significant variation in abundance between morning and
evening samples. We hypothesised that daily routines drive a rhythm of daytime dispersal from the pooled public
surface microbiome followed by normalisation of a person’s microbiome by contact with their household microbial
reservoir, and Dynamic Bayesian Networks (DBNs) supported dispersal from public surfaces to skin as the major
dispersal route among all sites studied.

Conclusions: These results suggest that in addition to considering the decay of microbiota traces with time,
diurnal patterns in microbiome exposure that contribute to the human skin microbiome assemblage must also be
considered in developing this as a potential forensic method.
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Introduction
A central aim of forensic science is to accurately identify
people from the trace evidence they leave behind whilst
moving through and interacting with an environment.
Because people carry skin microbiomes which can be in-
dividually distinctive [1] and to some degree stable
across time [2], and which can be transferred to surfaces
through direct contact, the comparison of skin and

surface microbiota (hereafter ‘microbiota matching’) has
been recently investigated as a potential forensic identifi-
cation method [3–5] and compared to the long-
established forensic technology of fingerprinting [6, 7].
In research contexts, this method has been successfully
used to match people to objects they have touched in-
cluding computer keyboards and mice [7], mobile
phones [8, 9] and artificial crime scenes [10], to match
recently deceased people to objects found at the scene of
death [6] and to match people to the households in
which they live [11–13].
Despite these successful demonstrations, the analogy

between microbiota traces and fingerprints is misleading.
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Unlike fingerprints, which are generally stable for a per-
son’s entire life and which can persist on a surface un-
changed for months to years, a person’s skin
microbiome can shift over weeks or months [14, 15] due
to factors including the person’s physiology, their envir-
onment, dispersal from external sources, and stochastic
assembly processes (drift), although generally these
changes over time are smaller than intrapersonal differ-
ences [16]. With the exception of physiology, traces de-
posited on inert surfaces are susceptible to the same
forces, and may be exposed to ongoing microbial depos-
ition from other sources. These forces may occlude or
eliminate a forensic microbiota trace. In a previous study
of microbiota matching of people to their homes over a
time scale of months, we found that taxa that were more
useful in identifying people were more likely to be lost
from both skin microbiomes and surface traces over
time, and less likely to be dispersed from skin to surfaces
in the first place [11]. Minor, low-abundance taxa may
not only be more valuable in identifying individuals
compared to abundant taxa [11, 17], but may also be
more susceptible to elimination and more likely to be
the result of deposition events (‘transients’) rather than
being well adapted to the skin environment and estab-
lished in microbial community networks (‘residents’).
The nature of these low-abundance taxa, the processes
that cause the loss of identifying features and the time
scale on which this loss occurs are poorly understood. In
this study, we performed a metagenomic survey of sam-
ples taken from the palms of four people in Hong Kong,
household surfaces within their homes, and hand rails in
public spaces near their homes each morning and even-
ing for ten consecutive days, to investigate the time scale
on which this loss of identifying microbial features oc-
curs and to characterise the community and species
properties that contribute to identifiability and to trace
deterioration.

Results and discussion
Overview of samples and taxonomic composition
We collected morning and evening microbiota samples
across a 10-day sampling period from the palms of four
people in Hong Kong, from the bed headboards and in-
ternal front door knobs in their homes, and from hand-
rails in a subway entrance and a park or campus near
their homes. The study participants all lived alone and
in different regions of Hong Kong. We surveyed the mi-
crobial communities present in each sample with meta-
genomic sequencing. Although this metagenomic
approach captured members of the Archaea, Eukarya
and some viruses, Bacteria were the most abundant do-
main across all samples of all types (skin: mean abun-
dance 93%, SD 6.9%; household surface: mean 95%, SD
8.8%; public surface: mean 95%, SD 11%). The pooled

microbial abundance across all skin samples was domi-
nated by a shared set of known skin commensals, most
notably the families Propionibacteriaceae, Micrococca-
ceae and Moraxellaceae (Fig. 1). However, each person’s
skin microbiome had at least one notable bacterial fam-
ily that was present at higher abundance on that person
than on other people, creating individual taxonomic pro-
files that were similar between a person’s left and right
palm and generally maintained across the 10 days of
sampling. Person 1 was noted to have a high abundance
of Micrococcaceae compared to the other people in the
study; person 2 was characterised by Dermacoccaceae;
person 3 a mix of families including Gordoniaceae, Diet-
ziaceae and Dermacoccaceae; and person 4 Dermabac-
teraceae. These distinctive profiles were reflected in the
surface microbiomes from the respective homes, with
residence 1 having a substantial abundance of Micrococ-
caceae, residence 2 a high abundance of Dermacoccaceae
on the door knob, residence 3 a high abundance of Gor-
doniaceae on both the door knob and bed headboard
and residence 4 a high abundance of Dermabacteraceae.
This pattern of locality-specific families was not as evi-
dent for the public surface samples, which are likely to
reflect microbiota input pooled from the local popula-
tion and environmental sources.
The overall abundance of Propionibacteriaceae in skin

samples (mean relative abundance 27%, SD 23% across
all skin samples) was higher than in our previous 16S
rRNA gene-based survey of a similar group of Hong
Kong households and occupants [11]. This is likely be-
cause the 515F/806R primer pair used in the previous
study is biassed against the phylum Actinobacteria [18]
of which the family Propionibacteriaceae is a member,
and highlights a benefit of the metagenomic approach in
capturing a more representative sample of the species
present.

Human skin as the major microbial source for surface
communities
A key premise of microbiota matching as a forensic
method is that there is significant transfer of microbiota
from a person’s skin to surfaces they touch. We used
three methods to confirm that human skin was the
major source of microbiota on the sampled household
and public surfaces. First, we examined the relative
abundances of the families identified by Dunn et al. [19]
as indicators of human (skin, oral, stool) vs. environmen-
tal (leaf, soil) sources. With the exception of ten of the
public surface samples, in which ‘leaf’ was the major mi-
crobial source identified and ‘human skin’ the second-
major source, the highest-abundance identified source in
every surface sample was human skin (Fig. 2a). Second,
we used SourceTracker [20] to identify whether human
skin or negative control samples were the most likely
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sources for surface communities (Fig. 2b). Again with
the exception of public surfaces, human skin was pre-
dicted to be the major source for samples of all types, al-
though the predicted proportion of skin as a source for
household surface samples (mean 75%, SD 25%) was
higher than for public surface samples (mean 36%, SD
31%), with a much higher proportion of ‘unknown’
sources in these environments. As the ‘skin’ source is de-
termined only from the skin of study participants, this
‘unknown’ source potentially includes skin inputs from
other people who have touched these public surfaces.
Third, we compared the Bray-Curtis dissimilarities be-
tween pairs of skin and surface samples taken from the
same location with pairs from different locations (Fig.
2c). Communities at all surface sites were significantly

more similar (Mann-Whitney p < 0.05) to skin commu-
nities from the same location than communities from
different locations, although the magnitude of the differ-
ence was larger for household surfaces than for public
surfaces. Together, these results confirm the now well-
established finding that the microbiomes on frequently
touched surfaces both in homes and in public spaces are
assembled substantially from deposition of microbiota
from human skin, and in particular resemble the skin of
the household occupants or local residents.

Performance of microbiota matching methods
Microbiota matching aims to accurately identify the per-
son who has touched a surface by comparing the sur-
face’s microbiome (hereafter the ‘query’) to the skin

Fig. 1 Relative abundances of microbial families on skin, household surface and public surface sites across the study period. Each day comprises
a morning (left bar) and evening (right bar) sample. Some samples were excluded from the study due to sequencing failure (see Table S1)
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microbiomes of a group of people (hereafter the ‘pool’ of
‘references’). Previous studies have used a range of methods
to achieve this, including SourceTracker prediction of the
sources of surface microbiota [11, 13], shared taxonomic
composition between query and references [9] and commu-
nity dissimilarity between query and references [7, 17]. We
compared matching with SourceTracker, which we have
used previously to match a similar Hong Kong cohort to
their household surfaces with 67% accuracy [11], to match-
ing by minimum Canberra distance or Bray-Curtis dissimi-
larity [17] (Fig. 3). Included in this comparison were query
and reference samples taken at the same time as well as
samples taken at different times (‘sampling delay’). Overall,
the Canberra distance method produced the most accurate
matches, with 84% accuracy for household surface and 50%
for public surface samples across all matching attempts, sig-
nificantly higher (χ squared p < 0.05) than the Source-
Tracker method (77% accurate for household surfaces, 42%
for public) and the Bray-Curtis dissimilarity method (75%
household, 38% public). Of the 172 combinations of query
site and sampling delay for which each matching method
was tested, the Canberra distance method had the highest

or equal-highest matching accuracy in 102 combinations.
This is consistent with the report of Watanabe et al. [17]
that the Canberra distance outperforms other distance and
dissimilarity measures; as noted by Meadow et al. [21], this
is likely because the Canberra distance is more influenced
by low-abundance taxa that drive the individuality of
grossly similar microbial habitats such as skin or surfaces.
We used the Canberra distance method for all further
matching analyses.

Temporal effects on matching accuracy
We examined the effect of sampling delay, in which a
surface ‘query’ sample is taken some time before or after
a skin ‘reference’ sample, on the accuracy of microbiota
matching. As our study took place over a 10-day period
with morning and evening samples taken on each day,
the range of sampling delays examined was between zero
(samples taken at the same time) and 10 days (query
sample taken 10 days after reference sample, or vice-
versa), with increments of approximately 12 h. For
household surface queries, there was no significant rela-
tionship between absolute sampling delay and matching

Fig. 2 (a) Abundances of bacterial families identified by Dunn et al. [19] as indicators of human and environmental sources. (b) SourceTracker
predictions for microbiota sources. (c) Bray-Curtis dissimilarities between skin and surface communities
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accuracy (Fig. 3; Spearman’s ρ, p > 0.05), in contrast
with our previous study where matching accuracy de-
clined significantly for household surface queries col-
lected several months before or after the reference pool
[11]. This suggests that household surface traces up to at
least 10 days old have not yet been substantially affected
by the processes that degrade the microbial matching
utility of older traces. By contrast, for public surface
queries, there was a strong (Spearman’s ρ = –0.73 for
public handrail, –0.51 for subway exit handrail) and sig-
nificant (p < 0.05) negative relationship between absolute
sampling delay and matching accuracy (Fig. 3).
There was also a substantial and significant relation-

ship between the time of day at which the query sample
and/or pool of reference samples was taken and match-
ing accuracy (Fig. S1). For household surfaces, queries
collected in the evening had a significantly higher accur-
acy rate than morning queries (χ squared p < 0.05),
whilst skin reference pools collected in the morning had
a significantly higher accuracy rate than those collected
in the evening (p < 0.05). For public surface sites, how-
ever, morning queries had a significantly higher accuracy
rate than evening queries (p < 0.05), whilst there was no
significant difference in accuracy rate between morning
and evening references. This suggests that there are sig-
nificant differences in the temporal dynamics underlying
the similarity of people’s skin and home microbiota envi-
ronments compared to skin and public surfaces, with di-
vergence between skin and public surface microbiomes
occurring significantly faster than between skin and

household surface. Further, it suggests that these dynam-
ics, which include processes of microbial dispersal be-
tween sites as well as the elimination of dispersal traces,
are not uniform throughout the day but are in some way
influenced by the diurnal cycle.

Diurnal variation in skin and surface microbiomes
We noted that some taxa at both skin and surface sites
appeared to have a diurnal abundance pattern, with rela-
tive abundance consistently higher in either the morning
or evening. Time of day was a significant contributor to
variance at the community level, with a significant differ-
ence between morning and evening communities across
all species and sites (PERMANOVA p = 0.008). To bet-
ter understand this diurnal variation and how it may
help account for the observed time-of-day effects on
microbiome matching, we investigated the identity and
abundance patterns of these diurnally varying taxa. The
abundance time series for each species at each site and
location was decomposed into trend, random and sea-
sonal components, with the seasonal component having
a period of 1 day (i.e. a single diurnal cycle). The
strength of the seasonal component (FS) was defined as
its variance relative to the variance in the random com-
ponent, and the significance of this strength assessed
with 999 random permutations of the species abun-
dances. With this method, we identified a total of 160
combinations of species, site and location where the spe-
cies exhibited a significant (p < 0.05) pattern of diurnal
variation (Fig. 4). The proportion of species identified as

Fig. 3 Microbiota matching accuracy with the SourceTracker, Canberra distance and Bray-Curtis dissimilarity methods. Points represent the
percentage of matching attempts for surface query samples at each site and time point that were matched to the correct location. Solid lines
and shaded areas represent the LOESS (locally estimated scatterplot smoothing) moving average and 95% confidence interval respectively.
Sampling delay represents the approximate time in hours between the collection of the reference samples and query sample; a negative value
indicates that the query sample was collected before the reference samples
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significantly diurnal, as well as the FS of those species,
was highest at skin sites (14% of all combinations of spe-
cies, site and location, mean FS = 0.40), followed by
smaller proportions at household surfaces (6.0%, mean
FS = 0.33) and smaller again at public surfaces (2.1%,
mean FS = 0.29). Among significantly diurnal species,
the difference in relative abundance between morning
and evening was on average largest at skin sites (mean
difference in relative abundance 3.3%, SD 6.4%), followed
by public surfaces (mean 3.0%, SD 9.4%) and household
surfaces (mean 2.5%, SD 5.7%).
Before examining biological explanations for these di-

urnal patterns, we first considered whether they could
be artefactual or due to error. One possible source of an
artefactual diurnal pattern would be a systematic differ-
ence in the processing of morning and evening samples,
such as the introduction of a contaminant species
though mishandling, or a bias for or against some spe-
cies due to differences in DNA extraction technique. Be-
cause such a systematic difference would be expected to

apply similarly to samples from the four locations, which
were processed in parallel in the same laboratory and
using the same equipment and reagents, we examined
the number of significantly diurnal species at each site
which were found in only one location. For all sites, the
majority of significantly diurnal species were unique to a
single location (72% of species at left palm, 75% at right
palm, 100% at bed headboard, 64% at door knob, 80% at
public handrail, 100% at subway exit handrail), a pattern
not consistent with a systematic methodological error.
We also examined the proportion of species with a sig-
nificantly diurnal pattern that were identified in the
negative control samples. The majority (75%) of signifi-
cantly diurnal species across all samples were absent
from all the negative control samples, although this pro-
portion was smaller than that of non-diurnal species of
which 94% were absent from the negative controls.
We also examined the possibility that this effect may

be driven by input into our metagenomes of genetic ma-
terial from reagent contamination, in spite of the

Fig. 4 (a) Abundances of selected diurnally varying species over the study period. The species with the highest seasonality strength at each site
is shown as an exemplar of the diurnal pattern. (b) Treemap showing taxonomic composition of significantly diurnal species at each site. Each tile
represents a taxonomic family, with the area of the tile proportional to its mean relative abundance at that site across all locations. The fill colour
of each tile represents its phylum
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decontamination steps taken (see the “Methods” sec-
tion). In particular, if there was a systematic difference
in the total biomass in morning compared to evening
samples at the DNA extraction and sequencing stages,
reagent contamination would proportionally contribute
a greater proportion of the observed species abundance
in the lower-biomass samples. We note that many of the
genera found to exhibit a significant diurnal pattern,
such as Janibacter, Microoccus and Dietzia, have previ-
ously been reported as common DNA extraction reagent
contaminants [22], although these genera are also plaus-
ible components of human skin and environmental
microbiomes. We re-ran the time series decompositions
for all samples with all species that appeared in our
negative control samples removed. Of all the species that
had been initially identified as significantly diurnal, 25%
(n = 40) were removed because they were present in the
negative controls; of the remainder, 17.5% (n = 28) were
no longer found to be significantly diurnal, perhaps due
to compositional effects (see next paragraph ), whilst
57.5% (n = 92) remained significantly diurnal. Consider-
ing that many of the species identified in the negative
controls were likely to be genuinely present in the sam-
pled sites, these results do not support a major contribu-
tion of reagent contamination to the observed patterns
of diurnal variation.
Another possible cause for an artefactual diurnal pat-

tern is the compositional effect of normalising species
counts in each sample to produce relative abundances
[23]. Relative species abundances within a sample are
not independent: an increase in the relative abundance
of one species proportionally reduces the relative abun-
dances of all others, even if the absolute abundances of
the other species remained unchanged. Thus, it is pos-
sible that even a single high-abundance species that has
a genuine diurnal pattern could cause other species
within the same sample to falsely appear to have com-
plementary diurnal patterns. We examined the number
of significantly diurnal species at each site that had their
abundance peak in the morning vs. evening, across the
24 combinations of site and location. Of these 24 combi-
nations, five had no diurnal species, seven had diurnal
species that all exhibited their highest abundance at the
same time of day (i.e. all during the morning or during
the evening), nine had a mix of diurnal species most
abundant in the morning and in the evening, and the
remaining three had a single species most abundant at
one time with the remainder most abundant at the other
time. The pattern in these latter three sites is potentially
consistent with a compositional effect, with a true diur-
nal pattern in a single species driving an apparent pat-
tern in the others. To examine this possibility further,
the species with the singular diurnal pattern was re-
moved from these three sites, species relative

abundances were re-normalised, and the time series de-
compositions were re-run to determine the effect on the
other diurnal species. At one of the sites, there was no
difference in the number of diurnal species, one site had
one (of eight, excluding the intentionally removed spe-
cies) fewer significantly diurnal species after the re-
analysis, and the last site had no significantly diurnal
species (from three previously). Overall, whilst the possi-
bility of a compositional effect at two of these three sites
could not be excluded, there was no evidence of a com-
positional effect driving the diurnal pattern for the ma-
jority of sites.
To better characterise the species that exhibit a diurnal

pattern, we first examined the relationship between diurn-
ality and abundance. Diurnal species (mean relative abun-
dance 3.1%, SD 6.5%) were significantly (Mann-Whitney p
< 0.05) more abundant than non-diurnal samples (mean
0.72%, SD 2.9%), excluding samples in which a given spe-
cies was absent. Abundance was also positively correlated
with the FS of diurnal species (Spearman’s ρ = 0.39, p <
0.05). It is notable that this positive relationship between
seasonality and abundance exists in spite of the fact that
diurnally varying species necessarily have significantly re-
duced abundance in around half of the samples in a given
time series. We next examined the taxonomic compos-
ition of the diurnal species. By relative abundance, diurnal
species at all sites were overwhelmingly dominated by the
phylum Actinobacteria, and particularly the families Pro-
pionibacteriaceae, Micrococcaceae, Gordoniaceae and Der-
macoccaceae (Fig. 4b). These families were noted to
correspond well to the families that characterised the skin
and surface samples for a particular location; for example,
the family Gordoniaceae was unusually abundant in skin,
household surface and public surface samples from loca-
tion 3 (Fig. 1).
Whilst this study was not designed to assess physio-

logical or environmental factors that may contribute to
this diurnal pattern, we evaluated whether microbial dis-
persal was a potential or partial explanation. We
hypothesised that microbial dispersal from public sur-
faces to hands occurs primarily during the daylight
hours, when people are likely to be out of their homes
and in public spaces, and is followed by a ‘normalisation’
of the skin microbiota overnight driven by bathing,
handwashing and interaction with household objects and
surfaces that act as reservoirs of the household occu-
pant’s normal skin microbiome. This hypothesis pre-
sumes that the major route of dispersal among the three
types of sites is from public surfaces, which represent
pooled human skin microbiota as well as environmental
inputs, onto skin whilst people are out in public spaces,
and subsequently onto surfaces within people’s private
homes. This is consistent with the observed proportions
of diurnal varying species at sites of each type, with the
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fixed public pool having the fewest diurnal species with
the weakest FS, skin having the most diurnal species with
the strongest FS, and household sites falling in between.
This hypothesis would also explain why morning skin
references had significantly higher accuracy rates than
evening references when matching against household
queries, as the evening references were taken at the end
of a day of dispersal from public surfaces, whilst morn-
ing references were taken at the end of the period of
normalisation. It may also explain why morning public
surface queries had marginally but significantly higher
accuracy rates than evening queries, as these queries
were taken during the daytime hours when people were
likely out and interacting with public surfaces. However,
it does not explain why household surface evening quer-
ies had higher accuracy rates than morning queries (Fig.
S1).
To test this hypothesis, we generated Dynamic Bayes-

ian Networks (DBNs) for all taxonomic families present
at each location, modelling the effect of the abundance
of each family at a given site on the abundance at other
sites after one time point increment (i.e. morning to
evening, or evening to the following morning, approxi-
mately 12 h). In these networks, a node represents a site
at a particular location (e.g. ‘subway exit handrail at lo-
cation 2’ or ‘left palm at location 4’), whilst an edge from
one node to another represents a causal relationship be-
tween the abundance of a family at the first site (the
‘parent’ node) and the abundance of the same family at
the second site (the ‘child’ node) after one time point in-
crement, implying microbial dispersal from one site to
another [13]. Forty-seven percent of the DBNs were gen-
erated with at least one edge. Public surface nodes were
significantly (Kruskal-Wallis p < 0.05) more likely to be
parents than nodes of other types, yielding 599 edges in
total across all networks, compared to 525 edges from
skin parent nodes and 476 from household surface par-
ent nodes. Skin nodes were significantly (Kruskal-Wallis
p < 0.05) more likely to be child nodes than other types,
with 597 edges ending at skin nodes, compared to 522
ending at household surface nodes and 481 at public
surface nodes. The single most common edge type was
from a public surface node to a skin node, comprising 261
edges in total. This strongly supports dispersal from public
surfaces to skin at the approximately 12-h time scale as
the major dispersal route between the three types of sites
studied. However, these results do not suggest that disper-
sal from public surfaces to skin is the only, or even the
major, driver of diurnal variation. Other regular patterns
of activity, such as bathing, as well as physiological factors
are very likely to play major roles.
Whilst there has been some previous work on the con-

nection between the human circadian rhythm and the
gut microbiome (reviewed in [24]), to our knowledge,

there have been few previous reports on diurnal vari-
ation in the human skin microbiome, whether driven by
physiological factors or by dispersal. Interestingly, one
previous study examined human skin immediately after
contact with public surfaces in the subway system in
Hong Kong and found a similar pattern of diurnal vari-
ation between morning and evening samples, with the
Actinobacteria as a major contributor to this variation as
well as being the most abundant phylum overall [25].
This suggests that in addition to the effect of the daily
rhythm of contact with public surfaces followed by ‘nor-
malisation’ with the household microbiome that we
propose above, there is also an effect of intra-day vari-
ation on public surfaces themselves, although as de-
scribed above we found fewer significantly diurnal
species on public surfaces than on skin or household
surfaces.
Our results demonstrate yet another way in which fo-

rensic microbiota traces are not simply ‘microbial finger-
prints’, but rather momentary snapshots of a dynamic
network of microbial dispersal in which a person’s skin
and a surface on which they leave a trace are only two
nodes. In particular, they suggest that understanding the
potential acquisition of microbiota from touched sur-
faces into the skin microbiome may be useful to develop
effective matching methods. Despite the success of
microbiota matching in this and previous similar studies
[11–13], using relatively simple methods of comparing
the community distances between reference and query
samples, these studies have the advantage of identifying
a match from a small and closed pool of references of
which the correct match is known to be a member. In
real-world forensic applications, the reference pool could
potentially comprise the entire population of a city or
country, with no certainty that the correct match is part
of this pool. There have been some previous demonstra-
tions of alternative approaches to microbial matching
based on identifying marker taxa or sequences, including
the metagenomic hitting set-based method described by
Franzosa et al. [14], the hidSkinPlex panel of curated
marker genes for forensic identification described by
Schmedes et al. [26], and the use of minimum entropy
decomposition (MED) to find individually identifying
clusters of marker gene sequences described by Richard-
son et al. [27]. As we have shown in this and in our pre-
vious study [11], community-level matching will always
have to contend with forces of microbial dispersal that
degrade the similarity between a query and a reference
sample. Approaches focused instead on identifying a tar-
geted set of marker sequences or taxa that can then be
traced through a dispersal event, or potentially even
though multiple steps of a microbial dispersal network,
may ultimately be more reliable for forensic matching
than community-level methods.
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Conclusions
This study sought to examine the processes that affect
microbiota matching accuracy on the timescale of hours
to days. Our results reveal that these processes differ
considerably between private and public surfaces, and
are further complicated by diurnal variation and the
time of day at which a sample was taken. There was
good support for a model in which this diurnal variation
is at least partially driven by dispersal from public sur-
faces to skin during daytime activity, followed by nor-
malisation between skin and indoor surfaces at night,
although other patterns of activity and physiological fac-
tors are very likely to play major roles. This study pro-
vides further evidence that the use of microbiome
analysis in forensic identification is not a simple matter
of comparing ‘fingerprints’, but rather depends on and
must therefore account for dynamic systems of microbial
dispersal.

Methods
Sample collection, DNA extraction and metagenome
sequencing
Skin (left and right palm), indoor surface (bed headboard
and entrance door knob) and public surface (outdoor
park or campus handrail and subway exit handrail) swab
samples were collected twice daily (morning collection
between 8–9 a.m., evening collection between 5–8 p.m.)
over a 10-day period in May 2018. Sampling locations
included four residential units, each occupied by a single
person i.e. not cohabiting with family or other occu-
pants. The four people included in the study were not
related and were instructed to follow their normal daily
routines during the study period. For each residence, the
handrails of an adjacent outdoor park or university cam-
pus and the nearest subway station exit were sampled as
low- and high-traffic (respectively) public surfaces. These
public surfaces were selected using a uniform process
for each location, and were not intended to be surfaces
known to be touched by the study participants nor were
the participants instructed to touch these surfaces; ra-
ther, they were intended as representative of public sur-
faces in that area and therefore as reservoirs of the local
population’s skin microbiome. MS Mini DNA/RNA Buc-
cal Swabs (Isohelix, UK) were moistened with DNA/
RNA Shield Reagent (Zymo Research, USA), and each
surface (~5 cm2) was sampled with the moistened swab
for 20 s using a standardised technique. Moistened
swabs that were exposed to ambient air but not in con-
tact with any surface were collected as negative control
samples. Following sampling, swabs were immediately
submerged in Shield Reagent and stored at –20 °C.
Swabs were shipped to HudsonAlpha Genome Sequen-
cing Center (AL, USA) for DNA extraction and Illumina
paired-end 150 bp sequencing performed as described in

Danko et al. [28]. Some samples were excluded from the
study due to sequencing failure (Table S1).

Taxonomic identification and decontamination
Adapters were removed from the raw sequences using
AdapterRemoval (version 2.2.2, [29]). Quality filtering
and trimming were performed using KneadData (https://
github.com/biobakery/kneaddata, version 0.7.6) with de-
fault parameters, with human genome hg38 as the refer-
ence database to remove human sequences. This
resulted in an average of 4,681,264 (62.1%) of reads
retained from each sample. The microbial taxa in the
negative controls were annotated using the metaph-
lan2.py script from MetaPhlAn2 [30], with the default
database built from unique clade-specific marker genes.
The genera Bradyrhizobium and Staphylococcus domi-
nated all negative controls, with mean relative abun-
dances of 50.7% and 13.8% respectively (Fig. S2). To
remove the contaminant reads, reads from the 12
quality-filtered negative controls were co-assembled with
metaWRAP (version 1.2.1, [31]) with megahit as the de-
fault assembly method, and a minimum contig length of
1000 bp. A bowtie2 (version 2.4.1, [32]) index was con-
structed from the assembled contigs using bowtie2-build
with default settings, metagenome reads from skin and
surface samples were aligned against this index using
bowtie2 with default settings, and all reads that aligned
were removed from further analysis. Unpaired reads
were extracted from the paired-end fastq files using
fastq-pair [33]. Following contaminant removal, an aver-
age of 2,001,606 reads per sample was retained. MetaPh-
lAn2 was used to compute the species abundances of
the decontaminated skin and surface metagenomes as
well as the negative control samples. A second decon-
tamination step was then performed on these species-
abundance profiles, using decontam (version 1.1.2, [34])
with the ‘prevalence’ method to identify species still
present in the metagenomes that were likely contami-
nants based on their prevalence in the study samples
compared to the negative control samples. Whilst 34
contaminant species were identified using this method
and removed from the species-abundance profiles, these
comprised on average only 3% of the relative abundance
of each sample. Relative abundances were re-normalised
to 100% following this step.

Source analysis and microbiota matching
All downstream analysis was performed using R version
4.0.2 [35] with figures drawn using ggplot2 (version
3.3.2, [36]). SourceTracker (version 1.0.1, [20]) was used
with default settings to identify likely sources for indoor
and public surface communities, with skin and negative
control communities as potential sources. Bray-Curtis
dissimilarities and Canberra distances between samples,
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used for both the source analysis and for microbiota
matching, were calculated with the vegdist() function
from the R package vegan (version 2.5-7, [37]). Micro-
biota matching using SourceTracker was performed as
previously described [11]. Briefly, ‘reference pools’ were
constructed consisting of the set of all skin samples from
each of the four people in the study at a given time point
(i.e. a morning or evening sample from one day in the
study). Time points without at least one skin sample for
each person were excluded. SourceTracker was used for
each surface sample ‘query’ to generate a set of source
proportions from each reference pool, i.e. the estimated
contribution of each sample in that reference pool to the
query sample. The person with the highest estimated
contribution to the query community was considered
the match, and a match was considered accurate if that
person was from the same location as the query (i.e. a
sample from the residence occupied by that person, or
from a public surface near their residence). To conform
with the data formatting requirements of SourceTracker,
which uses absolute species counts rather than relative
abundances, species relative abundance percentages were
multiplied by ten then rounded up to the nearest inte-
ger; this effectively removed species with relative abun-
dances < 0.1%. Microbiota matching using Bray-Curtis
dissimilarities and Canberra distances was performed
using a modification of the method described by Wata-
nabe et al. [17]. Briefly, a ‘reference pool’ was created for
each time point as with the SourceTracker method, and
for each ‘query’ surface sample, the reference sample
with the smallest mean Bray-Curtis dissimilarity or
Canberra distance from the query was considered to be
the match, with accuracy defined as with the Source-
Tracker method. For all three methods, this approach
allowed matching accuracy to be determined with sam-
pling delays, as reference pools and query samples could
be from any pairwise combination of time points.

Time series decomposition and identification of diurnally
varying species
PERMANOVA comparison of morning and evening
communities was performed with the adonis2() function
from the R package vegan [37], using the Bray-Curtis
dissimilarity between communities. Time series decom-
position of species abundances was performed in order
to identify species that exhibited a significant diurnal
pattern over the study period. Each time series was the
relative abundance of a given species at a given site and
location across the twenty time points (10 days) of the
study period. Species that were not present for at least
four time points were excluded from time series analysis.
For sites and locations with missing samples for some
time points (excluding at the beginning and end of the
study period), abundances were interpolated using the

na_seadec() function from the R package imputeTS ver-
sion 3.1 [38]. Time series was performed with the built-
in R function decompose(), which decomposes a time
series into seasonal, trend and random (irregular) com-
ponents using moving averages. The strength of the sea-
sonal component St (FS or ‘seasonality strength’) for
each time series was calculated from the ratio between
St and the random component Rt following Wang et al.
[39]:

FS ¼ max 0; 1−
Var Rtð Þ

Var St þ Rtð Þ
� �

To calculate the significance of FS, each time series
was subjected to 999 random permutations of abun-
dances, with each permuted time series then decom-
posed and FS calculated. p was determined as the
proportion of these permutations with FS greater than
the test FS and significance defined as p < 0.05. This
method for identifying significantly diurnal species was
selected over pairwise tests of significance as it allows
for decomposition of the trend component of the time
series. For comparison, paired Mann-Whitney tests for a
significant difference between morning and evening
abundances were performed for all species at all sites.
Using the same p < 0.05 threshold, of all species at a
particular site and location identified as significantly di-
urnal using either method, the majority (95 species) were
identified as significantly diurnal using both methods,
whilst 65 species were identified using the time series
method alone, and 34 species were identified using the
Mann-Whitney method alone.

Generation of dynamic Bayesian networks
Dynamic Bayesian networks (DBNs) were constructed to
analyse the major routes of dispersal between the differ-
ent types of sites in this study. Following the method of
Lax et al. [13], species relative abundances within each
sample were aggregated at the family level and log2-
transformed. A total of 472 DBNs were generated, with
each network representing one combination of location
and taxonomic family. Each candidate network had six
nodes, representing the six sites sampled in this study.
Bayesian network inference with Java Objects (‘Banjo,’
https://users.cs.duke.edu/~amink/software/banjo/) was
used to generate the networks with the following set-
tings: no restrictions on network structure (i.e. no for-
bidden or mandatory edges); i5 discretisation policy;
‘Greedy’ searcher; ‘AllLocalMoves’ proposer; default
evaluator and decider; minimum, maximum and
mandatory Markov lags of 1 (i.e. all edges representing a
single time-point increment); maximum parent count of
5 (the practical maximum in a network with 6 nodes);
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default stopping and simulated annealing criteria for a
dynamic network.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40168-021-01082-1.

Additional file 1: Supplementary Figure 1. Effect of the time of day
at which a query (surface) and/or reference pool (skin) were collected on
microbiota matching accuracy.

Additional file 2: Supplementary Figure 2. taxonomic heatmap of
the top 25 genera (y-axis) identified in 12 negative controls (x-axis).

Additional file 3: Table S1. summary of all samples collected for this
study.

Acknowledgements
We thank the participants in this study.

Authors’ contributions
DW performed data analyses and wrote the manuscript. XT contributed to
analysing the data. MHYL coordinated the experiment. CEM supervised
sequencing of the samples. PKHL conceived the study, provided input on
the analyses and writing of the manuscript. The authors read and approved
the final manuscript.

Funding
This research was supported by the Research Grants Council of Hong Kong
(11215017), the City University of Hong Kong (7005130 and 7005284), the
Hong Kong Institute of Data Science (9360163), the Starr Cancer Consortium
(I13-0052), the ValleeFoundation, the WorldQuant Foundation, the Pershing
Square Sohn Cancer Research Alliance, the National Institutes of Health
(R01AI151059), the Bill and Melinda Gates Foundation (OPP1151054) and the
Alfred P. Sloan Foundation (G-2015-13964).

Availability of data and materials
Sequencing reads generated for this project have been deposited in NCBI
under accession number PRJNA671748. Original R scripts are available in
GitHub (https://github.com/wilkox/diurnal_variation).

Declarations

Ethics approval and consent to participate
All participants were fully informed of the details of the study and provided
written informed consent. The study was approved by the City University of
Hong Kong Human Subjects Ethics Sub-Committee (ref: H001553).

Consent for publication
Not applicable.

Competing interests
CEM is a co-Founder of Biotia, Inc.

Author details
1School of Energy and Environment, City University of Hong Kong, Hong
Kong SAR, China. 2Department of Physiology and Biophysics, Weill Cornell
Medicine, New York, NY, USA. 3The HRH Prince Alwaleed Bin Talal Bin
Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell
Medicine, New York, NY, USA. 4The WorldQuant Initiative for Quantitative
Prediction, Weill Cornell Medicine, New York, NY, USA. 5The Feil Family Brain
and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.

Received: 30 November 2020 Accepted: 21 April 2021

References
1. Human Microbiome Project Consortium. Structure, function and diversity of

the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.
org/10.1038/nature11234.

2. Oh J, Byrd AL, Park M. NISC Comparative Sequencing Program, Kong HH,
Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;
165(4):854–66. https://doi.org/10.1016/j.cell.2016.04.008.

3. Metcalf JL, Xu ZZ, Bouslimani A, Dorrestein P, Carter DO, Knight R.
Microbiome tools for forensic science. Trends Biotechnol. 2017;35(9):814–23.
https://doi.org/10.1016/j.tibtech.2017.03.006.

4. Clarke TH, Gomez A, Singh H, Nelson KE, Brinkac LM. Integrating the
microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet.
2017;30:141–7. https://doi.org/10.1016/j.fsigen.2017.06.008.

5. García MG, Pérez-Cárceles MD, Osuna E, Legaz I. The impact of the human
microbiome in forensic sciences: a systematic review. Appl Environ
Microbiol. 2020. https://doi.org/10.1128/AEM.01451-20.

6. Kodama WA, Xu Z, Metcalf JL, Song SJ, Harrison N, Knight R, et al. Trace
evidence potential in postmortem skin microbiomes: from death scene to
morgue. J Forensic Sci. 2018;8(3):5724–98. https://doi.org/10.1111/1556-402
9.13949.

7. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic
identification using skin bacterial communities. Proc Natl Acad Sci U S A.
2010;107:6477–81. https://doi.org/10.1073/pnas.1000162107 http://www.pna
s.org/content/107/14/6477.abstract.

8. Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, et al.
Forensic analysis of the microbiome of phones and shoes. Microbiome.
2015;3(1):21. https://doi.org/10.1186/s40168-015-0082-9.

9. Meadow JF, Altrichter AE, Green JL. Mobile phones carry the personal
microbiome of their owners. PeerJ. 2014;2:e447. https://doi.org/10.7717/
peerj.447.

10. Hampton-Marcell JT, Larsen P, Anton T, Cralle L, Sangwan N, Lax S, et al.
Detecting personal microbiota signatures at artificial crime scenes. Forensic
Sci Int. 2020;313:110351. https://doi.org/10.1016/j.forsciint.2020.110351.

11. Wilkins D, Leung MHY, Lee PKH. Microbiota fingerprints lose individually
identifying features over time. Microbiome. 2017;5(1):6477. https://doi.org/1
0.1186/s40168-016-0209-7.

12. Wilkins D, Leung MHY, Lee PKH. Indoor air bacterial communities in Hong
Kong households assemble independently of occupant skin microbiomes.
Environ Microbiol. 2016;18(6):1754–63. https://doi.org/10.1111/1462-2920.12
889.

13. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM,
et al. Longitudinal analysis of microbial interaction between humans and
the indoor environment. Science. 2014;345(6200):1048–52. https://doi.org/1
0.1126/science.1254529.

14. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJM,
et al. Identifying personal microbiomes using metagenomic codes. Proc
Natl Acad Sci U S A. 2015;112(22):E2930–8. https://doi.org/10.1073/pna
s.1423854112.

15. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial
community variation in human body habitats across space and time.
Science. 2009;326(5960):1694–7. https://doi.org/10.1126/science.1177486.

16. Tozzo P, D’Angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L. Skin
Microbiome analysis for forensic human identification: what do we know so
far? Microorganisms. 2020;8(6):873. https://doi.org/10.3390/microorga
nisms8060873.

17. Watanabe H, Nakamura I, Mizutani S, Kurokawa Y, Mori H, Kurokawa K, et al.
Minor taxa in human skin microbiome contribute to the personal
identification. PLoS One. 2018;13(7):e0199947. https://doi.org/10.1371/journa
l.pone.0199947.

18. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R.
PrimerProspector: de novo design and taxonomic analysis of barcoded
polymerase chain reaction primers. Bioinformatics. 2011;27(8):1159–61.
https://doi.org/10.1093/bioinformatics/btr087.

19. Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL. Home life: factors
structuring the bacterial diversity found within and between homes. PLoS
One. 2013;8(5):e64133. https://doi.org/10.1371/journal.pone.0064133.s005.

20. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG,
et al. Bayesian community-wide culture-independent microbial source
tracking. Nat Methods. 2011;8(9):761–3. https://doi.org/10.1038/nmeth.1650.

21. Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK,
Womack AM, et al. Bacterial communities on classroom surfaces vary
with human contact. Microbiome. 2014;2(1):7. https://doi.org/10.1186/2
049-2618-2-7.

22. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and laboratory contamination can critically impact sequence-based

Wilkins et al. Microbiome           (2021) 9:129 Page 11 of 12

https://doi.org/10.1186/s40168-021-01082-1
https://doi.org/10.1186/s40168-021-01082-1
https://github.com/wilkox/diurnal_variation
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1016/j.cell.2016.04.008
https://doi.org/10.1016/j.tibtech.2017.03.006
https://doi.org/10.1016/j.fsigen.2017.06.008
https://doi.org/10.1128/AEM.01451-20
https://doi.org/10.1111/1556-4029.13949
https://doi.org/10.1111/1556-4029.13949
https://doi.org/10.1073/pnas.1000162107
http://www.pnas.org/content/107/14/6477.abstract
http://www.pnas.org/content/107/14/6477.abstract
https://doi.org/10.1186/s40168-015-0082-9
https://doi.org/10.7717/peerj.447
https://doi.org/10.7717/peerj.447
https://doi.org/10.1016/j.forsciint.2020.110351
https://doi.org/10.1186/s40168-016-0209-7
https://doi.org/10.1186/s40168-016-0209-7
https://doi.org/10.1111/1462-2920.12889
https://doi.org/10.1111/1462-2920.12889
https://doi.org/10.1126/science.1254529
https://doi.org/10.1126/science.1254529
https://doi.org/10.1073/pnas.1423854112
https://doi.org/10.1073/pnas.1423854112
https://doi.org/10.1126/science.1177486
https://doi.org/10.3390/microorganisms8060873
https://doi.org/10.3390/microorganisms8060873
https://doi.org/10.1371/journal.pone.0199947
https://doi.org/10.1371/journal.pone.0199947
https://doi.org/10.1093/bioinformatics/btr087
https://doi.org/10.1371/journal.pone.0064133.s005
https://doi.org/10.1038/nmeth.1650
https://doi.org/10.1186/2049-2618-2-7
https://doi.org/10.1186/2049-2618-2-7


microbiome analyses. BMC Biol. 2014;12(1):87–12. https://doi.org/10.1186/
s12915-014-0087-z.

23. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome
datasets are compositional: and this is not optional. Front Microbiol. 2017;8:
57. https://doi.org/10.3389/fmicb.2017.02224.

24. Liang X, FitzGerald GA. Timing the microbes: the circadian rhythm of the
gut microbiome. J Biol Rhythm. 2017;32(6):505–15. https://doi.org/10.1177/
0748730417729066.

25. Kang K, Ni Y, Li J, Imamovic L, Sarkar C, Kobler MD, et al. The environmental
exposures and inner- and intercity traffic flows of the metro system may
contribute to the skin microbiome and resistome. Cell Rep. 2018;24:1190–
1202.e5. https://doi.org/10.1016/j.celrep.2018.06.109.

26. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL, Stephens KM,
et al. Targeted sequencing of clade-specific markers from skin microbiomes
for forensic human identification. Forensic Sci Int Genet. 2018;32:50–61.
https://doi.org/10.1016/j.fsigen.2017.10.004.

27. Richardson M, Gottel N, Gilbert JA, Lax S, Bailey MJ. Microbial similarity
between students in a common dormitory environment reveals the forensic
potential of individual microbial signatures. mBio. 2019;10(4):588. https://doi.
org/10.1128/mBio.01054-19.

28. Danko D, Bezdan D, Afshinnekoo E, Ahsanuddin S, Bhattacharya C, Butler DJ,
et al. Global genetic cartography of urban metagenomes and anti-microbial
resistance. bioRxiv. 2019:724526. https://doi.org/10.1101/724526.

29. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter
trimming, identification, and read merging. BMC Res Notes. 2016;9(1):88–7.
https://doi.org/10.1186/s13104-016-1900-2.

30. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al.
MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods.
2015;12(10):902–3. https://doi.org/10.1038/nmeth.3589.

31. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for
genome-resolved metagenomic data analysis. Microbiome. 2018;6(1):158–
13. https://doi.org/10.1186/s40168-018-0541-1.

32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.

33. Edwards JA, Edwards RA. Fastq-pair: efficient synchronization of paired-end
fastq files. bioRxiv. 2019:552885. https://doi.org/10.1101/552885.

34. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical
identification and removal of contaminant sequences in marker-gene and
metagenomics data. Microbiome. 2018;6(1):457. https://doi.org/10.1186/s401
68-018-0605-2.

35. R Core Team. R: a language and environment for statistical computing. 4.0.2
edition. Vienna: R Foundation for Statistical Computing; 2020. http://www.R-
project.org/

36. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York; 2016. https://ggplot2.tidyverse.org.

37. vegan: community ecology package. 2019. https://CRAN.R-project.org/packa
ge=vegan.

38. Moritz S, Bartz-Beielstein T. impute TS: time series missing value imputation
in R. R J. 2017;9(1):207–18. https://doi.org/10.32614/RJ-2017-009.

39. Wang X, Smith K, Hyndman R. Characteristic-based clustering for time series
data. Data Min Knowl Disc. 2006;13(3):335–64. https://doi.org/10.1007/s1061
8-005-0039-x.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wilkins et al. Microbiome           (2021) 9:129 Page 12 of 12

https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.1177/0748730417729066
https://doi.org/10.1177/0748730417729066
https://doi.org/10.1016/j.celrep.2018.06.109
https://doi.org/10.1016/j.fsigen.2017.10.004
https://doi.org/10.1128/mBio.01054-19
https://doi.org/10.1128/mBio.01054-19
https://doi.org/10.1101/724526
https://doi.org/10.1186/s13104-016-1900-2
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1101/552885
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1186/s40168-018-0605-2
http://www.r-project.org/
http://www.r-project.org/
https://ggplot2.tidyverse.org
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://doi.org/10.32614/RJ-2017-009
https://doi.org/10.1007/s10618-005-0039-x
https://doi.org/10.1007/s10618-005-0039-x

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Results and discussion
	Overview of samples and taxonomic composition
	Human skin as the major microbial source for surface communities
	Performance of microbiota matching methods
	Temporal effects on matching accuracy
	Diurnal variation in skin and surface microbiomes

	Conclusions
	Methods
	Sample collection, DNA extraction and metagenome sequencing
	Taxonomic identification and decontamination
	Source analysis and microbiota matching
	Time series decomposition and identification of diurnally varying species
	Generation of dynamic Bayesian networks

	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

