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Abstract

Background: Feed contributes most to livestock production costs. Improving feed efficiency is crucial to increase
profitability and sustainability for animal production. Host genetics and the gut microbiota can both influence the
host phenotype. However, the association between the gut microbiota and host genetics and their joint
contribution to feed efficiency in chickens is largely unclear.

Results: Here, we examined microbial data from the duodenum, jejunum, ileum, cecum, and feces in 206 chickens
and their host genotypes and confirmed that the microbial phenotypes and co-occurrence networks exhibited
dramatic spatial heterogeneity along the digestive tract. The correlations between host genetic kinship and gut
microbial similarities within different sampling sites were weak, with coefficients ranging from —0.07 to 0.08.
However, microbial genome-wide analysis revealed that genetic markers near or inside the genes MTHFDI1L and
LARGET were associated with the abundances of cecal Megasphaera and Parabacteroides, respectively. The effect of
host genetics on residual feed intake (RFI) was 39%. We further identified three independent genetic variations that
were related to feed efficiency and had a modest effect on the gut microbiota. The contributions of the gut
microbiota from the different parts of the intestinal tract on RFI were distinct. The cecal microbiota accounted for
28% of the RFI variance, a value higher than that explained by the duodenal, jejunal, ileal, and fecal microbiota.
Additionally, six bacteria exhibited significant associations with RFI. Specifically, lower abundances of duodenal
Akkermansia muciniphila and cecal Parabacteroides and higher abundances of cecal Lactobacillus, Corynebacterium,
Coprobacillus, and Slackia were related to better feed efficiency.

Conclusions: Our findings solidified the notion that both host genetics and the gut microbiota, especially the cecal
microbiota, can drive the variation in feed efficiency. Although host genetics has a limited effect on the entire
microbial community, a small fraction of gut microorganisms tends to interact with host genes, jointly contributing
to feed efficiency. Therefore, the gut microbiota and host genetic variations can be simultaneously targeted by
favoring more-efficient taxa and selective breeding to improve feed efficiency in chickens.
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Background

Demand for animal-source foods is increasing because
of population growth, rising household income and
urbanization. Chicken meat is a white meat, distin-
guished from other meats such as pork, beef, and mut-
ton by its lower content of undesirable saturated fat [1].
The global consumption of chicken meat has shown the
fastest growth trend in recent decades because of its
consistently high-quality and relatively low price [2].
More than 72 billion broiler chickens were produced
and chicken had become the largest meat producer
worldwide in 2019 (FAOSTAT). However, this produc-
tion level has mainly been achieved using high-quality
feed ingredients, such as maize, soybean, and wheat [3].
Feed accounts for nearly 70% of the total variable costs
in modern chicken production. In recent years, these in-
gredients have generally become more expensive because
of a combination of increased demand from human nu-
trition [4], biofuel production [5], and shortages due to
crop failures in parts of the world [6]. With continuing
reliance on the same feed ingredients, which compete
with human consumption and biofuel needs, the cost of
chicken production will also increase. Hence, to meet
the increasing demand for chicken meat, the efficiency
of converting feed into edible products should be
improved.

Feed efficiency can be evaluated by different measures.
Among them, residual feed intake (RFI) is independent of
growth traits, making it the most suitable indicator for
feed efficiency [7-9]. Chickens that have low RFI values
are more efficient than those with high values. As a com-
plex feed efficiency trait, RFI is influenced by various fac-
tors. Numerous studies have reported that RFI shows
moderate heritability (0.26~0.45) in chickens [9-12], im-
plying that host genetics play an important role in regulat-
ing feed utilization. Zuidhof et al. [13] showed that the
feed efficiency of commercial breeds improved by 50%
over the last 50 years due to quantitative genetic selection
pressures. Another factor that could markedly affect ani-
mal feed efficiency is the gut-residing microbiota, which is
a functional entity that influences host metabolism [14].
Growing evidence has confirmed that the relative propor-
tions of digestion and energy harvesting from feed are
affected by the gut microbial activity and composition
[15-17]. In particular, the saccharolytic and anaerobic
microbiota can degrade host-indigestible carbohydrates,
such as cellulose and resistant polysaccharides, into
monomeric or dimeric sugars and subsequently ferment
them into short-chain fatty acids (SCFAs) [18, 19]. Most
of these metabolites are absorbed by the host and contrib-
ute to its energy [19]. Hence, identifying a more energy-
efficient microbiota is necessary for the development of ef-
fective strategies to improve feed utilization and preserve
additional edible resources for humans.
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Indeed, as described by previous observations, the gut
microbiota is closely related to feed efficiency in
chickens [20-22]. However, the association between host
genetics and gut microbiota in feed efficiency is poorly
understood. A few recent studies have suggested that di-
vergent genetic selection for digestive efficiency has led
to differences in cecal microbial ecosystems between
chickens with high and low feed efficiencies [23, 24].
Likewise, several studies in cattle have identified some
rumen microbiota that are heritable and associated with
feed efficiency [25, 26]. However, it is largely unknown
whether host genetics affect feed utilization through
their ability to promote a stable microbial community in
the gut or whether the two interact to influence feed ef-
ficiency. If the relative abundance of the RFI-related
microbiota across individuals is attributable to host gen-
etic effects, detecting host genetic markers as biomarkers
for manipulating gut microbial composition may be pos-
sible. Evidence from genome-wide association studies
(GWAS) has identified several host genetic variations
that affect the gut microbiota [25, 27-30]. For example,
19 single-nucleotide polymorphisms (SNPs) were associ-
ated with 14 rumen microbial taxa in cattle [25]. Berga-
maschi et al. [31] observed that several SNPs were
significantly associated with gut taxa at the three time
points during the growth trial in pigs. Org et al. [27] re-
ported that seven genome-wide significant loci were as-
sociated with genera abundance in mice. Substantial
studies in the human population have demonstrated that
the abundance of the genus Bifidobacterium is strongly
related to loci within the lactase gene region [28-30].
However, potential host genotypes relevant to the gut
microbiota in chickens have not been well characterized.
Recently, Psifidi et al. [32] reported significant associa-
tions between host genetic variation and alpha diversity
and beta diversity axes, indicating the possibility of host
genetic variation shaping gut microbial composition in
chickens.

Fecal specimens are frequently used as proxies for the
gut microbiota, while the functional heterogeneity of
each digestive tract segment gives rise to regional differ-
ences in gut microbial populations [33, 34]. In poultry,
nutrient digestion and absorption primarily occur in the
small intestine (including the duodenum, jejunum, and
ileum), and the cecum is a major site of the fermentation
of dietary materials. Therefore, evaluating the contribu-
tions of host genetics and gut microbiota from diverse
segments to feed efficiency will aid in understanding the
underlying biological variation in feed efficiency and
consequentially help in the design of sustainable ap-
proaches to improve feed efficiency in chickens. To
achieve this goal, we used host genetic data and the mi-
crobial taxa in four gut segments (duodenum, jejunum,
ileum, and cecum) and feces of 206 meat-type chickens
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to clarify the spatial relationship between the microbiota
and its hosts, assess their joint effect on feed efficiency,
and further identify the specific genetic variation and
microbiota that are significantly associated with feed
efficiency. The overall flow of the analyses is shown in
Fig. 1.

Methods

Animals and sample collection

A total of 206 male chickens from a purebred line were
used in the present study. This strain belonged to the
yellow-feather dwarf broiler breed, which is an import-
ant sire line for Guangdong Wen’s Nanfang Poultry
Breeding, Co., Ltd. (Xinxing, China). All the chickens
were hatched on the same day and housed on floor pens
with fresh wood sawdust as litter. Water and corn-
soybean-based diets (the ingredients of the diets are
included in Additional file 1: Table S1) were provided ad
libitum. Each chicken was properly identified by their
unique electronic chip. The feed intake was individually
recorded using the automatic feeder that registered visits
to feeders by identifiable chickens during the fast-
growing period from 56 to 76 days of age. The body
weight of each chicken at 56 and 76 days of age was
measured using an electronic scale. RFI was calculated
based on the average daily feed intake (ADFI), average
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daily gain (ADG), and metabolic mid-weight as de-
scribed by Yan et al. [35]. Normality for all the traits was
checked using the Shapiro-Wilk test in the R program
(ver 4.0.2). The descriptive statistics of these phenotypes
are summarized in Additional file 2: Table S2. The cor-
relation coefficient between RFI and ADFI was 0.60, and
the correlation of RFI with ADG was negligible
(Additional file 3: Figure S1).

At the age of 78 days, the whole blood of each bird
was collected from the wing vein using a syringe, and
the fecal specimen was gathered from the cloaca by
squeezing the abdomen (Additional file 4: Figure S2).
Then, all the birds were euthanized by cervical disloca-
tion and dissected. The duodenal, jejunal, ileal, and cecal
contents (including chyme and mucosa) were collected
immediately. All the samples were snap frozen in liquid
nitrogen and then stored long-term at -80 °C until
further processing.

High-throughput sequencing and sequence processing

The host DNA and gut microbial DNA were isolated
using the Tiangen DNA Extraction Kit (Tiangen Biotech,
Beijing, China) and QIAamp DNA Stool Mini Kit
(QIAGEN, Hilden, Germany), respectively. One blood
sample and four fecal samples were excluded because of
DNA extraction failure. Finally, 205 host DNA samples
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and 1026 microbial DNA samples were used for sequen-
cing. The details of the whole-genome sequencing of the
host and 16S rRNA sequencing of microbiota have been
previously described [33]. Briefly, the host DNA library
was paired-end sequenced with 150-bp read lengths and
a 10-fold depth. The V4 region of the 16S rRNA gene
was amplified using the universal primers 520F and
802R and then sequenced with 2 x 300-bp read lengths.

To avoid reads with artificial bias, quality control was
conducted using FastQC (ver 11.7). The clean reads of
the host were mapped on the reference genome
(Galgal5) using BWA mem (ver 0.7.15) [36]. We further
removed the duplicates using the Picard toolkit (ver
1.119, https://broadinstitute.github.io/picard/). Subse-
quently, The Genome Analysis Toolkit (GATK, ver 3.7)
[37] was used for SNP calling, following GATK best
practices, in which realignment and recalibration were
included. SNP calling and genotyping were performed
using the HaplotypeCaller module embedded in GATK.
To ensure accuracy in variant calling, a minimum qual-
ity score for both base quality and mapping quality was
set to 20. The average genome coverage was 95.25%,
which allowed us to call variants with high coverage.
Stringent filtering criteria were applied to the concord-
ant part of the biallelic SNPs using the VariantFiltration
module. Because alleles at lower frequencies are less in-
formative for association analysis, we retained only SNPs
with minor allele frequencies (MAFs) above 5% and kept
only SNPs that occurred in more than 95% of individ-
uals. The final set included 9,335,193 SNPs (87.82% of
the SNPs were found in the SNP database), which were
used in the downstream analysis. The principal compo-
nent analysis on these SNPs is displayed in Additional
file 5: Figure S3. The chicken gene set was downloaded
from the Ensembl database (release 91), and gene-based
annotation of valid SNPs was conducted using ANNO-
VAR [38] (https://annovar.openbioinformatics.org/). In
total, 4,643,107 (49.74%) and 4,427,712 (47.73%) SNPs
were mapped to intergenic and genic regions, respect-
ively (Additional file 6: Table S3).

The paired-end reads of the microbiota were proc-
essed and clustered into operational taxonomic units
(OTUs) using the QIIME (ver 1.8.0) pipeline [39]. In
brief, raw reads with exact matches to the barcodes were
assigned to the respective samples and identified as valid
sequences. The low-quality reads were removed based
on the following criteria: (1) read lengths <150 bp; (2)
contained ambiguous bases; (3) contained mononucleo-
tide repeats >8 bp; (4) average quality score <20. The
high-quality paired-end reads with an overlap >10bp
and without any mismatch were assembled using FLAS
H [40]. Taxonomies were assigned to OTUs at 97% se-
quence identity using an open-reference OTU picking
protocol with the SILVA database [41]. Only OTUs with
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an average relative abundance greater than 0.0001% and
detected in at least two samples were included in the
downstream analysis. Additional details about the host
and microbial sequence processes are found in
Additional file 7: Text S1.

Characterizing the spatial heterogeneity of the gut
microbial community

Multiple comparisons of the observed OTUs among the
five sample types (duodenum, jejunum, ileum, cecum,
and feces) were conducted by one-way analysis of vari-
ance (ANOVA) followed by Tukey’s HSD test using the
multcomp package in the R program. The difference was
considered statistically significant if the adjusted P value
was less than 0.05. The overall dissimilarities among the
diverse gut locations were evaluated by nonmetric multi-
dimensional scaling (NMDS) according to Bray-Curtis
dissimilarity matrices at the family taxonomic level. To
determine the potential origin of the microbiota found
in the gut contents, we used the microbial source-
tracking method FEAST [42] (https://github.com/
cozygene/FEAST) in the R program. FEAST is a highly
efficient expectation-maximization-based method that
estimates the fraction of a microbial community contrib-
uted by a potential source environment. Each sampling
site was identified as a sink, starting with the ileum, and
all anterior segments were treated as sources.

To compare the oxygen tolerances and biofilm forma-
tion capabilities of microbial communities in the four
gut segments and feces, the abundances of aerobic, an-
aerobic, facultatively anaerobic, and biofilm-forming
bacteria were predicted using BugBase [43]. The signifi-
cances of the comparisons were determined using the
pairwise Wilcoxon rank-sum test. The correlations be-
tween the detected taxa in a specific sample type were
inferred using the corr.test function in the psych package
and P values were adjusted using the Benjamini—Hoch-
berg (BH) method. To avoid potential bias in the co-
occurrence calculations caused by zero inflation, the taxa
that were present in less than 95% of the samples of a
specific sample type were eliminated from the co-
occurrence network analysis. The relative abundance of
each microbial taxon was log;o-transformed and subse-
quently used to calculate the correlation coefficients.
The correlation patterns were further filtered to select
only Spearman’s and Pearson’s correlations with coeffi-
cients < —0.3 or >0.3 and adjusted P values <0.05.
Interaction networks were then constructed using Cytos-
cape (ver 3.7.2) [44].

Investigation of the association between host genetics
and the gut microbiota

The host genetic kinship was estimated based on the
host genotyping data as previously described [33]. We
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and others have previously estimated the relationship
between host genetic kinship and microbial similarity
based on all sample data sets [30, 33, 45]; however, most
of the host genetic relatedness between individuals was
weak, which may affect the estimated reliability. There-
fore, in the present study, pairs of chickens with an esti-
mated genetic kinship <0.05 and = 0.10 were considered
genetically more distant and close relatives, respectively
[30, 46]. In total, 20,910 pairs of individuals (C%OS) were
included in our study, and we randomly sampled 500
pairs of more distant relatives and 500 pairs of closer
relatives from this dataset using the dplyr package. Sub-
sequently, the correlations between the host genetic kin-
ship and Bray-Curtis similarity of these pairs of chickens
were calculated. ANOVA was used to determine the dif-
ferences in microbial diversity between more distant and
close relatives. We repeated this process 10,000 times
and summarized all the estimated correlation coeffi-
cients via their density distribution using a customized R
script. The lowest and highest 2.5% of values were re-
moved to generate a 95% confidence interval for the cor-
relation coefficients for a given sample type.

In addition to evaluating the correlation between host
genetics and gut microbial similarity, heritability esti-
mates have been used as efficient measures for deter-
mining the influence of genetics on a specific taxon. In
our previous study, we have identified 58 heritable mi-
crobial genera [33]. Thus, we further performed GWAS
analysis to detect significant host genetic markers affect-
ing the microbial genera using the following linear
mixed model in GEMMA (ver 0.98.1) [47]:

y=Qa+XB+g+e (1)

where vy is a vector of corrected phenotypes (the abun-
dance or presence/absence of heritable genera) as previ-
ously described [33]; Q is a design matrix of covariates,
including the top five host genetic principal components
calculated as previously described [33]; a is a vector of
effects for the covariates (including the intercept); X is a
vector of allele counts (0, 1, 2); and 8 is the SNP effect. g
is a vector of polygenic effects that follows the normal
distribution N(O, G(f; ), where G is the genetic kinship

matrix calculated from genome-wide marker informa-
tion and Ué is the polygenic additive variance. e is a vec-
tor of residual errors. The P values of the SNP effects
were calculated using the likelihood ratio test. After the
Bonferroni correction, the genome-wide significance
threshold was set at 5.36 x 107° (0.05/9,335,193). How-
ever, the Bonferroni correction is very strict. We calcu-
lated the effective number of independent tests using
simpleM [48], and 180,042 independent tests were sug-
gested. Thus, the suggestive genome-wide significance
was set at 2.78 x 1077 (0.05/180,042). Given that the
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new reference genome (galGal6) is available, the coordi-
nates of these significant or suggestive significant SNPs
were converted from galGal5 to galGal6 with the lift-
Over tool (http://www.genome.ucsc.edu/cgi-bin/
hgLiftOver).

Notably, a genomic region containing a cluster of neigh-
boring SNPs in strong linkage disequilibrium (LD) is usu-
ally associated with a phenotype for a high-density array.
To demarcate independent association signals across the
putative regions, we performed LD analysis to further
characterize causative SNPs associated with target traits
using PLINK (ver 1.9) [49]. Because the average LD level in
a 5-kb interval was 0.17~0.24 (Additional file 8: Figure S4),
pairs of SNPs with 7* greater than 0.2 were regarded as
highly linked.

Evaluating effects of host genetics and the gut

microbiota on feed efficiency

To estimate the contributions of host genetics to feed
efficiency, the variance in RFI explained by all the geno-
typed SNPs was estimated by restricted maximum likeli-
hood analysis of the following model implemented in
GCTA (ver 1.91.1) [50]:

y=Qa+g+e (2)

where the model parameters were as described in
model (1) except for y, which is a vector of RFI pheno-

types. Genomic heritability is defined as 4> = 0;/ 012,,

2

where ¢, is the phenotypic variance. Furthermore,

model (1) was fitted to detect host genetic variations re-
lated to feed efficiency. After detecting SNPs that are as-
sociated with RFI, we further investigated the effects of
host genotypes on the gut microbiota. We extracted
these RFI-related SNPs and explored the differences in
each microbial abundance among chickens with different
genotypes using the Wilcoxon rank-sum test. The P
values were adjusted using the BH method with the
p-adjust function in R. The difference was considered
significant at adjusted P value < 0.05.

To assess the proportion of variation in feed efficiency
due to the microbiota from diverse sampling sites, a mi-
crobial relationship matrix was constructed based on the
OTU abundance as previously described [33]. The fol-
lowing model was fitted to estimate the variance ex-
plained by the microbial community:

y=Qa+m+e (3)

where y is a vector of RFI phenotypes, Q is a design
matrix of covariates, and « is a vector of effects for the
covariates. The covariates included the top five host gen-
etic principal components and first three principal com-
ponents of significant and suggestive significant SNPs
associated with RFL. m is a vector of the random effects
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of the microbiota in the specific sampling site that fol-
lows the normal distribution N(O, Mafn), where M is the
microbial relationship matrix and ¢2, is the microbial
variance. e is a vector of residual errors. The proportion
of the total variance explained by the gut microbiota is
called the microbiability [33, 51, 52] and is defined as m>
= 0,,/0,, where a7, is the microbial variance.
Identification of the specific microbiota associated with
feed efficiency

Since taxa at lower detection rates are less informative
for association analysis, we retained only taxa that pre-
sented in a specific sample type in more than 30% of
samples. The associations between qualified taxa and
RFI were analyzed using a two-part model with a cus-
tomized R script as described by Fu et al. [53]. This
model accounts for both binary (present and absent) and
quantitative features and is described as follows:

_ | Bb+e
y_{/’)zq+e )

where y is the RFI value, b is a binary feature of a spe-
cific microorganism and coded as O for absent or 1 for
present for each sample, and g is the log;o-transformed
abundance of a specific microorganism. §; and S, are
the regression coefficients for the binary and quantitative
models, respectively, and e is the intercept. The second
part of the quantitative analysis was only for the samples
in which the specific microorganism was present. The
details of the two-part model are illustrated in Add-
itional file 9: Figure S5. P values were obtained from the
two-part model association analysis and adjusted by the
BH method. If the adjusted P value from the binary
model was less than 0.05, the presence or absence of mi-
croorganisms could influence feed efficiency. If the ad-
justed P value from the quantitative model was less than
0.05, feed efficiency was associated with the relative
abundances of the microorganisms.

To detect specific microorganisms that significantly in-
fluenced feed efficiency, ANOVA was used to test the
difference in RFI between chickens with the highest (N
= 40) and lowest (N = 40) abundances of specific micro-
organisms. Additionally, the Wilcoxon rank-sum test
was performed to determine the relative abundance of
each taxon between the highest (N = 40) and lowest (N
= 40) RFI-ranked chickens. A microorganism was con-
sidered significant if the adjusted P values from the two-
part model association analysis, ANOVA and Wilcoxon
rank-sum test were all less than 0.05. Furthermore, we
explored the spatial distribution of the RFI-related
microbiota among the four gut segments and feces.
Spearman’s and Pearson’s correlations among the taxa
were calculated using the psych package in R, and P
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values were adjusted using the BH method. Correlations
were considered significant if the adjusted P value was <
0.05.

Results

Spatial heterogeneity of the gut microbial community
The digestive tract contains several distinct habitats that
select for the heterogeneous spatial organization of the
resident microbiota. The observed OTUs differed signifi-
cantly among the five sample types (except for the duo-
denum vs. ileum; Fig. 2a). Additionally, the gut microbial
community clearly differed among the small intestine
(duodenum, jejunum, and ileum), cecum, and feces be-
cause those groups clustered separately in an NMDS
plot (Fig. 2b). The degree of dispersion for samples in-
crementally increased in each subsequent section of the
small intestine: duodenum < jejunum < ileum. Microbial
source tracking revealed that the ileal microbiota was
predominantly sourced from the jejunal microbiota
(28.96%), followed by the duodenum (20.62%); however,
50.42% of the source was still unknown (Fig. 2c). The
cecal and fecal microbial communities showed no clear
microbial sourcing from anterior gut segments (Fig. 2d,
e), with unknown sources accounting for 90.45% and
78.23% of the totals, respectively, indicating a unique mi-
crobial community within cecum and feces.

We inferred the microbial phenotypes using BugBase
and observed that oxygen tolerance differed significantly
among the five sampling sites. Anaerobes were more
abundant in the cecum and feces, with total abundances
of 87.98% and 51.64% (Fig. 2f), respectively. By contrast,
the three parts of the small intestine were dominated by
aerobes, accounting for approximately 60% of the total
abundance (Fig. 2g). Despite no differences in the abun-
dance of aerobes among the three parts of the small in-
testine, anaerobes significantly increased from the
duodenum to the ileum (from 16.11 to 30.88%). The
relative abundances of facultative anaerobes in the five
sampling sites were less than 15% (Additional file 10:
Figure S6). In addition, the highest biofilm formation
ability was observed in the duodenal microbiota,
followed by the jejunal microbiota and ileal microbiota
(Fig. 2h). However, biofilm formation was significantly
reduced in cecal and fecal samples than in the small
intestine.

Biofilms are not just bacterial slime layers but
coordinated functional communities. Therefore, a co-
occurrence network of core families in the five sam-
pling sites was constructed to explore the spatial
changes in microbial interactions. Positive correla-
tions were observed in the core families of both the
duodenum and jejunum (Fig. 3a, b and Additional
files 11-12: Tables S4-S5). In the ileum, microbial
families belonging to the orders of Bacteroidales and
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(See figure on previous page.)

Fig. 2 Spatial heterogeneity of the gut microbial community. a Comparison of the observed OTUs among the five sample types. Each point
represents a sample. The center red point indicates the mean value in the corresponding sample type and the data are expressed as means +
SD. ** indicates an adjusted P value < 0.01. b Nonmetric multidimensional scaling (NMDS) at the family taxonomic level. Microbial source tracking:
c ileum, d cecum, and e feces. Comparison of the relative abundance of f anaerobe, g aerobe, and h biofilm formation. D, J, I, C, and F represent
the duodenum, jejunum, ileum, cecum, and feces, respectively. The center yellow point indicates the mean value in the corresponding
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Clostridiales, which comprise anaerobes, competi-
tively inhibited a cluster of bacteria, with significant
and negative correlations with other families (Fig. 3c
and Additional file 13: Table S6). However, microbial
families in the cecum belonging to Bacteroidales
were negatively correlated with most families belong-
ing to Clostridiales (Fig. 3d and Additional file 14:
Table S7). Additionally, the fecal microbial commu-
nity showed two relatively independent and stable
clusters (Fig. 3e and Additional file 15: Table S8).
We further explored the interaction between Bacter-
oidales and Clostridiales and observed a moderately
positive correlation in the ileum (r = 0.44, Fig. 3f),
while a strong negative correlation was present in
the cecum (r = -0.78, Fig. 3g) and there was no
significant correlation with each other in the feces
(Fig. 3h). These results revealed that the clustering
of the microbial co-occurrence network varied with
the gut location.

Association between host genetics and the gut
microbiota

Correlation analysis was performed on individuals for
whom both genetic and microbial data were available.
Given that most pairs of chickens showed no or a low
degree of genetic relatedness (Fig. 4a), we randomly se-
lected genetically more distant and close pairs of individ-
uals (Fig. 4b) and calculated the correlations between
host genetic kinship and Bray-Curtis similarity. This
process was repeated 10,000 times, and the average cor-
relation was —-0.025 for the duodenal microbiota, -
0.003 for the jejunal microbiota, 0.016 for the ileal
microbiota, 0.034 for the cecal microbiota, and 0.032 for
the fecal microbiota (Fig. 4c). The 95% confidence inter-
vals of the correlation coefficients for the five sample
types were —0.068~0.018, - 0.046~0.040, — 0.027~0.059,
-0.007~0.077, and - 0.011~0.075, respectively. We sep-
arately calculated their association in genetically more
distant and close pairs and obtained similar results: the
correlations of genetic kinship with the gut microbial
similarities within various sample types were close to
zero, with a confidence interval of — 0.101~0.096 for the
genetically more distant pairs group and - 0.053~0.048
for the genetically closer pairs group (Fig. 4d, e and
Additional file 16: Figure S7a). In addition, no difference
was found in the beta-diversities of the microbial com-
munities between genetically more distant and close
pairs (Additional file 16: Figure S7b).

These results from correlation analysis implied that host
genetics had a limited effect on the entire microbial com-
munity. However, this analysis was insufficient because
host genetics may influence a small fraction of low-
abundance microorganisms that contribute little to the
entire community. Therefore, we performed GWAS on
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microbial genera and identified 6 and 44 genome-wide
significant and suggestive significant loci associated with
cecal Parabacteroides (Additional file 17: Table S9) and
Megasphaera (Additional file 18: Table S10), respectively.
The corresponding Q-Q plot for these GWAS is shown in
Additional file 19: Figure S8. The most significant SNP
controlling the relative abundance of Parabacteroides was
rs10730843 (Fig. 5a). This SNP was located 5.1 kb up-
stream of the LARGE xylosyl- and glucuronyltransferase 1
(LARGELI, Fig. 5b) with an MAF of 0.22. The substitution
of G to A for rs10730843 resulted in a significantly in-
creased abundance of cecal Parabacteroides (Fig. 5¢c). Re-
garding Megasphaera, 41 SNPs, located in a high LD
region of 48.6~49.2 Mb on GGA3 were associated with
the relative abundance of Megasphaera (Fig. 5d). As
shown in Fig. 5e, seven genes presented this region.
Among them, methylenetetrahydrofolate dehydrogenase
(NADP+ dependent) 1 like (MTHFDI1L) was the longest.
The top significant SNP in this region was rs314988200.
Chickens with the TT genotype of rs314988200 had a
higher abundance of cecal Megasphaera (0.19%) than
those with the CT and CC genotypes (0.12% and 0.07%,
respectively; Fig. 5f). We further explored the spatial dis-
tribution of the two genera and found that Parabacter-
oides and Megasphaera mainly resided in the cecum, with
a 100% detection rate (Fig. 5g, h), and their abundances in
the cecum were not associated with those in the duode-
num, jejunum, ileum, and feces.

Proportion of variation in feed efficiency explained by
host genetics and gut microbiota

The SNP-based /4* for RFI estimated in our study was
0.39, which was moderate, suggesting that host genetics
played an important role in the regulation of feed effi-
ciency. Analogous to heritability, the relative proportion
of the total variance due to the gut microbial community
is defined as the microbiability (m?), which allows for a
holistic view of the effect of the microbiota on host
traits. Larger m” values indicate that the microbial com-
munity contributes more to the investigated phenotype.
Because the microbial community within the digestive
tract exhibits extensive spatial heterogeneity, we con-
sidered the microbial community that existed in di-
verse segments as different functional entities and
dissected their relative contributions to feed efficiency.
After correction for host genetics, the m® of the RFI
estimated based on the cecal microbiota was 0.28
(Fig. 6). However, the m” values obtained from other
anatomical sites were nonsignificant (0.14 for the
duodenum, zero for the jejunum, and ileum, and 0.10
for the feces). These results indicated that the cecal
microbiota was more closely associated with feed effi-
ciency than the microbial communities from the duo-
denum, jejunum, ileum, and feces.
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Feed efficiency-related genetic variations and their effects ~ RFI was used as the feed efficiency phenotype for GWAS
on gut microbiota analysis, and RFI fitted a normal distribution (Fig. 7a).
As described by the above results, host genetics had a  The corresponding Q-Q plot for the association is shown
prominent effect on the utilization of feed. Hence, the in Additional file 19: Figure S8. We found that 4
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(See figure on previous page.)

Parabacteroides and h Megasphaera in the five sampling sites

Fig. 5 Microbial genome-wide association studies. a—c The relative abundance of the cecal Parabacteroides was associated with genetic variation
near the gene LARGE]. d, e The relative abundance of the cecal Megasphaera was associated with genetic variation near and inside the gene
MTHFDIL. a, d Genome-wide Manhattan plot: the horizontal red and black lines indicate genome-wide significance (P = 5.36 x 107 and
suggestive significance (P = 2.78 x 1077) thresholds. Each point represents an SNP. b, ¢ Close-up plots of the 0.15- and 0.5-Mb windows around
the SNP with the highest association, respectively. ¢, f Comparison of the relative abundance of the cecal microbiota among genotypes within
the highest associated SNP locus. Each point represents a sample. The data and center red point indicate the number and mean value in the
corresponding genotype, respectively. **, * and ns represent adjusted P values < 0.01, <0.05, and > 0.05, respectively. Detection rates of g

suggestive significant SNPs were related to RFI (Fig. 7b
and Table 1). Among them, rs313164887 and
rs312419026 resided in the intronic region of ELOVL fatty
acid elongase 2 (ELOVL2) and phosphatidylinositol-3,4,5-
trisphosphate-dependent Rac exchange factor 1 (PREX1I),
respectively. The other two variations, rs317782869 and
rs316904613, were near the gene transient receptor poten-
tial cation channel subfamily A member 1 (TRPAI) and
PREX1I, respectively. In particular, rs316904613 and
rs312419026 were highly linked to each other. At locus
rs313164887, chickens with the TT genotype had a higher
feed efficiency, with an RFI of —1.80 g/day, than those
with the CT and TT genotypes, with RFIs of 1.23 and 5.65
g/day, respectively (Fig. 7c). The variation in rs317782869
resulted from a base transversion (A/C). Birds with the
major genotype (AA) were more feed efficient than those
with the other two genotypes. The average RFIs for the
AA, CA, and CC genotypes were — 3.00, 2.24, and 6.09 g/
day, respectively (Fig. 7d). Regarding the SNP
rs316904613, the G to C substitution led to a significant
decrease in the RFI value (Fig. 7e).

To further investigate the joint effects of the genotypes
and microbiotas on feed efficiency, the differences in the
abundance of each microbiota were analyzed among the

different genotypes. Considering that these significant
SNPs had a low frequency of minor genotypes in the
current population, the Wilcoxon rank-sum test was
performed on the taxon abundances between chickens
with major and other genotypes. lleal Janthinobacterium
and duodenal unclassified Peptostreptococcaceae were
close to the significance level at the SNPs of
rs313164887 and rs317782869, receptively (Fig. 7f, g).
Additionally, as many as 25 microbial genera, including
ileal Propionibacterium and cecal Corynebacterium,
reached the significance level at the rs316904613 locus
(Fig. 7h).

Feed efficiency-related microorganisms and their spatial
distribution

Although host genetics could influence a small number
of gut microorganisms, our results also revealed that
host genetics and the gut microbiota contributed con-
currently to feed efficiency in chickens. However, what
are the microbial aspects governing this link? More spe-
cifically, can this impact be attributed to a specific taxon,
or a combination of taxa? To answer this question, we
performed a two-part model association analysis and
two-tailed tests for the microbial genera and RFI. Thirty-

Genetics

B Duodenum [l Jejunum [ Hleum

B Cecum

. Feces

Fig. 6 Heritability and microbiability of residual feed intake
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one associations were detected by quantitative analysis, test and ANOVA, respectively (Fig. 8a). Among these as-
31 associations were identified by binary analysis, and 28  sociations, 8 genera were observed in both the associ-
and 27 genera were detected by the Wilcoxon-rank sum  ation analysis and significance test (Fig. 8b). One
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Table 1 Detailed information on the SNPs associated with residual feed intake (RFI)

SNP GGA Position® MAF® (minor/major) P value Near gene Gene name Location

rs313164887 2 63367934 /63158673 031 (C/T) 278 x 1077 ENSGALG00000012748 ELOVL2 Intronic

rs317782869 2 117906298 /117474376  0.33 (C/A) 9.08 x 10  ENSGALG00000031693 KCNB2 Intronic
ENSGALG00000034751 (dist=157865)  TRPAT -

316904613 20 6205401 /6013969 0.10 (C/G) 224 %1077 ENSGALG00000004593 (dist=38515)  SULF2 Intergenic
ENSGALG00000004621 (dist=180107)  PREXT

rs312419026 20 6450286 /6258855 0.10 (G/A) 264 x 1077 ENSGALG00000004621 PREX1 Intronic

“The first and second coordinates are the position in the galGal5 and galGal6 genome assembly, respectively

PThe allele frequency of the first listed marker

(Akkermansia), five (Parabacteroides, Lactobacillus,
Corynebacterium, Coprobacillus, and Slackia), and two
(Janibacter and Wautersiella) of the shared genera were
located in the duodenum, cecum, and feces, respectively.
One was identified as Akkermansia muciniphila at the
species level. Moreover, these cecal genera were posi-
tively and moderately correlated with each other (except
for Parabacteroides; Fig. 8c).

Notably, Parabacteroides mainly resided in the cecum
and was regulated by host genetics based on our afore-
mentioned results. The detection rate of A. muciniphila
incrementally decreased from 73.79 to 34.47% from the
duodenum to the ileum (Fig. 8d), but Akkermansia was
detected in less than 2% and 30% of the cecal and fecal
samples, respectively. Lactobacillus was largely detected
in any sampling site with a more than 99% detection rate
(Fig. 8e). The genus Corynebacterium was detected in
more than 97% of the duodenal, jejunal, ileal, and fecal
samples, but its detection rate in the cecal sample was
70.39% (Fig. 8f). Coprobacillus and Slackia mainly re-
sided in the cecum (Fig. 8g, h). The detection rates of
both Janibacter and Wautersiella were both less than
35% in the small intestine and cecum (Fig. 8i, j).

Given the low detection rate of two significant genera
in fecal samples, we focused on the six most abundant
microorganisms. The RFI value was significantly lower
in the 20% of chickens with the lowest abundance of
duodenal Akkermansia or cecal Parabacteroides than in
the 20% with the highest abundance (Fig. 9a, b). Chick-
ens with higher abundances of cecal Lactobacillus, Cor-
ynebacterium, Coprobacillus, and Slackia were more
feed efficient than those with lower abundances of these
microbial genera (Fig. 9c—f). Additionally, the genus
Lactobacillus showed significant and positive correla-
tions among the three segments of the small intestine,
and between the ileum and cecum (Fig. 9g). Further-
more, cecal Lactobacillus exhibited significant and posi-
tive relationships with most of the cecal microorganisms
(Fig. 9h), particularly the genera belonging to the order
Clostridiales (Additional file 20: Table S11). The rela-
tionship between Clostridiales and Lactobacillus was
0.46 (Fig. 9i).

Discussion

In recent years, a greater emphasis has been placed on
improving feed efficiency in domestic animals. The effi-
ciency of feed utilization is generally considered stable,
but for poorly understood reasons, it varies considerably
among individuals fed identical diets and reared under
the same conditions. Host genetic variation is a key fac-
tor driving phenotypic variation. Additionally, emerging
investigations have shown that variation in the gut
microbiota may increase the phenotypic differences
among individuals in a population [54-56]. The gut
microbiome is considered the host second genome [14],
is linked to feed digestion and nutrient absorption [15,
18, 57], inhibits the proliferation of intestinal pathogenic
bacteria and stimulates the production of antimicrobial
compounds [58, 59]. Despite these shared effects,
whether host genetics shape and interact with the gut
microbiota to influence feed efficiency in chickens is
largely unknown. Clarifying the association between host
genetics and gut microbiota in feed utilization is essen-
tial for the development of effective strategies to im-
prove feed efficiency. Here, we used an automatic feeder
to record the feed efficiency and performed whole-
genome sequencing of hosts and 16S rRNA gene se-
quencing of the microbiota in 206 broiler chickens. The
power of our present study is mainly reflected by the fol-
lowing factors. First, instead of focusing on single or a
few parts of the gastrointestinal tract, we covered the
chicken digestive tract segments more extensively, from
the duodenum to the cloaca. Second, statistical models
and methods of quantitative genetics were introduced in
gut microbiota research to explore the relationship be-
tween host genetics and gut microbiota and to evaluate
the influence of the microbial community on feed effi-
ciency. Moreover, to our best knowledge, this is the lar-
gest association study in chickens linking the gut
microbiota to feed efficiency to date.

The compartments within the digestive tract are differ-
entiated from each other both morphologically and func-
tionally. We and others have previously shown that their
microbial composition is similarly distinct [33, 60, 61].
Microbial source tracking and phenotypic prediction
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further corroborated that the microbial communities dif-
fer markedly among the small intestine, cecum, and
feces. Microorganisms engage in complex interactions
with other organisms and their environment. Several mi-
croorganisms have a higher level of organization than in-
dividual cells termed biofilms, which are formed by
multiple microbial populations embedded in complex,

self-produced polymeric matrices that are adherent to
each other and surfaces or interfaces [62]. Biofilm for-
mation is an imperative strategy by which microbial
communities survive and adapt to environments, par-
ticularly those with adverse conditions [63]. The higher
biofilm formation ability of the small intestine commu-
nities, especially the duodenal microbiota, provides the
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Relationship between Lactobacillus and the order Clostridiales in the cecum

mechanical properties necessary to protect the microbial
communities from external forces such as digestive en-
zymes secreted by the host. Similar results based on

microbial network inference also suggested a higher level
of synergistic interactions in the small intestine. A clear
negative correlation between anaerobic and aerobic
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bacteria was found in the ileum and may be caused by
aerobe inhibition and anaerobe proliferation at lower
oxygen concentrations. In the cecum, we observed a
strong antagonistic relationship between Bacteroidales
and Clostridiales, a finding that is consistent with the re-
sults of a study on human gut microbiome datasets [64].
Bacteroidetes and Clostridia represented most of the an-
aerobic fermentative bacteria [33], which may present
nutritional competition for fermentation substrates in
the cecum. These findings agree with the physiological
structure of the chicken digestive tract. The heterogen-
eity of the gut sections urges caution in equating data
from feces or a single gut compartment to data for the
entire gut microbiota. Thus, we considered the microbial
communities that existed in diverse sampling sites as dif-
ferent functional entities in the subsequent analysis.

Another fundamental goal of microbial research is to
identify the factors that determine the gut microbial
composition. Many environmental factors, such as diet
[65] and geographic location [66], influence the gut
microbiota of animals. However, the extent to which
host genetic variation may play a role in determining mi-
crobial composition is debatable. Early studies in twins
employed either culture or DNA fingerprinting-based
techniques, and monozygotic siblings were found to
have slightly more similar microbiomes than dizygotic
siblings [67, 68]. The recent advent of sequence-based
techniques has enabled gut microbiome studies with
large cohorts. Several studies have revealed an increase
in the overall similarity of gut microbial communities
with greater degrees of relatedness between individuals
[69-71], but this similarity decreased when siblings
started living apart [72]. Compared with humans, do-
mestic animals can be reared under controlled condi-
tions. Previous studies have compared the differences in
the gut microbiota between breeds. Pandit et al. [66]
found cecal microbiota separation by chicken breeds or
lines, whereas geographical location also exerted a sub-
stantial impact on the variation of cecal microbiota. In
the present study, we found that the genetically closer
pairwise individuals on average did not have more simi-
lar microbiota than genetically more distant pairs. We
also demonstrated that the relationships between host
genetic kinship and the gut microbial similarities within
various sampling sites were weak. Similar results were
also reported by Rothshild et al. [30] in human datasets
and Massacci et al. [73] in horses. Certainly, other inves-
tigations in humans [74], mice [75], and pigs [71] have
documented significant correlations between host gen-
etic kinship and microbial similarity, while the correl-
ation coefficient was weak, ranging from 0.14 to 0.19.
These observations imply that most of the variation in
the gut microbial community is due to factors other
than host genetics.
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Although studies examining the general measures of
microbial similarity have not observed strong evidence
for host genetic effects, a more general approach to this
question has linked genetic loci with the gut micro-
organism abundance. A recent study identified several
genetic variants involved in the immune response and
metabolism that were significantly associated with mi-
crobial diversity in the cecum of chickens [32]. However,
few studies in chicken have investigated the effect of the
host on the abundance of a specific taxon. We published
a study that identified a few heritable microbial taxa
[33]. A natural next step is to pinpoint the host genetic
variants and genes that underlie heritability. We per-
formed GWAS in the present study and identified two
genetic regions that were associated with the abundances
of Megasphaera and Parabacteroides in the cecum, re-
spectively. Previous studies have revealed that Mega-
sphaera is a potent lactate utilizer in the rumen [16, 76]
and plays an important role in preventing lactic acidosis
[77, 78]. A candidate gene associated with cecal Mega-
sphaera is MTHFDIL. Interestingly, Lee et al. [79] re-
ported that lactate accumulated in MTHFDIL-
knockdown cells, suggesting that MTHFDIL may inter-
act with Megasphaera for lactate utilization. Regarding
Parabacteroides, which have an intriguing association
with glucolipid metabolism [80, 81], Wang et al. [81]
demonstrated that oral treatment with live Parabacter-
oides reduced weight gain and improved glucose homeo-
stasis. A promising candidate gene associated with the
abundance of cecal Parabacteroides is LARGEI, which
encodes a glycosyltransferase that may synthesize glyco-
sphingolipid sugar chains. Because some gut microor-
ganisms are partly under the control of host genes, from
an animal breeder perspective, they can be considered
host traits [82], highlighting the possibility of breeding
for an optimized microbiota to indirectly improve feed
efficiency. Indeed, Parabacteroides is one of the two
more abundant genera in chickens with high RFI values
(inefficient). Therefore, strategies to improve feed effi-
ciency in chickens may be optimized by molecular
breeding to decrease the abundance of cecal
Parabacteroides.

In combination, microbial similarity and GWAS ana-
lyses implied that host genotypes interact with some mi-
croorganisms but cannot account for most microbial
variation. Thus, the variation within the gut microbiota
could be integrated into variance estimates of the host
phenotype, a suggestion originally proposed by Ross
et al. [83] and applied in humans [30], chickens [33],
pigs [51], and cattle [52, 84]. Specifically, Camarinha-
Silva et al. [51] found that the proportion of variance in
feed efficiency traits explained by gut microbiota was
higher than that explained by host genetics. To antici-
pate how much the efficiency of feed utilization could be
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modulated by host genetics and the gut microbiota in
chickens, we estimated the #* and m” values of the RFL
Compared with the estimate generated using microbial
information from one gut sample type, our estimates
covered the chicken digestive tract contents more exten-
sively, including the duodenum, jejunum, ileum, cecum,
and feces. Host genetics was responsible for 39% of the
total phenotypic variation. The effect of the microbial
communities in the cecum on RFI was 28% after ac-
counting for host genetics. These findings suggest agree-
ment with the holobiont theory [85], where variations in
the genome and microbiome can cause variations in host
complex traits on which artificial selection and microbial
regulation can act, such as selective breeding to unlock
host genetic potential and feed supplementation with
probiotics.

Consistent with early studies conducted with the same
breed [11, 12], the RFI exhibited moderate heritability.
This result indicated that feed efficiency was at a moder-
ate level of genetic regulation. We then identified three
suggestive significant loci—rs317782869, rs313164887,
and rs316904613—which were near or distributed on
three independent genes: TRPAI, ELOVL2, and PREXI.
Among these, TRPAI encodes a protein known as tran-
sient receptor potential ankyrin 1, which is a member of
the transient receptor potential channel family. Previous
studies have demonstrated TRPA1 channel involvement
in the regulation of gastrointestinal motility [86] and
feed digestion [87] by 5-hydroxytryptamine and chole-
cystokinin release, respectively. In addition, this channel
plays a crucial role in the pathogenesis of inflammatory
bowel disease [88]. The ELOVL2 gene encodes a
transmembrane protein that is involved in long-chain
polyunsaturated fatty acid elongation and lipid synthesis
[89-91]. Lipids are the principal stored forms of energy
in many organisms. Mouse ELOVL2 is mainly expressed
in the liver and testicle [92], while Gregory et al. [90]
found that the expression level of ELOVL2 was 4.6-fold
in the liver in chickens compared with that in the mouse
[93]. Jehl et al. [94] found that a low-energy diet led to
overexpression of the ELOVL2 gene. The PREXI gene
was also found to be significantly associated with feed ef-
ficiency in cattle [95]. Previous studies have reported
that PREX1 is involved in the thermogenic capacity and
insulin-stimulated glucose uptake in adipocytes [96, 97].
These observations suggested that the TRPAI gene may
influence feed efficiency by regulating nutrient digestion,
while ELOVL2 and PREXI may affect energy utilization
and, consequently, feed efficiency. A significant differ-
ence in RFI was found among chicken individuals differ-
ing at specific genetic loci: rs317782869, rs313164887,
and rs316904613. Moreover, a subset of microbial gen-
era, particularly Janthinobacterium, Propionibacterium,
and Corynebacterium, reached the significance level
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between chickens with various genotypes. Munyaka
et al. [98] observed an increase in Janthinobacterium in
the ileum with a corn-based diet. Propionibacterium is a
Gram-positive bacterium with a unique ability to pro-
duce propionate [99] and is related to higher energy effi-
ciency [100]. Members of the genus Corynebacterium
metabolize various carbohydrates and produce organic
acids such as lactate and succinate [101]. Moreover, Cor-
ynebacterium is one of the six genera identified as being
associated with feed utilization. These findings indicated
that breeding for high feed efficiency by targeting source
variation could also influence a small percentage of the
gut microbiota, thereby together contributing to the
variation in feed efficiency.

The microbiability of RFI estimated for the cecal
microbiota was 0.28, while the proportion of variance in
RFI explained by the duodenal, jejunal, ileal, and fecal
microbiota was statistically insignificant. Moreover, of
the six genera that were significantly associated with RFI
in our study, five were located in the cecum. Thus, the
contribution of the cecal microbiota to feed efficiency
was higher than that of other parts of the intestinal tract.
Stanley et al. [102] compared the jejunal and cecal
microbiota between chickens with high and low feed
efficiency and found that 24 cecal microorganisms
were significantly differentially abundant between the
two groups, but the jejunal microbial communities
showed no difference. Our previous study in egg-type
chickens also showed that the microbial communities
in the cecum were significantly different between the
high- and low-RFI groups, while no clear separation
was found in the duodenal or fecal microbial commu-
nities between the two groups [54]. The cecum is a
highly anaerobic environment. Numerous polysacchar-
ide- and oligosaccharide-degrading enzyme-encoding
genes are found in the cecal metagenome [103]. The
cecum can ferment indigestible ingredients into
energy-rich SCFAs. Annison et al. [104] demonstrated
that the cecum is the main production site of SCFAs
in chickens. Moreover, the almost complete absence
of SCFAs in the digestive tract contents of germ-free
chickens [104] implies that the SCFAs normally
present in the tract are of microbial origin. SCFAs
produced by microbial fermentation within the cecum
increase the absorption and utilization of energy by
the host. Previous studies have revealed that cecal
SCFAs could provide up to 11~18% of the energy
needs for the basal metabolic rate and 4~7% of the
estimated free-living energy requirements [105, 106].

Given that the resident microbiota affects the effi-
ciency of feed utilization, we further explored which taxa
were significantly linked to feed efficiency. Our study
confirmed that lower abundances of duodenal A. muci-
niphila  and cecal Parabacteroides and higher
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abundances of cecal Lactobacillus, Corynebacterium,
Coprobacillus, and Slackia were associated with better
feed efficiency. A. muciniphila, Parabacteroides, and
Lactobacillus are known to be involved in feed effi-
ciency. The other three bacteria we identified are novel
findings. Several studies have reported positive correla-
tions between the abundance of A. muciniphila and
energy expenditure or thermogenesis [107-109]. Inter-
estingly, a recent study confirmed that daily oral
administration of pasteurized A. muciniphila increase
energy excretion in the feces and decrease food energy
efficiency [110]. Parabacteroides, as mentioned above, is
important in the regulation of host metabolic functions
[80, 81] and is regulated by host genetics. Lactobacillus
is currently recommended as a probiotic to improve pro-
duction performance in poultry production; our previous
study also showed that the abundance of cecal Lactoba-
cillus was significantly higher in hens with better feed ef-
ficiency [54]. Lactobacillus can inhabit various sections
of the chicken digestive tract. The relative abundances of
Lactobacillus in adjacent sites were similar; specifically, a
positive correlation was detected. Altaher et al. [111]
found that chicken feed efficiency was improved by 6.4%
through dietary supplementation with Lactobacillus.
Similar results were also reported by Gao et al. [112].
Additionally, we found that cecal Lactobacillus exhibited
significant and positive relationships with most of cecal
microorganisms, especially those of genera belonging to
the order Clostridiales, which are the main SCFA-
producing bacteria in chickens. Supplementation with
Lactobacillus increased the abundances of many intes-
tinal Lactobacillus spp. and promoted a beneficial
change in the bacterial correlation network [112].

Conclusions

Our study strengthens the notion that both host genetic
and gut microbial variations can lead to variation in feed
efficiency. Overall, gut microbial similarity was largely
independent of individual genetic relatedness. However,
a small number of microorganisms could interact with
host genotypes and were also linked to feed efficiency.
We further identified three independent SNPs that were
associated with feed efficiency and had a modest effect
on the gut microbiota. These results revealed host-
microbiota interactions in the regulation of feed effi-
ciency. Gut microbial communities among the compart-
ments of the digestive tract exhibited substantial spatial
heterogeneity, and the contributions of the gut micro-
biota to RFI varied along the digestive tract. Among
these, the cecal microbiota had a much larger effect on
feed efficiency. Additionally, six bacteria, Akkermansia
muciniphila, Parabacteroides, Lactobacillus, Corynebac-
terium, Coprobacillus, and Slackia, were identified for
their significant associations with feed efficiency. These
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observations collectively provide insights into the linkage
between the gut microbiota and host genetics regarding
chicken feed efficiency and may aid in developing strat-
egies to improve feed efficiency in chickens.
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