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Abstract

Background: A few recent large efforts significantly expanded the collection of human-associated bacterial
genomes, which now contains thousands of entities including reference complete/draft genomes and metagenome
assembled genomes (MAGs). These genomes provide useful resource for studying the functionality of the
human-associated microbiome and their relationship with human health and diseases. One application of these
genomes is to provide a universal reference for database search in metaproteomic studies, when matched
metagenomic/metatranscriptomic data are unavailable. However, a greater collection of reference genomes may not
necessarily result in better peptide/protein identification because the increase of search space often leads to fewer
spectrum-peptide matches, not to mention the drastic increase of computation time.

Methods: Here, we present a new approach that uses two steps to optimize the use of the reference genomes and
MAGs as the universal reference for human gut metaproteomic MS/MS data analysis. The first step is to use only the
high-abundance proteins (HAPs) (i.e., ribosomal proteins and elongation factors) for metaproteomic MS/MS database
search and, based on the identification results, to derive the taxonomic composition of the underlying microbial
community. The second step is to expand the search database by including all proteins from identified abundant
species. We call our approach HAPiID (HAPs guided metaproteomics IDentification).

Results: We tested our approach using human gut metaproteomic datasets from a previous study and compared it
to the state-of-the-art reference database search method MetaPro-IQ for metaproteomic identification in studying
human gut microbiota. Our results show that our two-steps method not only performed significantly faster but also
was able to identify more peptides. We further demonstrated the application of HAPiID to revealing protein profiles of
individual human-associated bacterial species, one or a few species at a time, using metaproteomic data.

Conclusions: The HAP guided profiling approach presents a novel effective way for constructing target database for
metaproteomic data analysis. The HAPiID pipeline built upon this approach provides a universal tool for analyzing
human gut-associated metaproteomic data.
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Introduction
Culture independent studies of microbial communities
associated with different environments are promoted by
two main reasons: significance of these communities to
their environment/host, and the rapid advancements in
sequencing technologies [1–4]. Of these communities a
particular attention has been devoted to the human gut
microbiota for its impacts on human health and dis-
eases [5–7] and its potential applications to improving
the efficacy of treatments (including cancer chemother-
apy and immunotherapy) [8, 9] and prevention of dis-
eases (e.g., using probiotics [7, 10]). Numerous studies,
focusing on human gut microbiota, have already been
conducted showing its central role in regulating human
health, reporting the latter’s deterioration to be directly
related to dysbiosis in the composition and functional-
ity of gut bacteria [11]. Irritable bowel syndrome (IBS),
inflammatory bowel diseases (IBD) and Clostridium diffi-
cile infection (CDI), just to mention a few, are examples
of diseases that are found to be associated with the imbal-
ance within the human gut microbiota [12–14]. It has
also been shown that the genetic makeup and the diet
of the host have direct impacts on the composition of
the gut bacteria, while in the meantime the latter regulat-
ing digestive and metabolic (and beyond) processes of the
host, creating a symbiotic relationships between the two
[15–17].
Improvements of both the experimental techniques

(e.g., sequencing technology and sample collection [18])
and computational methods (such as those for binning
and assembly [19]) have accelerated the microbiome
research. While metagenomics and metatranscriptomics
are essential for quantification and characterization of
taxonomic compositions of microbial communities, they
only suggest possible metabolic potential and are unable
to confirm the actual presence of such biological pro-
cesses in the communities, since most biological functions
are carried out at the protein level. Shotgun proteomics,
which studies all the translated proteins in a sample recov-
ered from the environment directly, has been shown to be
promising in uncovering functional information about gut
bacteria [20–22]. Combining information from multiple-
omic experiments will provide opportunities for more
comprehensive characterization of the functionalities of
the underlying microbial communities.
The initial shotgun metaproteomic experiments date

back as far as a decade ago [20], and despite of the
numerous improvements of the employed technologies
ever since, mass spectrometers are still hurdled to detect
low abundant proteins [23, 24] . Unlike sequencing tech-
nologies, shotgun metaproteomics still suffers from the
diversity and complexity of microbiome communities,
making it challenging for data evaluation and downstream
analysis [25, 26]. A typical metaproteomic data analy-

sis includes these steps: construction of a sample-specific
target protein sequence database, peptide identification
against the target database, and downstream functional
analysis [27]. Without any previous knowledge concern-
ing the active organisms prominent in the target sample,
the results and the quality of downstream analysis highly
depend on the constructed protein database [28]. Using
large and expanded database to include a comprehen-
sive set of species for spectral search may reduce the
search sensitivity, making it difficult to estimate false dis-
covery rate (FDR) without the expense of increased false
negatives while significantly increasing the search time
[29]. On the other hand, manually constructing a cus-
tomized target database is not straightforward, given the
complexity and diversity of the human gut microbiota,
and thus is not commonly adopted in practice. In the
cases whenmulti-omics datasets are available for the same
microbial community, the metagenomic and/or metatran-
scriptomic data can be utilized to derive the target protein
database for metaproteomic data analysis. We have pre-
viously developed novel algorithms (Graph2Pro [30] and
Var2Pep [31]) to optimize the use of matched metage-
nomic/metatranscriptomic data for metaproteomic data
analysis.
Many metaproteomic datasets have been and will

be produced without matched metagenomic sequences
information, so it is important to develop methods for
analyzing these metaproteomic datasets without matched
metagenomic databases. In addition, it is attractive to
develop a universal framework for metaproteomic data
analysis across different samples and studies without rely-
ing on specific metagenomic datasets. The success of
such universal approaches relies on (1) the availability of
a comprehensive reference protein database for spectral
search and (2) algorithms that enable effective use of the
large reference database. Microbiome research has dras-
tically expanded the protein universe related to microbial
species. On the other hand, the two-step method, which
uses matches derived from a primary search against a
large database to create a smaller subset database for
false discover rate (FDR) controlled second step search,
has shown improved sensitivity in peptide identifica-
tion from metaproteomic data, as shown in Jagtap et
al. [29]. Zhang et al. [32] developed MetaPro-IQ, which
leverages the large gene catalogs (for human gut micro-
biome andmouse gut microbiome) as the target databases
in its first step of spectra searches. MetaPro-IQ identi-
fied 15,200 peptides on average over samples collected
from intestines of eight human subjects, matching the
results using matched metagenome approach on the same
datasets. MetaPro-IQ was later integrated into an auto-
mated pipelineMataLab [33], which also leverages spectra
clustering to improve the speed of peptide identification
from database searches.
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Spectral search against a large reference database (as in
MetaPro-IQ) is computationally intensive. Taking advan-
tage of the recent expansion of the human gut micro-
bial genomes [34, 35], we developed a new two-step
approach for human gut metaproteomics data analysis,
using over 3000 reference genomes and MAGs by first
profiling microbial communities based on the spectral
search against a database of high-abundance proteins
(HAPs) encoded by these genomes. Genes are not equally
expressed, and studies have shown that highly expressed
genes such as ribosomal genes or translation elongation
factors use favored codons (i.e., codon bias) [36–38]. The
profiling results are then used to guide the construction
of the target database for the second step spectral search,
including all putative proteins encoded by only the promi-
nent genomes identified in the first step. As a result,
our approach significantly reduces the computational
cost of the whole process. We call our approach HAP
guided Metaproteomics IDentification or simply HAPiID
(pronounced as Happy ID). We tested HAPiID using
eight publicly available metaproteomic datasets [32]. The
results show that HAPiID outperformed MetaPro-IQ in
both the number of identified peptides and the speed.
We note that in this paper, we compared HAPiID with
MetaPro-IQ [32] (instead of MetaLab [33], which uses
MetaPro-IQ for peptide identification), to emphasize the
promise of developing novel approaches for constructing
effective target database for spectra searches in metapro-
teomic studies. While this paper focus on human gut
metaproteomic data analysis, HAPiID can be customized
for analyzing metaproteomic data associated with other
environments or hosts.

Materials andmethods
The overall approach and the rationale
HAPiID uses two steps for metaproteomic MS/MS data
identification. The first step is to infer the taxonomic
profile of microbial community based on metaproteomic
data, by searching spectra against a database containing
only the proteins that are likely to be highly abundant due
to their functional importance in any species. In this step,
HAPs from all gut reference genomes and MAGs are con-
sidered. The second step is to do spectral search against an
expanded database of all proteins but from amuch smaller
selection of reference genomes withmost spectral support
according to search results from the first step. The ratio-
nale of the two-step approach and using highly expressed
proteins in the first step is that if these high-abundance
proteins (which are highly conserved and are of impor-
tant functions to any microbial species) encoded by a
genome are not detected by metaproteomics approach,
other proteins encoded by the same genome are less likely
to be detected (also supported by our “Results” section).
The purpose of the first step is two fold: (1) to profile a

metaproteomic sample and identify species prominent to
it and (2) to expand these prominent species to construct
a sample-specific target protein database for subsequent
peptide identification.
Although HAPiID and MetaPro-IQ [32] are both

two step methods for peptide identification from
metaproteomics data, they have fundamental differences.
MetaProIQ starts with spectral search against an enor-
mous protein database (the entire IGC-database contain-
ing over nine million proteins) in its first step, followed
by constructing a more targeted database for the sec-
ond step. HAPiID on the other hand starts with a much
smaller database containing only highly abundant protein
sets identified from gut genomes, followed by construct-
ing a database containing entire proteomes of the selected
genomes.

Gut reference microbial genomes/MAGs
To assemble reference genomes for MS/MS identifica-
tion in human gut metaproteomics, we collected genomes
from two recent studies [34, 35]. Bacterial genomes
reported in [35] were compiled from two sources: a total
of 617 genomes obtained from the human microbiome
project (HMP) [39], and 737 whole genome-sequenced
bacterial isolates, representing the Human Gastrointesti-
nal Bacteria Culture Collection (HBC). These 737 bacte-
rial genomes were assembled by culturing and purifying
bacterial isolates of 20 fecal samples originating from dif-
ferent individuals [35]. The bacterial genomes reported
in [34] were generated and classified from a total of
92,143 metagenome assembled genomes (MAGs), among
which a total of 1952 binned genomes were character-
ized as non-overlapping with bacterial genomes reported.
These novel binned genomes were termed as Unchara-
terised MetaGenome Species (UMGS). We also amended
56 archaeal genomes belonging to 13 species that were
shown to be essential inhabitants of the human digestive
tract [40].
We were able to retrieve 612 out of 617 RefSeq genomes

using the reported RefSeq IDs. Our final dataset for this
study contains 612 genomes from the RefSeq database,
737 whole genome-sequenced bacterial isolates from the
HBC dataset, 1952 UMGS genomes and 56 archaeal
genomes, making a total of 3357 genomes and MAGs.
We applied the least common ancestors approachGTDBTK

[41] to assign taxonomic labels to these genomes. This
approach was able to assign order level taxonomies to
3293 out of these genomes.

Identification of ribosomal proteins and elongation factors
(HAPs)
We collected (from RefSeq genomes) or predicted (from
MAGs) putative proteins and then identified highly abun-
dant proteins, i.e., ribosomal proteins and elongation fac-
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tors among them. FragGeneScan [42] was employed, with
default settings to predict protein coding genes and their
respective amino acid sequences, from MAGs. A total
of 2,602,889 genes were predicted from the HBC contigs
and another 4,001,749 genes from the UMGS bins. Genes
for the RefSeq genomes were obtained from the RefSeq
database. A total of 2,017,525 genes were downloaded for
all the RefSeq genomes used. The final dataset contains
over eight million putative proteins. CD-HIT [43] clus-
tering (at sequence identify of 90%) of our dataset and
the IGC-database resulted in a total of 9,052,001 clus-
ters. Although only 25.5% of these clusters contain both
IGC proteins and HAPiID proteins (the rest contains only
either IGC proteins or HAPiID proteins), the overlap is
significant with more than 2M (2,311,601) such clusters
shared by both datasets.
We extracted ribosomal proteins and elongation fac-

tors from the 612 RefSeq annotated genes, by search-
ing for keywords “ribosomal protein” and “elongation
factor,” then we scanned these genes against the Pfam
database (Pfam32.0) [44], using hmmer3 program [45]
to extract the Pfam profiles that confidently match with
these sequences. A strict E-value cutoff of e−10 was used
to report hits. A total of 120 Pfam profiles had significant
hits with the RefSeq sequences; however, some of these
domains were irrelevant (i.e., tRNA synthetase) and were

present due to their co-presence with relevant domains
in multi-domain proteins. After manually curating these
profiles, we kept domains that were only for riboso-
mal proteins and elongation factors. A final list of 77
Pfam profiles were retained (the list is included in the
HAPiID pipeline). All putative proteins predicted from
the HBC and UMGS bins were then scanned against these
Pfam profiles using hmmscan [45], to identify riboso-
mal proteins and elongation factors. A total of 39,584,
48,598, 101,899 and 2074 ribosomal proteins and elonga-
tion factors were extracted from RefSeq genomes, HBC
bins, UMGS bins, and archaeal genomes, respectively. We
note that all of the 3357 gut genomes have these highly
expressed proteins, ranging from 7 to 80 HAPs. A more
detailed distribution of the number ofmarker genes across
the different genome sources is summarized in Supple-
mentary Figure S1. After removing redundant proteins
(with 100% sequence identity according to CD-HIT [43]),
we constructed the High Abundance Protein database
(HAPdb), which contains 110,103 proteins in total, to be
used as the target database for the first step search in
HAPiID pipeline.

HAPiID pipeline
Figure 1 shows the overall structure of the HAPiID
pipeline. The first step is the sample profiling, which

Fig. 1 An overview of the HAPiID pipeline for peptide identification from metaproteomic MS/MS data. The pipeline is composed of two main steps,
sample profiling (which is based on searching spectra against precalculated HAPdb containing HAPs from all genomes/MAGs) and expanded search
(to search spectra against all proteins from a smaller selection of abundant genomes)

https://github.com/mgtools/HAPiID/blob/master/data/ribP_elonF_profiles_refined_manually.txt
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involves searching MS/MS data against HAPdb to profile
the sample of interest. HAPdb for the human gut micro-
biome is composed of a set of 110,103 non-redundant
high-abundance proteins (as mentioned in the previ-
ous section), totalling less than 1.3% of the total pro-
teins encoded by the 3,357 gut bacterial genomes. Pep-
tides identified in this step are used to quantify the
presence of prominent species. We implemented a sim-
ple greedy approach that reports the minimum list of
genomes needed to cover all identified spectra. The
greedy approach works by first ranking all the genomes in
decreasing order of the number of identified unique spec-
tra they can explain, and then choosing the top n most
abundant genomes to construct expanded target database
(for the second-step search). In principle, n is chosen
such that all spectra are covered, which however does
not work in practice due to the existence of a large num-
ber of genomes with only a few spectra (which could also
be false identifications). Instead, we devised an automatic
procedure for choosing the parameter n such that these
n genomes cover at least 80% (or a user defined %) of the
identified spectra in the profiling phase, which worked
well in practice (see the “Results” section).
The second step is the expanded search, where the spec-

tra are searched against the expanded target database
constructed based on the sample profiling results. The
second-step search-database is composed of all proteins
encoded by selected genomes from the profiling step,
supplemented with all the HAPs with spectral support
during the first-search-step (profiling). By doing this, we
only need to keep peptide identifications from the sec-
ond step as the final results. In other words, peptide
identifications are not combined between the two search
steps, which could complicate FDR estimation otherwise.
Species diversity and composition will be reported when
the pipeline completes.
We tested both MS-GF+ [46] and X! Tandem [47] as the

search engines for identifying tandem mass spectra using
a target protein database. However, our pipeline can be
modified to work with other search engines. In both steps
(profiling and targeted search), a strict FDR of 1%, which
is commonly adopted, was used to control for false pos-
itives from our final peptide identification. The FDR was
estimated using the target-decoy approach [48], where the
reverse protein sequences were used as the decoys.

Metaproteomic datasets
We tested our pipeline using one synthetic and eight
publicly available human gut metaproteomic datasets
[32, 49]. The synthetic dataset called SImplified HUman
Interstinal MIcrobiota (SIHUMI) was produced from
proteomes of eight genomes (Anaerostipes caccae, Bac-
teroides thetaiotaomicron, Bifidobacterium longum, Blau-
tia producta, Clostridium butyricum, Clostridium ramo-

sum, Escherichia coli, and Lactobacillus plantarum) [49].
The latter eight metaproteomic datasets were obtained
from children all under 18 years old during colonoscopy
from children’s hospital of Eastern Ontario. The use
of these datasets will facilitate the comparison of our
approach to MetaPro-IQ and results reported from their
matched metagenome approach as well [32].
We tried both search engines when applying HAPiID

to these datasets. We used the MS-GF+ search engine
(version v10089) [46] with the following parameters: high-
resolution LTQ (instrument type), precursor mass toler-
ance of 15 ppm, -1–2 for the isotope error range, allowing
at most 3 modifications including variable oxidation of
methionine and fixed carboamidomethy of cysteine, max-
imum charge of 7, minimum charge of 1, and allowing
semi-tryptic fragmentation.We used the same parameters
for X! Tandem (VENGEANCE 2015.12.15) as reported in
MetaPro-IQ [32]: up to two miss-cleavages (trypsin/P),
carbamidomethylation of cysteine as a fixed modifica-
tion, oxidation of methionine as a potential modification,
a fragment ion tolerance of 20 ppm, and a parent ion
tolerance of 10 ppm.

Functional annotation of identified proteins
We used two sources to assign functions to the proteins
identified from metaproteomic data by HAPiID. The first
one is KofamKOALA [50], which is based on KOfam, a
customized database of KEGG orthologs [51]. The other
one is Pfam database [52]. Both of these sources rely on
HMMER tools to scan protein sequences against their
databases for functional annotation [45].

Availability of the pipeline
The HAPiID pipeline and the data required to
use the pipeline are available as open source at
https://github.com/mgtools/HAPiID. Scripts for generat-
ing specialized HAPdb for a collection of user specified
genomes are also included in the package.

Results
We first evaluated the efficiency and accuracy of HAPiID
using a synthetic metaproteomic dataset and eight real
gut metaproteomic datasets. We then compared the per-
formance of our pipeline to MetaPro-IQ. Finally, we
demonstrated the applications of our pineline including
metaproteomics-based taxonomic profiling and studying
the functional distribution of expressed proteins from
highly abundant species using metaproteomic data.

Evaluation of HAPiID using the synthetic gut
metaproteomic dataset
Instead of searching spectra against more than eight mil-
lion proteins predicted from the entire collection of 3357
gut genomes, HAPiID involves two searches against much

https://github.com/mgtools/HAPiID
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smaller databases: the first database contains only HAPs
from all the genomes, and the second one contains all
proteins predicted from a smaller collection of genomes.
Selection of the genomes (based on the first profiling
step) determines the efficiency and accuracy of the overall
peptide identification by HAPiID. Here, we use the syn-
thetic SIHUMI dataset, for which we know the underlying
genomes (see the “Methods” section for more details), to
evaluate the accuracy of the profiling step of the HAPiID
and to learn about how to select genomes for the second
step. We constructed an exact reference database con-
sisting of proteins encoded by the eight genomes (called
SIHUMI DB) for peptide spectra search using MS-GF+.
The identified peptides were then used for estimating
the species composition of the synthetic metaproteomic
dataset. Figure 2a summarizes the species composition,
which uses the percentage of unique spectra mapped to
the underlying genomes to approximate the species abun-
dance. Although the SIHUMI dataset was constructed
using eight species, there were no unique peptides/spectra
identified to Lactobacillus plantarum. In addition, the
top five most abundant species (Bacteroides thetaiotaomi-
cron, Blautia producta, Anaerostipes caccae, Escherichia
coli, and Clostridium ramosum) accounted for 99.67% of
identified spectra.
Figure 2b shows the percentage of identified spectra as

a function of top n species included during the profiling
phase by HAPiID applied to the synthetic dataset. The
plot shows that only the first few genomes contributed
significantly to the identification of spectra: 80% of the
identified spectra in the profiling step can be explained
by the first five species, and after that, only a very small
fraction of spectra can be explained by including yet
another genome. More importantly, we show that the top

five genomes identified by HAPiD’s profiling step are the
same as those revealed by the targeted search (against
SIHUMI DB) and are in the same order as expected when
ranked by their relative abundances. We note that the
two species that were missed by HAPiID (Bifidobacterium
longum, Lactobacillus plantarum )—when only genomes
that cover at least 80% of identified spectra were included
(this criterion worked well for the real gut metaproteomic
datasets as well, as shown below)—contribute less than
0.4% of the total number of identified spectra. It would be
difficult to identify peptides from such very rare species
without increasing false identification, considering that
HAPiID uses a large collection of genomes for the pro-
filing step, necessary for its application to real metapro-
teomic datasets with unknown and much more complex
species composition.

Test of HAPiID using eight gut metaproteomic datasets
Next, we benchmarked the efficiency of the HAPiID using
more complex gut metaproteomic datasets. After the first
profiling step, we ran HAPiID by selecting different num-
bers of genomes for the second step expanded search and
compared the results from the different runs. Figure 3a
summarizes the percentage of peptides identified from
the first-step search that are covered as a function of the
number of selected genomes. Figure 3b summarizes the
total number of final identified peptides when different
numbers (5, 10, 20, 30, 40, 50, 100, 200) of genomes were
included for the targeted search. Figure 3b shows that the
number of peptides remains roughly flat between 20 and
50 genomes—these genomes could explain around 80% of
the total number of peptides identified in the profiling step
(Fig. 3a). The performance started to deteriorate when
including more than 50 genomes (Fig. 3b), indicating that

Fig. 2 Test of HAPiID pipeline using the SIHUMI synthetic metagenomic dataset. a The relative abundance of the underlying species based on
spectral identification using the eight underlying genomes as the reference database. b The percentage of unique spectra identified as a function of
number of genomes selected by HAPiID
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Fig. 3 Test of HAPiID pipeline on eight human gut metaproteomic datasets. a, b The number of unique peptides identified during profiling step,
and number of unique peptides identified during expanded search, respectively. In b, the ribP_elonF represents the results from the profiling step. c
The running time (in hours) as a function of number of genomes included in the second step, expanded search

after this point, including more genomes will unneces-
sarily increase the search space that worsens the spectral
identification.
A potential problem of using small target database for

spectra search is that a spectrum may be identified as a
wrong peptide because the true peptide, which can be
identified when a larger target database is used, is not
contained in the small target database. To address this
problem (and to determine the appropriate size of the
databases for the second step search for fast yet accurate
peptide identification), we checked whether or not the
same peptide is identified from the same spectrum when
using a small or a big target database. For quantification
purposes, we defined the consistency rate as the fraction of
peptide-spectrum matches (PSMs) that remain the same
when the size of the database was increased. We note that
when comparing consistency rates across two databases,
the small database is always a subset of the big database.
Table 1 summarizes the average consistency of the peptide

identification when databases of different sizes are used
(in the second step search) for all eight metaproteomic
datasets (results for individual samples are shown in Sup-
plementary Tables S1 and S2). The results suggest that
databases built from fewer than 20 genomes are not suffi-
ciently large to produce accurate identifications; for exam-
ple, peptide identifications based on top five genomes and
top 100 genomes only had 97.8% agreement (i.e., the dis-
crepancy is 2.2%, which is greater than the commonly
used 1% FDR). However, when the number of genomes
reaches 20 or more, the search results had about 99%
agreement with the results based on searches against an
expanded database built from for example, 100 genomes.
As shown in Supplementary Figure S2, the PSM score cut-
off (set for 1% FDR) increased when more genomes were
used in the search; however, the differences are small, and
there are clear separations between the matches to target
database andmatches to decoy database in all settings (see
Supplementary Figure S3 and S4 for the score distribu-
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Table 1 Agreement of identified peptides between searches against target databases of various sizes

Database Top 5 Top 10 Top 20 Top 30 Top 40 Top 50 Top 100

top5 100.00 99.233 98.727 98.425 98.319 98.216 97.800

top10 100.00 99.441 99.189 99.031 98.930 98.486

top20 100.00 99.733 99.573 99.474 98.982

top30 100.00 99.840 99.733 99.343

top40 100.00 99.893 99.519

top50 100.00 99.634

top100 100.00

tions when top five most abundant genomes and 100 most
abundant genomes were used for the expanded search,
respectively).
On the other hand, using fewer genomes speeds up

the spectral search process. Figure 3c shows the running
time (in CPU hours) of HAPiID using target databases of
various sizes. Just as expected, the running time grows
(linearly) with the number of genomes used for construct-
ing the expanded search database. When using top 20
genomes in the second step of search, the whole pipeline
(using MS-GF+ search engine) was finished in less than
11 h for all the datasets we tested. This is a significant
achievement, considering that speed is one of the major
concerns about metaproteomic data analysis [46].
We also tested HAPiID using X! Tandem [53, 54], which

was used in MetaPro-IQ [32] for its first and second steps
of spectra match. We used the same parameters for X!
Tandem as reported by MetaPro-IQ (see the “Methods”
section). Table 2 summaries the peptide identification
results by HAPiID with the two search engines. Overall,
HAPiID using the two engines achieved comparable per-
formances across different samples, with HAPiID using
MS-GF+ marginally outperformed HAPiID using X! Tan-
dem in six out of the eight cases. We also summarize the
overlap of the identified peptides in Supplementary Figure
S5.
HAPiID relies on identification of HAPs for profiling,

assuming that these HAPs would have higher chance to
be identified than other proteins. Using HAPiID identifi-
cation results of the eight gut meteproteomic datasets, we

were able to show that HAPs were indeed more frequently
identified (see Fig. 4) supported by more spectra (Sup-
plementary Figure S6), in comparison to other proteins
encoded by the same set of genomes selected by HAPiID
for the expanded search, confirming that the assumption
utilized by HAPiID is valid.
Considering all (the peptide identification efficiency as

shown in Fig. 3b, the accuracy of the identification as sum-
marized in Table 1, and the running time as shown in
Fig. 3c), using top n most abundant genomes that cover
up to 80% of the total number of spectra during profil-
ing phase appears to be a good practice for the second
step of expanded search for analyzing the eight human
gut metaproteomic datasets. Using this criterion, on aver-
age 20 genomes were selected for expanded database
search when tested over these eight datasets. We used the
results based on this setting for the downstream analyses
reported below.

Comparison with MetaPro-IQ andmatchedmetagenome
approach
We first compared the peptide identification results
from HAPiID (using MS-GF+ as the search engine) and
MetaPro-IQ. Because the MetaPro-IQ pipeline was not
publicly available, we used their reported identification
results [32] for comparison.
For the eight gut metaproteomic datasets we have

tested, HAPiID method identified 17,472 peptides per
sample on average, which is significantly higher than the
results reported by MetaPro-IQ. Figure 5 summaries the

Table 2 Comparison of the number of peptides identified by different approaches across the eight human gutmetaproteomic datasets

HM403 HM415 HM454 HM455 HM466 HM467 HM494 HM503

(57,835#) (59,839) (53,937) (64,255) (60,800) (58,500) (58,109) (59,892)

HAPiID-MSGF 12,962 12,535 17,619 20,803 13,862 15,924 21,108 24,962

HAPiID-X! 12,414 12,180 17,314 21,145 13,676 16,334 21,042 24,459

MetaPro-IQ 12,606 11,562 15,446 17,868 11,302 12,380 18,562 21,879

Matched 13,156* 12,179 15,863 18,677 11,733 12,724 19,248 23,632

#:Numbers in parentheses indicate the total number of spectra present in each sample. *: The highest numbers of peptides identified in each sample are highlighted in bold;
HAPiID-MSGF (HAPiID using MS-GF+ as the search engine); HAPiID-X! (HAPiID using X! Tandem as the search engine); Matched: peptide identification using matched
metagenome as the reference. Results for the MetaPro-IQ and matched metagenome approach were taken from [32].
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Fig. 4 Barplots summarizing the percents of HAP and non-HAP proteins that had spectral support across eight samples

peptide identification results for both methods and their
overlap (see details of the comparison in Supplementary
Table S3). We note that we do not distinguish Leu and Ile
when comparing peptides as they are indistinguishable by
mass spectrometry. In all eight samples, we can see a sig-
nificant overlap between the peptides identified by both
approaches. However, HAPiID was able to identify signif-
icantly more peptides than MetaPro-IQ. On average there
was 54% (11,519 peptides) overlap between peptides iden-
tified by bothmethods, while around 14% (3,683 peptides)
of all the peptides were identified byMetaPro-IQ only, and
more than 27% (5,824, peptides) of all the peptides were
identified by our approach only, over all eight samples.
We further examined the list of peptides only identified
byMetaPro-IQ (3,683 peptides on average). Among them,

around 40% (1218 peptides on average) were present in
our target database; however, they were identified with
scores lower than the thresholds to pass the 1% FDR
filtering.
It was shown in [32] that MetaPro-IQ achieved compa-

rable performance as the spectral search using a matched
metagenome to prepare search database for spectral
match. By contrast, HAPiID resulted in identification of
more spectra than the matchedmetagenome approach for
seven out of the eight cases. Table 2 and Supplementary
Figure S7 show the details of the comparison (Supplemen-
tary Figure S8 shows three way comparison). Combining
all eight samples, a total of 29,074 unique peptides were
identified by HAPiID but not the matched metagenome
approach. We show that about 70% (20,342 peptides) of

Fig. 5 Venn diagram summarizing unique peptides identified by HAPiID and MetaPro-IQ and the overlap between them
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these HAPiID-only peptides could be explained by the top
50 genomes contributing to the identified peptides from
the matched metagenome approach (since the matched
metagenome approach did not provide species identifi-
cation, we mapped its identified peptides onto HAPiID’s
gut genome collection to reveal the possible underly-
ing species). This result suggests that although matched
metagenome approach provides more targeted reference
database for metaproteomic data analysis, the reference
protein database constructed from metagenome is likely
incomplete (some proteins are missing due to the incom-
pleteness of metagenome assemblies) and therefore mak-
ing it less ideal for spectral match in metaproteomic data
analysis. It is also worth mentioning that the average iden-
tification rate of the acquired MS spectra using HAPiID
was over 39%, which was a significant increase com-
pared toMetaPro-IQ (33%) and thematchedmetagenome
approach (34%) across all 8 samples tested [32] (see details
and the total number of spectra present in each sam-
ple in Table 2). Detailed, sample by sample, comparison
on spectra identification rates is summarized in Supple-
mentary Table S4. In all 8 samples, HAPiID identified
more spectra compared to MetPro-IQ and the matched
metagenome approach. Summary of proportions of iden-
tified and unidentified spectra over each sample using
HAPiID could also be found in Supplementary Figure S9.
We then compared the running time ofMetaPro-IQ and

HAPiID. Since MetaPro-IQ is not publicly available, we
could not benchmark its execution time directly. Consid-
ering that the first step in MetaPro-IQ (searching spectra
against the whole gut microbial gene catalog) is the com-
putationally most demanding step (the second step search
involves a reduced database), we focused on comparing
the running time of our approach with the first step of
MetaPro-IQ. To do so, we downloaded the latest ver-
sion of the “integrated reference catalog of the human
gut microbiome” (the IGC-database, which was used by
MetaPro-IQ) and then performed a spectra search against
this database, to estimate the computation time required

to perform the first step in MetaPro-IQ. We note the IGC
database contains a total of 9,878,647 genes, more than
8,512,249 protein coding genes predicted from our col-
lection of genomes. Since our proposed method is also
composed of two steps and the initial step is used to define
the database size for the second (final) step, we compared
the database sizes and the running times of each step
for the two approaches separately. The results are sum-
marized in Table 3. On average, it took MS-GF+ about
455 CPU hours to complete the spectra search against
the IGC database, whereas the first step took HAPiID
less than 4 CPU hours to complete. When considering
the running time for the whole HAPiID pipeline (both
steps), it remains over 50 times faster than the spectra
search against the IGC database (which approximated the
running time of the first step in MetaPro-IQ pipeline).
Finally, we compared the quality of our identified pep-

tides both at taxonomic and functional levels to those
identified by MetaPro-IQ and the matched-metagenome
approach. We used Unipept [55] for taxonomic analysis
based on peptide identification. The total number of pep-
tides identified across all eight samples (combined) were
82,216, 69,051 and 71,596 peptides for HAPiID, MetaPro-
IQ, and matched-metagenome approach, respectively. All
three approaches resulted in similar taxonomic distribu-
tions at the order level, as shown in Fig. 6a-c and Sup-
plementary Table S5. A total of 35 Phyla were identified
by all three methods. However, comparison of taxonomic
profiles at finer taxonomic resolution up to species level
(where available) (Supplementary Figures S10-12) showed
that HAPiID andMetaPro-IQ identifications shared more
similar taxonomic profiles (at class and lower taxo-
nomic levels) in comparison to the matched-metagenome
approach. For functional analysis, we extracted all pro-
teins with spectral support in each of the 8 samples and
annotated them using the COG database [56]. Counts
of unique spectra mapped to each of the different COG
categories were used to quantify the COG functional
categories across our 8 samples. Figure 6d summarizes

Table 3 The breakdown of the running time (in CPU hours) for HAPiID

HM403 HM415 HM454 HM455 HM466 HM467 HM494 HM503
HAPiID DB∗

(targeted search) 76,663 67,537 79,813 84,304 89,693 73,905 94,395 73,766
HAPiID time
(profiling) 4.02 4.05 3.23 3.843 3.47 3.36 3.95 3.92
HAPiID time

(targeted search) 4.46 4.57 4.49 5.63 5.64 4.33 6.35 5.13
HAPiID time

(total) 8.48 8.62 7.72 9.473 9.11 7.69 10.3 9.05
MS-GF+ time∗∗
(IGC db search) 367.95 485.79 413.58 510.47 462.47 405.86 503.33 495.22

*The row shows the sizes of the target databases (for the second targeted search step) in HAPiID, which contains putative proteins from top nmost abundant genomes
covering 80% of the total spectra during profiling step. These numbers vary slightly across samples. For comparison, the target databases for the HAPiID’s first search step (i.e.,
HAPdb) and the MetaPro-IQ’s first step (i.e., IGC db) contain 1.1 × 105 and 9.8 × 106 proteins, respectively.
**For comparison purpose, we ran MS-GF+ search against the massive target database (IGC db) used in the MetaPro-IQ’s first step to estimate the lower bound of the running
time for the MetaPro-IQ pipeline.
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Fig. 6 Comparison of HAPiID, MetaPro-IQ and matched-metagenome approach for their revealing of taxonomic and functional profiles of gut
microbiome based on metaproteomic identification. a–c The UniPept taxonomic profiles of the gut microbiome based on identified peptides from
HAPiID, MetaPro-IQ, and matched-megenome approach, respectively. d The COG functional profile of gut microbiome based on HAPiID
identification of proteins

the functional profile based on HAPiID identification,
which is consistent with the functional profiles derived by
Metapro-IQ and matched-metagenome approach (shown
in Fig. 3e in [32]).

Metaproteomics-based taxonomic profiling of microbial
communities
As HAPiID is based on spectral search against proteins
predicted from reference genomes or MAGs, once pep-
tides are identified, they can be traced back for estimating
the expression of the various species at protein level.
Here, we demonstrate this application using case stud-
ies of identified peptides from the results of the previous
section. Based on the results from HAPiID’s first step
(the profiling step), we characterized taxonomic compo-
sitions based on the top n most prominent species in

each sample that cover 80% of the total number of spec-
tra identified during the first step. Here, we quantified
taxonomic composition as the number of unique spec-
tra mapped to each of the genomes during the profiling
phase (using the greedy approach described in the “Mate-
rials and methods” section). The results are summarized
at the order level in Fig. 7a. There were a total of 10
orders representing the selected species across all eight
samples as described above. These species represent two
phyla, which were Firmicutes (45.01%) and Bacteroidota
(54.99%). It is worth noting that no two samples shared
identical species composition at the order level. Individ-
ual HM466 contains the most diverse composition with a
total of seven orders, while individual HM503 are the least
diverse with a total of four orders each. Furthermore, if
we characterize the microbial communities using all the
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Fig. 7 Taxonomic distributions of the eight human gut microbial communities. The distributions are summarized at the order level in the taxonomic
hierarchy. (a) shows the distributions considering only the top Nmost abundant species covering 80% of the spectra identified at the profiling state,
and (b) shows the distributions using all species each having 3 or more identified spectra based on the results of the profiling step

search results from the profiling step, we can get a more
comprehensive view of the species present in the differ-
ent microbial communities. Figure 7b shows the clades
at the order level present across the different samples
with genomes each contributing at least three unique pep-
tide hits. Clade diversity at the order level increases by
four folds, from 10 clades (based on peptides from all
proteins in selected genomes according to the profiling
step) to 40 (based on identified peptides from HAPs of all
genomes each contributing at least three unique identi-
fied peptides). The 40 clades represented 14 phyla, and the
top 5 most abundant ones were Firmicutes (53.44%), Bac-
teroidota (42.48%), (Proteobacteria) (1.58%), Actinobac-
teriota (1.52%), and Cyanobacteria (1.57%). These com-
positions were in agreement with previous observations
[57, 58]. This diversity increases more than 6 times (to
64 different orders), if we consider all the species hav-
ing at least one unique peptide being mapped to them,
which is summarized in Supplementary Figure S13. These
results demonstrate the complexity of the human gut
flora reflected even at the proteome level and reflect on

the quantity of the underrepresented species that often
appear with very low abundances.

Revealing the functional landscape of abundant species
based onmetaproteomic data
Although metaproteomics does not provide sufficient
data for characterizing proteins from a large number
of species in a microbial community, it does provide
a fair coverage for the top few most abundant species.
So, in addition to providing an overview of what pro-
teins are expressed in microbial communities as a whole,
metaproteomics provides opportunities for studying the
expression of proteins from individual species, one (or
a few) at a time. Table 4 lists the fractions of proteins
in the most abundant species that were detected using
the metaproteomic data in each sample (and Supplemen-
tary Table S6 lists the numbers for the top five most
abundant species). Samples HM454, HM455, HM466,
and HM467 share the same most abundant species: Bac-
teroides vulgatus, however arising from three different
strains. A total of 452 proteins encoded by this species are
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Table 4 MS/MS supported proteins in the most expressed species in human gut microbiome

Sample Most abundant # putative #proteins (≥1 spectrum) #proteins (≥3 spectra)

species proteins all(%)/with-annotation(%) all(%)/with-annotation(%)

HM403 B. xylanisolvens 5442 757 (13.9%)/536 (9.8%) 437 (8.0%)/330 (6.0%)

HM415 B. fragilis 5121 751 (14.7%)/534 (10.4%) 403 (7.9%)/313 (6.1%)

HM454 B. vulgatus 4415 740 (16.7%)/540 (12.2%) 428 (9.7%)/346 (7.8%)

HM455 B. vulgatus 4806 1,085 (22.6%)/744 (15.4%) 668 (13.9%)/ 501 (10.4%)

HM466 B. vulgatus 4415 784 (17.7%)/583 (13.2%) 424 (9.6%)/344 (7.81%)

HM467 B. vulgatus 4464 924 (20.6%)/659 (14.7%) 543 (12.1%)/426(8.8%)

HM494 Clostridium_M 3061 750 (24.5%)/556 (18.1%) 438 (14.3%)/338 (11.0%)

HM503 B. ovatus 4931 1,077 (21.8%)/737 (14.9%) 578 (11.7%)/438 (8.8%)

consistently expressed (containing at least one identified
peptide) among samples HM454 and HM466 sharing the
same strain. This number decreases to 289 proteins when
we only considered those that are supported by at least
three spectra. Among the top five genomes that are mostly
expressed, on average, 19% of their proteins were detected
using metaproteomic data with one or more spectra sup-
port. This proportion decreases to 10.9% when we restrict
proteins supported by at least three or more spectra.
KofamKOALA was able to confidently annotate more

than 75% of detected proteins each supported by at least
one spectrum, and over 80% of the proteins supported by
three or more spectra. The proportion of annotated pro-

teins increased to 93% and 94%, respectively, when we
used HMMSCAN and PfamDB to annotate these pro-
teins. This was expected since KofamKOALA uses a much
smaller database compared to Pfam to assign proteins to
homologous groups.
We grouped the detected proteins in the top five most

abundant species into broad functional categories, includ-
ing metabolism, environmental information processing,
organismal systems, cellular processes, genetic informa-
tion processing, human diseases, and uncategorized pro-
teins. Figure 8 shows the relative abundances of the
proteins in these functional categories. In general, the pro-
tein functional distribution follows similar trends across

Fig. 8 Distribution of identified spectra across the different functional categories
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different samples, with Metabolism being the most abun-
dant category, and Cellular Processes being the least.
Supplementary Figures S14 and S15 show the abundance
distributions at finer resolution with 48 functional cate-
gories. We observed similar trends but were able to see
some subtle differences. For example, we saw declined lev-
els of carbohydrate metabolism in HM403 and HM494
compared to the rest. Concerning the human disease cate-
gory, the majority of the peptides were mapped to the sub-
categories including neurodegenerative, endocrine, and
metabolic and bacterial infectious diseases, with varying
relative proportions across samples.
We note that the most abundant species in all sam-

ples belong to Bacteroides (but different species or
strains), other than individual HM494, whose most
abundant species belongs to Clostridium. The taxo-
nomic difference between the latter two was reflected
at the functional level. The highly expressed functions
in Bacteroides include glyceraldehyde 3-phosphate dehy-
drogenase, phosphoenolpyruvate carboxykinase (ATP),
pyruvate-ferredoxin/flavodoxin oxidoreductase, and
fructose-bisphosphate aldolase, class II; on the contrary,
the highly expressed functions in Clostridium include
formate C-acetyltransferase, glutamate dehydrogenase
(NADP+), O-acetylhomoserine (thiol)-lyase, and cys-
teine synthase, with only glyceraldehyde 3-phosphate
dehydrogenase common between the two lists.
Finally, we analyzed the genomic context of the genes

encoding for the proteins detected in metaproteomics
data to check for the presence of structural relation-
ships (i.e., genes located within close proximity or in an
operon). As a case study, we selected the most abundant
species within sample HM403 and studied the genomic
context of its expressed genes. We specifically looked
for genes that are found on the same contig, the same
strand, that are within 100 bases apart from each other
at most and on average have more than 10 spectra
supporting their protein products within such a clus-
ter. We identified a total of 25 such clusters satisfying
these conditions. All of our identified gene clusters over-
lapped with the predicted operon structures by fgenesB, a
Markov chain-based bacterial operon and gene prediction

tool [59]. For demonstration purposes, we show the two
largest operon structures in this genome that are highly
expressed at the protein level, consisting of 23 genes and
5 genes, respectively. Unsurprisingly, these genes encode
for ribosomal proteins including small subunits (S3, S5,
S7, S8, S10, S14, S17 and S19) and large subunits (L2,
L3, L4, L5, L6, L14, L15, L16, L18, L22, L23, L24 and
L30) and elongation factor (EF-G). A total of 387 spec-
tra were matched to these proteins. The second biggest
identified operon was another case of functions related
to protein translation (large subunits of ribosome, see
visualization of these two operons in Fig. 9). The other
highly expressed operons include genes encoding for
transporter proteins, DNA replication machinery, amino
acid biosynthesis, starch binding outermembrane protein,
and pyruvate-ferredoxin/flavodoxin oxidoreductase. See
Supplementary Table S7 for all identified operons and
their predicted functions.

Discussion
We developed HAPiID, which leverages the HAP guided
profiling for creating compact yet effective target database
for metaproteomics data analysis. Although the primary
goal of developing HAPiID was to speed up the search
(by not using the blind search of spectra against a huge
database with millions of proteins for peptide identi-
fication), the tests showed that HAPiID also achieved
significant improvement on peptide identification when
compared to MetaPro-IQ [32]. We observed consistent
performance improvement of HAPiID using either MG-
GF+ or X! Tandem as the search engine. We note that
it is possible to further improve the speed of HAPiID by
incorporating spectral clustering using our new algorithm
msCrush [60], just like MetaLab [33] which adopts PRIDE
Cluster [61] for spectra clustering.
HAPiID includes a mechanism to automate the selec-

tion of genomes based on the profiling step results to
be used in the second step of expanded search: it selects
top n genomes covering at least 80% of identified spec-
tra from the profiling step. This criterion worked well
for the synthetic metaproteomic dataset with low com-
plexity and also the real gut metaproteomic datasets with

Fig. 9 Visualization of the two largest expressed operons in B. xylanisolvens. Both operons are found in the contig 25 of its draft genome
(20298_3_31). Genes are shown as red arrows
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higher species complexity. However, this value could be
adjusted by the user based on prior knowledge about
samples and/or the complexity of the datasets.
In addition to providing a universal target database that

can be used across different studies allowing straight-
forward comparison of the results, HAPiID identifies
species that are expressed, rather than providing a list
of genes. Thus, our pipeline can be utilized to profile a
metaproteomic sample by reporting species composition
as demonstrated in the “Results” section. Such informa-
tion can be used to further our understanding of the
functional contributions of different bacterial species at
the proteome level across different samples in various
conditions. We annotated functions, as much as possi-
ble, using KOFAM and Pfam databases. Characterizing
the most abundant protein functions in each sample and
each genome allowed us to demonstrate the potential of
using a reference based method, such as ours, in revealing
functional landscapes across different samples.
It is often a concern that a simple combination of the

results from separate spectral searches will underestimate
the actual FDR [62]. HAPiID is a two-step approach; how-
ever, the first step is for profiling, and the final results
are only from the second step of expanded search. So the
FDR inflation is less of a concern for HAPiID. On the
other hand, we introduced the “consistency rate” measure
to help us study the impact of using smaller databases for
spectral search, and our results show that using smaller
databases, as long as they still contain enough genomes,
will result in accurate identifications.
We experimented with adding a third step to our

pipeline which involves a more focused search over pro-
tein sequences that contain considerable number of iden-
tified peptides in the second step. By constructing a very
small database composed of protein sequences having at
least five peptide hits in the second step, we were able to
identify on average 10% more unique peptides compared
to our two step approach (1,921 additional peptides, see
Supplementary Table S8 for more details). However, we
did not integrate this last step in our final pipeline. Our
main concern was the effects of combining the identified
peptides from the second step and the new third step over
the final FDR value. Each of the steps were controlled to
have an FDR of 1% or less; however, combining two steps
may result in an actual FDR higher than 1%. Further val-
idations and FDR recalculations would be needed before
we can reliably combine results.
For quantification purposes, we used a simple approach

based on unique spectra mapped to proteins and in
turn genomes to quantify the abundance of the different
genomes in samples. While species quantification was not
our primary focus in this work, more accurate techniques
should be employed that take advantage of the areas
under the spectral peaks in order to quantify species from

a metaproteomics perspective such as the one used by
MaxQuant, which uses the MaxLFQ-algorithm that takes
into consideration peptide peak intensities, by mapping all
the spectral intensities to the respective peptides and thus
quantifies the relative intensities of all the proteins across
the different samples [63]. Normalized spectral abun-
dance factors (NSAF) is another widely used approach
for spectral count-based label-free peptide quantification.
NSAF quantifies proteins by taking into consideration the
spectral maps to that protein normalized by the protein
length and sample sequencing depth and thus generating
relative quantification values for abundant proteins within
each sample [64]. Future directions involve expanding
HAPiID to incorporate such label-free quantifying meth-
ods and report relative protein abundances after final
peptide identifications. In addition, it is worthwhile to
consider combining HAPiID with matched-metagenome
based approach such as our own Graph2pro/Var2pro [30,
31], to further improve peptide and protein identification
from metaproteomic data, when matched metagenome
is available. In principle, matched-metagenome provides
more precise database for spectral search, however, in
practice, proteins detectable by metaproteomics may be
missing in matched-metagenome due to various reasons
including experimental bias and a lack of strong correla-
tion between genome abundance and protein abundance.
HAPiID is highly dependent on the initial ref-

erence database: peptide identification rate will be
greatly affected by the diversity and the quality of
the genomes and MAGs included in the database, and
incomplete genomes may hinder the ability of our
approach to correctly profile metaproteomic samples and
select abundant species. With the ongoing progresses
of genome/metagenome sequencing, we foresee much
broader applications of HAPiID. Although we focused
on human gut metaproteomics in this paper, HAPiID
can be customized to analyze metaproteomics associated
with other environments (e.g., wastewater) or hosts (e.g.,
mouse), when a comprehensive collection of reference
genomes/MAGs specific to these microbiomes become
available. We include in the HAPiID package scripts for
generating search database for peptide spectral match
for users who are interested in using HAPiID for differ-
ent purposes. Finally, we note that because HAPiID is a
reference-based approach and its efficiency relies on the
completeness of the genome collection, a potential pitfall
is that it may miss identification of peptides encoded by
the accessory genes that are important for understanding
the functionality of the underlying microbial communi-
ties.

Conclusions
The HAP-based profiling approach provides a novel effec-
tive way for guiding the construction of target database
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for metaproteomic data analysis. Tests of the HAPiID
pipeline built upon the HAP profiling approach demon-
strated that the pipeline not only drastically reduced the
computation time but also improved the peptide identi-
fication from spectra data. HAPiID provides a universal
approach for analyzing human-gut associated metapro-
teomic data, facilitating the application of metapro-
teomics in human microbiome research.
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