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subtropical urban reservoir
Yuanyuan Mo1,2, Feng Peng1, Xiaofei Gao1,2, Peng Xiao1, Ramiro Logares3, Erik Jeppesen4,5,6,7, Kexin Ren1,
Yuanyuan Xue1 and Jun Yang1*

Abstract

Background: Freshwater salinization may result in significant changes of microbial community composition and
diversity, with implications for ecosystem processes and function. Earlier research has revealed the importance of
large shifts in salinity on microbial physiology and ecology, whereas studies on the effects of smaller or narrower
shifts in salinity on the microeukaryotic community in inland waters are scarce. Our aim was to unveil community
assembly mechanisms and the stability of microeukaryotic plankton networks at low shifts in salinity.

Results: Here, we analyzed a high-resolution time series of plankton data from an urban reservoir in subtropical
China over 13 consecutive months following one periodic salinity change ranging from 0 to 6.1‰. We found that
(1) salinity increase altered the community composition and led to a significant decrease of plankton diversity, (2)
salinity change influenced microeukaryotic plankton community assembly primarily by regulating the deterministic-
stochastic balance, with deterministic processes becoming more important with increased salinity, and (3) core
plankton subnetwork robustness was higher at low-salinity levels, while the satellite subnetworks had greater
robustness at the medium-/high-salinity levels. Our results suggest that the influence of salinity, rather than
successional time, is an important driving force for shaping microeukaryotic plankton community dynamics.

Conclusions: Our findings demonstrate that at low salinities, even small increases in salinity are sufficient to exert a
selective pressure to reduce the microeukaryotic plankton diversity and alter community assembly mechanism and
network stability. Our results provide new insights into plankton ecology of inland urban waters and the impacts of
salinity change in the assembly of microbiotas and network architecture.
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Introduction
Freshwater salinization (i.e., increasing salt concentra-
tion) is becoming an extensive global environmental
problem potentially caused by saltwater intrusion,
urbanization, and climate change, especially in semi-arid
and arid climate zones [1–5]. Saltwater intrusion can
jeopardize drinking water resources and infrastructure
such as tubing systems, which may suffer from greater
wear [6]. Severe salinization has also detrimental influ-
ences on freshwater ecosystems [7], such as lethal effects
(loss of species diversity) and fitness reduction of fresh-
water organisms (sublethal effects) in high-salinity
conditions. For example, suppression of growth [8], de-
creased feeding efficiency [9], and increased deformities
in frogs [10] have been observed with increasing salinity.
Similarly, aquatic micro-organisms tend to be negatively
impacted by high salinity in hyper-saline lakes, as
reflected by decreased microbial diversity [11].
Microeukaryotic plankton communities are key com-

ponents of aquatic ecosystems and play a significant eco-
logical role in controlling food web structuring and
carbon flow through photosynthesis [12, 13]. Under-
standing the ecological processes determining the com-
munity assembly of these microorganisms is central to
the field of community ecology [14, 15]. Deterministic
and stochastic processes explain the assembly of micro-
bial communities [15, 16]. Deterministic processes in-
volve both biotic and abiotic factors, namely interspecies
interactions (e.g., competition, predation, mutualism,
and tradeoff) and environmental filtering (e.g., salinity,
pH, temperature), which together shape community
composition [17, 18]. Stochastic processes consider that
all species are ecologically equivalent, and include ran-
dom birth, death, dispersal, extinction, and speciation,
which also affect community assembly [19, 20]. Micro-
eukaryotic community assembly may be strongly affected
by stochastic processes in rivers and oceans [21, 22].
However, there is evidence that deterministic processes
may be the dominant ecological mechanisms determin-
ing the community assembly of microeukaryotic plank-
ton at determined spatial scales [23]. In most cases, both
deterministic and stochastic processes can jointly shape
microeukaryotic plankton communities [24, 25]. Previ-
ous studies have revealed that broad salinity change is
one of the most significant environmental variables
shaping microbial community structure in aquatic and
terrestrial ecosystems (see Additional file 1: Table S1).
Yet, few studies have investigated the influences of low
shifts in salinity on the community assembly of microeu-
karyotic plankton in inland freshwaters.
How environmental changes, such as salinity and

drought disturbance, affect microbial assembly and the
balance between deterministic and stochastic processes
remains unclear. As both processes are already

governing the microeukaryotic plankton community as-
sembly in natural ecosystems, they will likely be pro-
moted or limited by environmental changes across time
and space. A previous study found that fungal commu-
nity stochasticity did not increase when drought stress
was relieved and attributed this to strong deterministic
selection imposed by the host in the sorghum system
[26]. Another study revealed that a strong selection pres-
sure was imposed by salinity on the soil microbial com-
munity in desert ecosystems, resulting in dominance of
deterministic processes under high-salinity conditions
[27]. Importantly, salinity-driven selection is regarded as
a major factor affecting the balance of assembly mecha-
nisms in soil bacterial communities [28]. Evidently, tem-
poral dynamics are often associated with changes in
environmental conditions, which complicate our under-
standing of the mechanisms underpinning community
assembly [29]. However, few studies have explored the
change in deterministic processes relative to the changes
in stochastic counterparts induced by low shifts in salin-
ity in inland freshwaters.
Further, environmental disturbances likely destabilize

microbial co-occurrence networks [30]. In natural eco-
systems, most microeukaryotic plankton communities
consist of a few core taxa with high abundances and a
huge number of satellite taxa with low abundances [31,
32]. A previous study hypothesized that in macro-
organisms core taxa are mainly influenced by selection,
whereas satellite taxa are mostly affected by dispersal
limitation [33]. Such partition has been valuable for
comprehending the ecological processes shaping macro-
organism communities [34, 35], thereby contributing to
a better understanding of ecosystem functions [36].
There is increasing evidence indicating that community
responses to environmental disturbances can be affected
by ecological network characteristics [37]. For example,
weak interactions and co-exclusion lead to more stable
temporal ecological networks [38]. Despite a surge of
new and insightful network analyses in ecology, signifi-
cant knowledge gaps remain regarding how microeukar-
yotic plankton community stability responds to low
shifts in salinity.
Estuarine or brackish waters are ideal systems for eluci-

dating microbial dynamics with changing salinity [14, 39,
40]. However, unlike estuaries and saline lakes, our study
area, the Xinglinwan Reservoir, is a freshwater urban res-
ervoir in a rapidly urbanizing area (Jimei District of Xia-
men City) of southeast China, subjected to periodic
salinization. The resident population in Jimei district of
Xiamen City jumped from 148,000 in 2000 to about 580,
000 in 2010, and then to 1037,000 in 2020. After the con-
struction of the Xingji seawall in 1979, the Xinglinwan
Reservoir gradually evolved from the natural bay to the
present enclosed water body [41]. The reservoir was
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disconnected from the ocean by a sluicegate [41], which
may be the main factor causing the salinity changes ob-
served in this water body. In addition, terrestrial input,
water discharge from surrounding human activities, and
precipitation may also have contributed to salinity changes
[42]. The Xinglinwan Reservoir is the most important
water body in the Jimei District and plays an important
role for the landscape, water storage, and flood control in
Xiamen City. Yet, it is not clear how low shifts in salinity
in the reservoir affect the diversity and community assem-
bly of microeukaryotic plankton as well as their co-
occurrence patterns. Here, we examined the dynamics of
microeukaryotic plankton communities in this subtropical

urban reservoir using 18S rRNA gene sequencing based
on high-frequency sampling (daily to weekly) over a 13-
month period. To facilitate comparison between different
salinity levels at low shifts in salinity, we artificially divided
the samples into three salinity categories: low-salinity (0–
0.2‰), medium-salinity (0.2–2‰), and high-salinity (2–
6.1‰) conditions (Fig. 1a, b).
Two hypotheses were tested: (i) low shifts in salinity at

low salinities would significantly affect the composition
and diversity of the microeukaryotic plankton communi-
ties in freshwaters through a progressive increase in de-
terministic processes and a decrease in stochastic
counterparts; (ii) the co-occurrence network stability of

Fig. 1 Sampling sites and principal coordinates analysis of the microeukaryotic plankton community. a Location of the three sampling sites in
Xinglinwan Reservoir, Xiamen City, Southeast China. Water samples were taken from stations C, L, and G. b Principal coordinates analysis (PCoA)
of microeukaryotic plankton community composition at station G in the Xinglinwan Reservoir. Each circle represents one sample and is color-
coded according to time (month) and sized according to salinity
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core and satellite plankton subcommunities would be
different with low shifts in salinity.

Results
Temporal dynamics of environmental variables
A suite of environmental factors characterizing the Xin-
glinwan Reservoir are visualized in Figures S1 and S2 in
Additional file 1. Compared with station C, several simi-
lar temporal tendencies of the physical and chemical
factors were found at stations L and G. Salinity, elec-
trical conductivity (EC), and total nitrogen (TN) showed
almost synchronous changes over time, while salinity
and precipitation/temperature demonstrated the oppos-
ite trend (Additional file 1: Figure S2). Furthermore,
opposite trends were observed for salinity and precipita-
tion between 2016 and 2018, and Spearman’s correlation
indicated that salinity and precipitation exhibited a sig-
nificant and negative correlation from 2016 to 2018
(Additional file 1: Figure S3).

Composition and temporal dynamics of microeukaryotic
plankton communities
The total number of microeukaryotic OTUs was 19,952
in the reservoir at 97% similarity level, which included
618 core OTUs and 18,056 satellite OTUs (Additional
file 1: Table S2, Additional file 1: Figure S4a, b). Con-
tinuous fluctuations were observed in each plankton
supergroup of the microeukaryotic community, and the
most abundant OTUs were assigned to the groups of
Alveolata, Archaeplastida, Cryptista, Opisthokonta, and
Stramenopiles (Additional file 1: Figure S5a). In addition,
the core taxa were more abundant but less diverse than
the satellite taxa at phylum level (Additional file 1:
Figure S5b). The absolute abundance of the microeukar-
yotic communities ranged from 4.19 × 109 to 4.04 ×
1010 copies/L at station C, while the absolute abundance
at stations L and G varied from 4.21 × 109 to 7.92 × 1010

copies/L and from 4.29 × 108 to 6.63 × 1011 copies/L, re-
spectively. The fluctuations in absolute abundance of
microeukaryotes in the time series were larger than that
of bacterioplankton (Additional file 1: Figure S6a, b).
Changes in the ratio of microeukaryotic 18S rRNA gene
to bacterial 16S rRNA gene were observed across the
time series (Additional file 1: Figure S6c), however the
abundance of microeukaryotic 18S rRNA gene exhibited a
significant positive correlation with bacterial 16S rRNA
gene at stations C, L, and G, respectively (Additional file 1:
Figure S6d).
Non-metric multi-dimensional scaling (NMDS)

ordination showed a significant segregation of whole-
community microeukaryotic OTUs (based on 97% se-
quence similarity) between the three salinity levels at
stations C, L, and G, whereas the microeukaryotic com-
munities at stations C, L, and G exhibited a significant

aggregation at low-salinity conditions, indicating no sig-
nificant spatial difference in the effects of salinity on
community composition. Whole-community ASVs
(amplicon sequence variants) results showed almost
identical pattern as those based on OTUs (ρ = 0.997,
P = 0.001, Additional file 1: Figure S7). Therefore, we
selected only one station, station G, for high-
frequency monitoring during 13 consecutive months
to explore the shifts of microeukaryotic OTUs (Add-
itional file 1: Figure S7).

The importance of salinity in structuring plankton
communities
Microeukaryotic plankton communities were separated
based on salinity or time (month) at station G (Fig. 1).
Our results showed that salinity exhibited the strongest
correlations with all, core, and satellite microeukaryotic
community composition, followed by alpha- and beta-
diversities of bacterioplankton (Fig. 2). Other significant
environmental variables were water temperature, pH,
dissolved oxygen, chlorophyll-a, turbidity, electrical con-
ductivity, total carbon, total organic carbon, total nitro-
gen, ammonium nitrogen, nitrate nitrogen, nitrite
nitrogen, total phosphorus, and phosphate phosphorus
(Fig. 2). In addition, the all community Bray-Curtis dis-
similarity exhibited a stronger correlation with salinity
(R = 0.774, P < 0.01) than with time (R = 0.658, P < 0.01
for absolute time; R = 0.646, P < 0.01 for annual cycle
time) (Additional file 1: Figure S8). The Mantel and par-
tial Mantel results also revealed that both salinity and
time significantly explained the change in microeukaryo-
tic community composition (including all, core, and sat-
ellite taxa; P < 0.01), whereas salinity had a greater
influence on microeukaryotic communities than time
(Additional file 1: Table S3). Furthermore, the effects of
salinity on alpha-diversity of all, core, and satellite plank-
ton were stronger than time or the interaction of salinity
and time (Table 1).

Microeukaryotic plankton community composition and
diversity along salinity gradient
Non-metric multi-dimensional scaling (NMDS) ordin-
ation and ANOSIM tests showed that the composition
of the microeukaryotic plankton communities (all, core,
and satellite taxa) differed significantly between low-,
medium-, and high-salinity levels (R = 0.623, P = 0.001
for all taxa; R = 0.536, P = 0.001 for core taxa; and R =
0.633, P = 0.001 for satellite taxa, Fig. 3a). Further, all
core OTUs were shared among the three salinity levels,
while the proportion of shared OTUs (27.3%) was much
lower for the satellite taxa (Fig. 3b). Shannon-Wiener di-
versity decreased with increasing salinity for all, core,
and satellite plankton taxa (Fig. 3c), with Chlorophyta
and Ochrophyta being the dominant groups. The
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relative abundance of Chlorophyta and Ochrophyta in-
creased and decreased, respectively, with increasing sal-
inity, especially for all and core taxa (Additional file 1:
Figure S9).

Relative importance of deterministic and stochastic
processes along salinity gradient
The relationship between the occurrence frequency of
OTUs and their relative abundance was well described
by the neutral community model (Fig. 4a). The relative
contribution of stochastic processes decreased gradually
with increasing salinity, explaining 78.5%, 58.5%, and
48.3% of the community variance for the low, medium,
and high-salinity levels, respectively. The same pattern
was observed in the succession time series, reflecting
that the contribution of stochastic processes to the
plankton community was low when salinity was high

(Additional file 1: Figure S10). Further, all microeukaryo-
tic plankton communities exhibited significantly wider
niche breadths at low salinity than at medium-/high-sal-
inity levels (Fig. 4b). The average niche breadth was
significantly higher for core than for the satellite
subcommunities (31.5 for core taxa, 10.5 for satellite
taxa; P < 0.001) (Additional file 1: Figure S11). More im-
portantly, the C-score showed that standardized effect
size (SES) increased with increasing salinity, indicating
the enhanced importance of deterministic processes for
the plankton assemblage (Fig. 4c).

Co-occurrence networks and stability of microeukaryotic
plankton communities along salinity gradient
A metacommunity co-occurrence network was con-
structed based on all datasets from station G, and three
subnetworks along three salinity levels (low, medium,

Fig. 2 Abiotic and biotic drivers of microeukaryotic plankton community composition. Pairwise comparisons of environmental and biotic factors
are shown at the upper-right, with a color gradient representing Spearman’s correlation coefficients. Microeukaryotic plankton community
composition was correlated to each environmental or biotic factor by partial Mantel tests. The line width represents the partial Mantel’s r statistic
for the corresponding correlation, and line color means that significances are tested based on 999 permutations. WT, water temperature; DO,
dissolved oxygen; Chl-a, chlorophyll-a; EC, electrical conductivity; ORP, oxidation-reduction potential; TC, total carbon; TOC, total organic carbon;
TN, total nitrogen; NH4-N, ammonium nitrogen; NO3-N, nitrate nitrogen; NO2-N, nitrite nitrogen; TP, total phosphorus; PO4-P, phosphate
phosphorus; Note that the precipitation data are the 7-day accumulation before the sampling day, and the wind represents daily average wind
speed. B_richness, bacterial OTU number; B_SW, bacterial Shannon-Wiener index; B_NMDS1, bacterial NMDS ordination axis 1; B_NMDS2, bacterial
NMDS ordination axis 2. Note that only significant correlations are shown for simplicity
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and high) were analyzed for all, core, and satellite
taxa (Additional file 1: Table S4), respectively. The
topological properties of the networks varied signifi-
cantly with salinity. For example, both nodes (i.e.,
OTUs) and edges (i.e., significant links or correlations
between OTUs) constituting the all and core net-
works decreased with increasing salinity (that is, the
networks became smaller with increasing salinity).
Also, the satellite networks consisted of different
nodes linked by different edges along salinity levels,
316 nodes being linked by 755 edges, 290 nodes by
1316 edges, and 166 nodes by 582 edges in low-,
medium-, and high-salinity levels, respectively (Add-
itional file 1: Table S4). Further, all network degrees
followed a power-law distribution rather than a Pois-
son distribution, suggesting that the network structure
exhibited a scale-free and non-random distribution
(Additional file 1: Table S4). The observed network

parameters (average clustering coefficient, average
path length, and modularity index) were all larger
than those of their respective Erdös-Réyni random
networks, indicating “small-world” properties and
modular structure (Additional file 1: Table S4). Based
on the all network, the nodes with the top three
highest degrees were OTU_3 (Fungi), OTU_37
(Chlorophyta), and OTU_98 (Ochrophyta), being po-
tential keystone species. Both OTU_3 and OTU_37
belonged to the core microeukaryotic plankton (Add-
itional file 1: Figure S12a). Random forest (RF) ana-
lysis indicated that the beta-diversity of satellite
subcommunities exhibited a stronger relationship with
the multi-nutrient cycling index than the core sub-
communities (Additional file 1: Figure S12b).
The plankton community network was clearly di-

vided into six major modules that accounted for
82.4% of the whole network (Fig. 5a). For example,
microeukaryotic plankton communities were domi-
nated by taxa preferring medium salinity in module I,
by taxa preferring high salinity in modules II, IV, and
VI, and taxa preferring low salinity in modules III
and V. Further, we found that the contribution of
Ochrophyta, Perkinsea, and Ciliophora was higher in
modules representing low salinity. However, in the
modules corresponding to medium and high-salinity
levels, Chlorophyta exhibited the highest degree of
centrality (Additional file 1: Table S5). This indicates
that Ochrophyta, Perkinsea, and Ciliophora play a key
role in maintaining taxa coexistence in low-salinity
network, whereas Chlorophyta are more important in
maintaining coexistence in the medium and high-
salinity networks because nodes with a higher degree
of centrality are more important in maintaining taxa
coexistence in networks.
Finally, we compared network stability between differ-

ent salinity levels with varying microeukaryotic plankton
subnetwork structure. Compared with core taxa, the dis-
similarity of subnetworks was larger between the low
and high-salinity levels for both all and satellite taxa
(Additional file 1: Table S6). In fact, the community dis-
similarities between the groups were always higher than
those within groups for the different salinity levels, and
satellite subcommunities showed a higher dissimilarity
when compared against all and core taxa. When com-
paring the core subnetwork stability among the three
salinity levels, the natural connectivity at low salinity
was greater than that at medium and high-salinity levels.
However, natural connectivity at low salinity was much
lower than at medium or high salinity for satellite plank-
ton subnetworks (Fig. 5b). This indicates greater core
subnetwork robustness at low-salinity levels, whereas the
satellite subnetwork had greater robustness at the
medium and high-salinity levels.

Table 1 Two-way ANOVA showing the effects of time and
salinity on the alpha-diversity of microeukaryotic plankton
communities

All Core Satellite

F P F P F P

Time (n = 13)

Richness 2.978 0.001 1.957 0.037 3.337 0.000

ACE 3.201 0.001 1.654 0.090 3.555 0.000

Chao 1 3.152 0.001 1.622 0.098 3.479 0.000

Shannon-Wiener 2.431 0.008 1.990 0.033 0.931 0.520

Simpson 0.870 0.580 0.246 0.995 0.564 0.866

Pielou’s evenness 2.086 0.025 4.640 0.000 0.445 0.941

Salinity (n = 3)

Richness 16.767 0.000 20.729 0.000 11.986 0.000

ACE 16.867 0.000 19.355 0.000 13.914 0.000

Chao 1 16.366 0.000 20.885 0.000 12.492 0.000

Shannon-Wiener 15.628 0.000 8.396 0.000 15.216 0.000

Simpson 3.429 0.036 0.359 0.699 0.684 0.507

Pielou’s evenness 10.873 0.000 14.707 0.000 1.615 0.204

Time × salinity

Richness 3.991 0.002 2.550 0.033 3.084 0.013

ACE 3.951 0.003 2.194 0.061 3.456 0.006

Chao 1 3.869 0.003 2.054 0.078 3.223 0.010

Shannon-Wiener 4.528 0.001 2.379 0.044 2.294 0.051

Simpson 0.773 0.571 0.343 0.885 0.916 0.474

Pielou’s evenness 3.676 0.004 4.691 0.001 0.487 0.785

Boldface means significance at P < 0.05 level
Time includes 13 successional months
Salinity includes low, medium, and high salinity levels
All all microeukaryotic plankton communities, Core core microeukaryotic
plankton subcommunities, Satellite satellite microeukaryotic
plankton subcommunities
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Discussion
Low salinity increase triggers plankton community
composition change and diversity loss
In this study, we obtained new data on microeukaryotic
plankton community dynamics at low shifts in salinity
in an urban freshwater habitat based on high-resolution
sampling. We found that salinity variation may induce
compositional changes and diversity loss in the all,
core, and satellite plankton communities. Plankton
Shannon-Wiener diversity decreased with increasing
salinity for all, core and satellite taxa, emphasizing that
microeukaryotic plankton communities were not resili-
ent when subjected to salinity variation (Fig. 3c). Plank-
ton sensitivity to salinity may reflect the increase in
extracellular osmolarity with increasing salinity [43],
meaning that microeukaryotic plankton communities
that are unable to adapt to osmotic stress are likely to
die or become less active, leading to a decrease in
alpha-diversity of the communities. This is consistent
with a former study [44], showing that mycoplankton
alpha-diversity was higher during low-saline periods in

coastal ecosystems. However, a whole ecosystem ma-
nipulation experiment with freshwater rock pools with
three salinity levels (3, 6, and 12 ‰) did not find any
negative effect on bacterial alpha-diversity of a limited
salinity increase [45]. The contrasting results may be
related to the different microbial groups studied (bac-
terial community in previous study and the microeu-
karyotic plankton community in this study). Low
salinity increase may not be sufficient to filter out or
suppress many bacterial taxa but sufficed to strongly
suppress many microeukaryotic plankton species, per-
haps reflecting the high abundance, fast growth rates,
and rapid evolutionary adaptation by bacteria [46].

Salinity mediates the assembly processes of
microeukaryotic plankton communities
Our study indicates that low shifts in salinity in freshwa-
ters have an important influence on the assembly of all
microeukaryotic plankton communities, primarily by af-
fecting the balance between deterministic and stochastic
processes. The community variation explained by

Fig. 3 Community structuring of microeukaryotic plankton across the salinity gradient at station G in Xinglinwan Reservoir. a Non-metric
multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity showing the variation of microeukaryotic plankton communities
across three salinity levels. Significant level of all, core, and satellite taxa is P = 0.001. b Venn diagram showing the numbers of unique and shared
OTUs between three different salinity levels. c Shannon-Wiener index along the salinity level at station G. Different letters indicate significant
difference at P < 0.05 according to Tukey’s post-hoc test. All, all microeukaryotic plankton communities at station G; Core, core microeukaryotic
plankton subcommunities at station G; Satellite, satellite microeukaryotic plankton subcommunities at station G
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stochastic processes decreased from 78.5% at low-
salinity level to 48.3% at high-salinity level (Fig. 4a). In
addition, the microeukaryotic plankton communities
showed wider niche breadths under low salinity than at
the medium-/high-salinity conditions (Fig. 4b), implying
that the community assembly was more strongly influ-
enced by deterministic processes at high salinity, likely
because deterministic processes tend to have a stronger
effect on habitat specialists with a narrow niche breadth
than on generalists with a wide niche breadth [23, 47].
Further, C-score results showed that the value of stan-
dardized effect size (SES) increased with increasing salin-
ity, also indicating that the community assembly was
more strongly influenced by deterministic processes with
increasing salinity (Fig. 4c). There are several possible

explanations. First, increased allochthony may increase
stochastic processes in the wet season based on other
environmental factors that do not impose strong selec-
tion [48]. Specifically, precipitation events can increase
the freshwater input to the Xinglinwan Reservoir, ac-
companied by a decrease in salinity. Meanwhile, in-
creased precipitation may wash the micro-organisms
from surrounding environmental systems (the soil or
sediment, watershed, and air) into the reservoir, leading
to an enhanced immigration rate and higher diversity of
microbial community, which again increases stochasti-
city at low salinity. This agrees with the higher microeu-
karyotic diversity in low-salinity periods, followed by
medium and high-salinity periods (Fig. 3). Second, at
low salinity, freshwater microeukaryotes may be exposed

Fig. 4 Ecological processes shaping the microeukaryotic plankton community assembly at station G in Xinglinwan Reservoir. a The predicted
occurrence frequencies for low, medium, and high salinity representing microeukaryotic plankton communities from low, medium, and high
salinity periods in Xinglinwan Reservoir. The solid blue line is the best fit to the neutral community model (NCM), and the dashed blue line
indicates 95% confidence intervals around the NCM prediction. OTUs that occur more or less frequently than predicted by the NCM are shown in
green and red, respectively. R2 represents the fit to this model. b Comparison of mean habitat niche breadth for all taxa among low, medium,
and high salinity levels (different letters indicate significant difference at the P < 0.05 level using Tukey’s post hoc test). c C-score metric using null
models. The values of observed C-score (C-scoreobs) > simulated C-score (C-scoresim) indicate non-random co-occurrence patterns. Standardized
effect size <− 2 and > 2 represent aggregation and segregation, respectively
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to lower physiological stress, so that they can grow and
reproduce more freely, resulting in dominance of sto-
chastic processes (e.g., birth, death, and dispersal events)
in community assembly, while a strong selective pressure
may be exerted on the freshwater microeukaryotic
plankton when salinity increases [27]. Microbes that
grow well at high salinity have developed “salt-in” and “salt-
out” strategies to adjust the cytoplasm to osmotic pressure
[43]. “Salt-in” often involves intake of ions (e.g., K+ and
Cl–), while “salt-out” maintains a low-intracellular ion con-
centration through pumping out inorganic ions and accu-
mulating compatible solutes (e.g., sucrose, glycerol, and

glycin) to exclude salt from the cell and thus ensure os-
motic balance [43]. This would expectedly result in a higher
contribution of deterministic processes to the community
assembly with increasing salinity. Third, in low-salinity eco-
systems with less environmental heterogeneity or with less
competitive interactions between environmental generalists,
the stochastic assembly mechanism is likely to overrule de-
terministic processes [49]. Our results suggest that the de-
gree to which deterministic vs. stochastic processes shape
the microeukaryotic plankton community in this reservoir
is determined more by shifts in salinity rather than by sea-
sonality (Table 1; Additional file 1: Table S3).

Fig. 5 Network modules and stability for microeukaryotic plankton OTUs at station G. a Network revealing the modular associations among
microeukaryotic plankton OTUs (left). Relative abundance of microeukaryotic OTUs from major modules along the three different salinity levels
(right). A connection indicates a strong (SparCC |r| > 0.6) and significant (P < 0.01) correlation. The size of each microeukaryotic OTU (node) is
proportional to the number of connections (i.e., degree). b Network stability for all, core and satellite taxa at different salinity levels (i.e., low,
medium, and high), respectively. The robustness of all, core, and satellite networks under different salinity conditions in Xinglinwan Reservoir.
Insert: overview of pairwise community dissimilarity of microeukaryotic plankton communities at three different salinity levels. Statistical analysis is
non-parametric Mann-Whitney U test. ***P < 0.001. All, all microeukaryotic plankton communities; Core, core microeukaryotic plankton
subcommunities; Satellite, satellite microeukaryotic plankton subcommunities
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Co-occurrence network stability of core and satellite
microeukaryotic plankton shaped by salinity
Although the stability of plankton communities can be
used to infer ecosystem functioning [12], it is unclear
how plankton co-occurrence networks in an urban res-
ervoir respond to disturbances such as small changes in
salinity. In particular, the stability of core or satellite
plankton subnetworks is largely unexplored [30, 50].
Our results revealed that the six network modules corre-
sponded well with the three salinity levels (Fig. 5a). This
indicates that the modular structure or property of all
microeukaryotic plankton communities was sensitive to
changes in salinity. Environmental heterogeneity could
induce microbial modularity [51], which helps explain
why the six modules became dominant at different salin-
ity levels. Modularity can reflect competitive/synergistic
relationships and niche differentiation, yielding non-
random patterns of network structure, which ultimately
increases the complexity of ecological networks [52].
The network modules may act as indicators of important
ecological processes following the disturbance of salinity
changes.
Based on the plankton network modules, we found

that core OTUs play important roles in maintaining net-
work stability (Additional file 1: Figure S12a). Similar re-
sults have been described for microbiota in metropolitan
drinking water [53], agricultural soils [54], and activated
sludge ecosystems [55]. Interestingly, the contribution of
the beta-diversity of the satellite subcommunity to the
aquatic ecosystem multi-nutrient cycling index was
greater than that of the core subcommunity (Additional
file 1: Figure S12b). This suggests that satellite taxa also
play key roles in maintaining ecosystem functions. Our
results indicate that microbial diversity affects the multi-
functionality in aquatic ecosystems.
Core plankton subnetworks were less sensitive to sal-

inity changes than satellite taxa at low-salinity variability
(Fig. 5b). At low salinity, the satellite subnetworks were
less stable, while core subnetworks showed a higher sta-
bility. At higher salinity, the opposite pattern was found
for the stability of core and satellite plankton subnet-
works, which may be explained as follows. First, the
network topological parameter ‘average clustering coeffi-
cient’ was the highest for core subnetworks and the low-
est for satellite sub-networks at low salinity (Additional
file 1: Table S4). This implies a higher complexity of the
core subnetwork and a lower complexity of the satellite
subnetwork at low salinity. High complexity networks
normally tend to have greater stability due to network
buffering [56], so core microeukaryotic plankton subnet-
works were likely more stable and satellite subnetworks
more unstable at low salinity. Second, our results indi-
cate that core taxa had wider niche breadths than satel-
lite taxa (Additional file 1: Figure S11), meaning that

they, compared with satellite taxa, can adapt to a wide
range of environmental niches [57]. Consequently, core
co-occurrence subnetworks exhibited strong resistance
as salinity increased, while satellite subnetworks are
prone to be affected by slight disturbances of salinity.
This pattern could be closely associated with plankton
diversity and satellite taxa richness. In other words, sal-
inity affects plankton diversity and satellite taxa richness
and, as a consequence, network structure and connectiv-
ity. Thus, it is to be expected that core and satellite
plankton exhibited similar patterns in alpha- and beta-
diversities but different ecosystem stability patterns
along the salinity gradient. It is, therefore, important to
distinguish between core and satellite taxa of microeu-
karyotic plankton when assessing community stability
over time and future threats to ecosystem function and
services in response to environmental disturbance.

Conclusion
We propose a conceptual framework to describe the
microeukaryotic plankton community responses to low
shifts in salinity in inland freshwaters (Fig. 6). Low in-
creases in salinity decrease the alpha-diversity of micro-
eukaryotic plankton communities. All, core, and satellite
plankton communities show the strongest relationship
with salinity, followed by temperature and bacterial di-
versity or community due to microbial interactions or
synchronous dynamics. Importantly, our results help un-
raveling the mechanisms affecting the balance between
the deterministic and stochastic assembly of microeukar-
yotic plankton with changes in salinity. The potential
keystone species in the all network belong to the core
taxa, and the beta-diversity of satellite subcommunities
significantly affects multi-nutrient cycling, implying that
core and satellite OTUs play important but different
roles in maintaining ecological function. In addition,
core plankton networks are more stable in low-salinity
environments, whereas satellite networks are more stable
in the medium-/high-salinity environments. Given that a
low increase in salinity in this freshwater reservoir sig-
nificantly influenced the plankton community, manage-
ment and protection require better knowledge of the
response of the plankton community to salinity changes
and their interactions with other human or natural dis-
turbances [3, 4, 58], when evaluating, modeling, and pre-
dicting salinity effects on coastal urban freshwater
ecosystems.

Methods
Study station, sampling, and environmental information
Surface water samples were collected in Xinglinwan Res-
ervoir, Xiamen City, Fujian Province, Southeast China,
at three stations (station C: 24° 36′ 53′′ N, 118° 03′ 11′′
E; station L: 24° 36′ 21′′ N, 118° 03′ 37′′ E; station G:

Mo et al. Microbiome           (2021) 9:128 Page 10 of 17



24° 36′ 09′′ N, 118° 03′ 59′′ E) (Fig. 1a). Specifically,
samples were collected approximately daily from August
12, 2016 to August 30, 2016 at station C (12 samples),
daily or twice a week from August 12 to September 20
in 2016 at station L (22 samples), and approximately
daily from August 12 to September 20, 2016 and then
twice a week from September 23, 2016 to August 18,
2017 at station G (116 samples). Each water sample was
divided into two subsamples: one for microeukaryotic
plankton analyses and the other for water chemistry ana-
lyses. About 500 mL of surface water (upper 50 cm) was
filtered through a 200-μm mesh to remove larger parti-
cles and then filtered through 0.22-μm pore-size poly-
carbonate membrane filters (47-mm diameter, Millipore,
Billerica, MA, USA) to collect the microeukaryotic cells
within 60-min. The filters were then stored at – 80 °C
until further analysis.
In addition, 18 environmental variables were measured

or collected (Additional file 1: Figure S1 and S2). Water
temperature, pH, dissolved oxygen, turbidity, electrical
conductivity, salinity, and oxidation-reduction potential
(ORP) were measured in situ with a Hydrolab DS5
multiparameter water quality analyzer (Hach Company,
Loveland, CO, USA). Chl-a concentrations were quanti-
fied by PHYTO-PAM Phytoplankton Analyzer (Heinz

Walz GmbH, Eichenring, Germany). Total carbon (TC),
total organic carbon (TOC), total nitrogen (TN), ammo-
nium nitrogen (NH4-N), nitrate nitrogen (NO3-N), ni-
trite nitrogen (NO2-N), total phosphorus (TP), and
phosphate phosphorus (PO4-P) were measured accord-
ing to the standard methods described in our previous
study [59]. Precipitation and daily average wind speed
data were downloaded from the Xiamen Meteorological
Bureau. The precipitation data consisted of a 7-day
accumulation before the sampling day. To study the
relationship between salinity and precipitation, data
on daily precipitation were collected and 3-year salin-
ity data were measured from 2016 to 2018 (Add-
itional file 1: Figure S3).

DNA extraction, PCR, and Illumina sequencing
The total DNA was extracted from the filters using the
FastDNA SPIN Kit and the FastPrep Instrument (MP
Biomedicals, Santa Ana, CA, USA) following the manu-
facturer’s instructions. For the microeukaryotic plankton
community, the V9 region of eukaryotic 18S rRNA gene
was amplified using the primer pair 1380F and 1510R
[60]. The 30-μL PCR reaction included 15-μL of Phusion
High-Fidelity PCR Master Mix (New England Biolabs,
Beverly, MA, USA), 0.2 μM of each primer, and 10 ng of

Fig. 6 Conceptual models of microeukaryotic plankton diversity, community assembly processes, and network stability driven by low shifts
in salinity
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community DNA. The PCR reactions included initial de-
naturation at 98 °C for 1 min, followed by 30 cycles of
10 s at 98 °C, 50 °C for 60 s, and 72 °C for 30 s. At the
end of the amplification, the amplicons were subjected
to a final 10 min extension at 72 °C. The PCR products
from triplicate reactions per sample were pooled and
gel-purified. All libraries were sequenced on the Illumina
HiSeq platform (Illumina Inc., San Diego, CA, USA)
using a paired-end (2 × 150 bp) approach.
To explore whether bacterial communities had an im-

pact on the microeukaryotic plankton community, the
V3-V4 hypervariable regions of the 16S rRNA gene were
amplified, purified, and quantified following our previous
procedure [61]. The triplicate PCR products were pooled
together, and sequencing was performed on the Illumina
MiSeq platform (Illumina, Inc., San Diego, CA, USA)
using 2 × 250 bp paired-end sequencing approach.

Bioinformatics
Pairs of reads from both the 18S rRNA and 16S rRNA
gene were processed using VSEARCH v.2.14.1 [62].
Quality check and sequence merge were conducted
using MOTHUR v.1.39.5 [63], and the filtered reads
(“sequences”) were then processed as unique sequences
using “minuniquesize 8” parameter in VSEARCH. The
unoise3 algorithm was used to discard chimeras and as-
sign operational taxonomic units (OTUs) at a 97% se-
quence similarity threshold in USEARCH v11 [64].
Subsequently, for microeukaryotic plankton, representa-
tive sequences from each OTU were taxonomically clas-
sified using an 80% confidence threshold against the
Protist Ribosomal Reference (PR2) reference sequence
database [65]. To make the taxonomic classification
more user friendly and portable, the taxonomic assign-
ments were adjusted to be in accordance with the taxo-
nomic reference of eukaryotes [66, 67]. To minimize
inclusion of sequencing errors, OTUs present in < 5
samples with < 10 sequences were excluded from the
downstream analyses. After the OTU table was gener-
ated, we randomly rarefied a subset of 146,973 se-
quences from each of the 150 samples to standardize the
sequencing effort using MOTHUR v.1.39.5 [63]. The
146,973 sequences were selected because they repre-
sented the sample with the lowest sequence number
from all the samples. Finally, the total dataset retained
19,952 OTUs and 22,045,950 sequences at 97% similarity
threshold. OTU numbers of unclassified Eukaryota
accounted for 19.2% of the whole OTUs, and sequences
of unclassified Eukaryota accounted for 3.3% of the
whole sequences. For bacterial communities, OTU se-
quences were taxonomically classified by running
USEARCH v11 against the Greengenes database [68].
All archaea, chloroplasts, eukaryota, mitochondria, and
unknown sequences were discarded. Bacterial OTUs

present in < 5 samples with < 10 sequences were re-
moved. Finally, the total dataset was randomly normal-
ized to 52,248 sequences for each of 116 samples from
station G, and these sequences were clustered into 16,
153 OTUs at a 97% similarity threshold.
Considering that the microeukaryotic OTUs identified

at the 97% similarity level with the unoise3 algorithm is
not a specific and accurate estimation of the species or
strain level diversity, we further defined ASVs (amplicon
sequence variants) using the unoise3 algorithm, as de-
scribed previously [69]. Reads were quality-filtered to a
maximum expected error threshold of 1.0, and then
unoise3 was performed to identify ASVs using default
settings dataset. In this study, ASVs were included only
for beta-diversity analysis of microeukaryotic plankton
to assess simply whether our results were biased by the
OTUs definition approach.

Real-time quantitative PCR
Real-time quantitative PCR (qPCR) was used to quantify
the number of microeukaryotic plankton 18S rRNA gene
copies using a LightCycler 480 instrument (Roche, Basel,
Switzerland). The 20-μL reaction mixture consisted of
10 μL 2 × LightCycler 480 SYBR Green I Master Mix
(Roche, Basel, Switzerland), 2 μL DNA template, 0.8 μM
of each primer, and 6.4 μL RNase-free water. The PCR
runs included tested samples and a negative control in
triplicate. The following thermal cycling conditions were
used: 30 s at 94 °C, followed by 40 cycles of 5 s at 94 °C,
15 s at 50 °C, and 10 s at 72 °C. Gene fragments were di-
luted (108−102 gene copies/μL) to generate the standard
curve using a plasmid containing the 18S rRNA gene.
The amplification efficiency (E) of qPCR was calculated
using the equation E = [10(−1/slope) − 1]. The qPCR effi-
ciency of 18S rRNA ranged from 85 to 108% in this
study. In addition, qPCR amplification of bacterial 16S
rRNA gene was also performed using a Lightcycler 480
instrument (Roche, Basel, Switzerland) according to our
previous method [70]. The qPCR efficiency of 16S rRNA
gene was between 95 and 105%.

Definition of core and satellite taxa
Partitioning microbial communities into core and satel-
lite taxa according to their abundance and occurrence
frequency has contributed to our understanding of com-
munity assembly and functioning in many spatiotempo-
ral datasets [32, 71]. We arbitrarily defined “core” and
“satellite” taxa based on previous study [33]; thus, core
taxa were defined as the OTUs with an occurrence fre-
quency ≥ 75% in all samples and satellite taxa as the
OTUs with an occurrence frequency < 50% in all sam-
ples. Detailed descriptions of core and satellite datasets
are presented in Additional file 1: Figure S4 and Add-
itional file 1: Table S2.
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Statistical analyses
Alpha-diversity index (i.e., Shannon-Wiener index) and
Tukey’s honestly significant difference (Tukey HSD) post
hoc test were conducted using R software (version 3.6.1)
[72]. The alpha-diversity index was calculated for each
sample using the diversity function in the “vegan” pack-
age [72]. Temporal and salinity effects on alpha-diversity
were evaluated using two-way analysis of variance (two-
way ANOVA).
Microeukaryotic plankton community composition

was visualized using non-metric multidimensional scal-
ing (NMDS) based on Bray-Curtis dissimilarities. Ana-
lysis of similarity (ANOSIM) was used to evaluate
differences in microeukaryotic plankton communities
between groups. To reveal the temporal dynamics of
microeukaryotic plankton communities, a time-lag re-
gression analysis was applied to analyze the Bray-Curtis
dissimilarity between each pair of samples, and the time
difference (time-lag) was then plotted against the com-
munity dissimilarity. The effects of time and salinity on
the Bray-Curtis dissimilarity were evaluated using Spear-
man’s rank correlation. In this study, we used two types
of time: the absolute time span and the annual cycle
time span. For example, the time lag between January
and December should be (i.e., from January to Decem-
ber) 1 rather than 12 in the second time type.
In order to study the influence of abiotic (environmen-

tal factors) and biotic (bacterial community) variables on
microeukaryotic plankton community composition, we
computed the pairwise Bray-Curtis distances between
samples on the basis of the relative abundance of micro-
eukaryotic plankton (the compositional data). We also
computed the pairwise Euclidean distance between the
samples on the basis of environmental data and bacterial
alpha- and beta-diversity. Then, partial Mantel test [73]
was performed to assess the correlation between micro-
eukaryotic plankton community composition and envir-
onmental variables or bacterial data, respectively.
Further, to determine the relative contribution of time

(in this study: month) and salinity to the assembly of
microeukaryotic plankton communities, Mantel and par-
tial Mantel tests were applied [73]. The similarity matri-
ces of the microeukaryotic plankton community were
generated based on the Bray-Curtis index. The time and
salinity matrices were obtained using the Euclidean dis-
tance. Mantel test assessed the correlation between
microeukaryotic plankton community (Bray-Curtis dis-
similarity) and salinity (Euclidean distance) or time (Eu-
clidean distance), respectively. The partial Mantel test
was performed to estimate the relative contribution of
salinity or time variables to the changes in the microeu-
karyotic plankton community.
In addition, to further study the roles of core and sat-

ellite taxa on ecosystem functions, we calculated the

multi-nutrient cycling index that can track the cycling of
multiple nutrients in aquatic ecosystem [74] (see Add-
itional file 1 for a detailed description). Afterwards, ran-
dom forest (RF) machine learning [75] was used to
assess the effects of alpha- and beta-diversity of core and
satellite subcommunities on the multi-nutrient cycling
index (see Additional file 1 for detailed description).

Neutral community model
To estimate the effects of stochastic processes on the
microeukaryotic plankton community assembly, a neu-
tral community model was used [76], applying non-
linear least-squares to generate the best fit between the
frequency of OTUs occurrence and their relative abun-
dance [77]. R2 value indicates the goodness of fit to the
model, which was calculated following the “Östman’s
method” [78]. When R2 is close to 1, the community as-
sembly is fully consistent with stochastic processes.
When it does not describe the community composition,
R2 can be ≤ 0. Model computations were performed with
R version 3.6.1 [72].

Habitat niche breadth
To explore the relative effects of stochastic and deter-
ministic processes on microeukaryotic plankton commu-
nities, we calculated Levins’ niche breadth (B) index for
the microeukaryotic plankton using the formula:

Bj ¼ 1
PN

i¼1Pij
2

where Bj indicates the habitat niche breadth of OTU j in
a metacommunity; N represents the total number of
communities in each metacommunity; Pij is the propor-
tion of OTU j in community i [23, 47]. A given OTU
with high B value represents a wide habitat niche
breadth. The community level B value (Bcom) was calcu-
lated as the average of B values from all taxa occurring
in one given community [23, 49]. A microeukaryotic
plankton community with a wide niche breadth is ex-
pected to be metabolically more flexible at the commu-
nity level than one with a narrow niche breadth [23, 47,
49]. The analysis was performed using the “niche.width”
function within R package “spaa” [79].

Null model
We tested clustering or overdispersion of microeukaryo-
tic plankton communities by examining the deviation of
each observed metric from the average of the null model
(checkerboard score (C-score)) [80]. The values obtained
were standardized to allow comparisons among assem-
blages using the standardized effect size (SES). Specific-
ally, the sequence table was transformed into a binary
matrix of presence (1) and absence (0), and then SES
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was calculated under the null model [81]. The SES for C-
score was estimated as the difference between the observed
index and the mean of the stimulated index over the stand-
ard deviation of the stimulated index [82]. The higher or
lower SES value than the expected null value is interpreted
as overdispersion or underdispersion, respectively, and the
magnitude of SES is interpreted as the strength of the effect
of deterministic processes on the assemblage [83]. C-score
was evaluated based on 30,000 simulations and using the
sequential swap randomization algorithm with the package
“EcoSimR” in R version 3.6.1 [72].

Network construction
We constructed species co-occurrence networks based
on samples from the whole study period (August 2016–
August 2017, 116 samples) for station G in the Xinglin-
wan Reservoir. To reduce the complexity of the datasets,
we removed OTUs present in less than 20 samples with
less than 200 sequences for the construction of net-
works. We also constructed community subnetworks for
the all, core, and satellite microeukaryotic plankton
based on samples at the three salinity levels, respectively.
SparCC was used to calculate pairwise correlations be-

tween plankton OTUs [84]. Only robust (|r| > 0.6) and
statistically significant (P < 0.01) correlations were incor-
porated into the network analyses. Network visualization
was generated with Cytoscape version 3.6.1 and Gephi
version 0.9.1. Each node indicates a given OTU, and
each edge represents a significant correlation between
two OTUs. Degree represents the number of edges
connecting each node to the rest nodes of the network.
Normally, the high topological characteristic values
(such as node, edge, and degree) suggest a more com-
plex network. In general, there are two common net-
work distributions. One is the random network. A
random network follows a Poisson distribution of edges
per node, meaning that there are no highly associated
nodes and that most nodes exhibit a similar number of
edges [85]. The other is non-random network. That is,
scale-free or small-world network that has a power-law
distribution, implying that some nodes are highly associ-
ated and maintaining the network together [86, 87].
Based on metabolic network approaches [88], the net-

work hubs (Zi-score > 2.5; Pi-score > 0.62), module hubs
(Zi-score > 2.5; Pi-score < 0.62), connectors (Zi-score
< 2.5; Pi-score > 0.62), and peripherals (Zi-score < 2.5; Pi-
score < 0.62) were identified [87]. All hubs and connector
nodes could be defined as potential keystone species in
co-occurrence networks [89]. Furthermore, the 1000
Erdös-Réyni random networks, which exhibit the same
number of nodes and edges as the real networks, were cal-
culated in the “igraph” R package, with each edge having
the same probability of being assigned to a node [85]. To
further describe the topological parameters of the

networks, a set of metrics of both real and random net-
works were calculated and compared: clustering coeffi-
cient, average path length, and modularity.
The network dissimilarity between different salinity

levels was identified using the widely applied equation,
which consists of a re-expression of classical measures
of dissimilarity following a partition of shared and total
items [90, 91]:

βw ¼ aþ bþ c
2aþ bþ cð Þ=2−1

where βw is dissimilarity between networks B and C, a
represents number of shared edges between networks B
and C, b represents number of edges unique to network B,
and c represents number of edges unique to network C.
Finally, network stability was evaluated by removing

nodes in the static network to estimate how quickly ro-
bustness degraded, and network robustness was assessed
by natural connectivity of the nodes. The node removing
was a random repetitive process [92].
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