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Abstract

Background: Microbial-driven decomposition of plant residues is integral to carbon sequestration in terrestrial
ecosystems. Actinobacteria, one of the most widely distributed bacterial phyla in soils, are known for their ability to
degrade plant residues in vitro. However, their in situ importance and specific activity across contrasting ecological
environments are not known. Here, we conducted three field experiments with buried straw in combination with
microcosm experiments with 13C-straw in paddy soils under different soil fertility levels to reveal the ecophysiological
roles of Actinobacteria in plant residue decomposition.

Results: While accounting for only 4.6% of the total bacterial abundance, the Actinobacteria encoded 16% of total
abundance of carbohydrate-active enzymes (CAZymes). The taxonomic and functional compositions of the
Actinobacteria were, surprisingly, relatively stable during straw decomposition. Slopes of linear regression models
between straw chemical composition and Actinobacterial traits were flatter than those for other taxonomic groups at
both local and regional scales due to holding genes encoding for full set of CAZymes, nitrogenases, and antibiotic
synthetases. Ecological co-occurrence network and 13C-based metagenomic analyses both indicated that their
importance for straw degradation increased in less fertile soils, as both links between Actinobacteria and other
community members and relative abundances of their functional genes increased with decreasing soil fertility.

Conclusions: This study provided DNA-based evidence that non-dominant Actinobacteria plays a key ecophysiological
role in plant residue decomposition as their members possess high proportions of CAZymes and as a group maintain a
relatively stable presence during plant residue decomposition both in terms of taxonomic composition and functional
roles. Their importance for decomposition was more pronounced in less fertile soils where their possession functional
genes and interspecies interactions stood out more. Our work provides new ecophysiological angles for the
understanding of the importance of Actinobacteria in global carbon cycling.
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Background
Annually, more than 50,000 Tg of plant polymers are
produced on earth [1]. Decomposition of these organic
substances plays a pivotal role in the terrestrial ecosystem
carbon balance and concomitant global change [2–4]. Plant
residues mainly consist of polymers, such as cellulose,
hemicelluloses, polysaccharides, and lignin [5, 6]. As soil-
dwelling microorganisms are the main driving force for
their decomposition [7, 8], their fate is largely determined
by both the ecological (i.e., community composition and
interspecies interactions) [9, 10] and physiological (i.e.,
encoded enzymes and their processes and pathways) [11–
13] roles of soil microbial communities. Moreover, environ-
mental conditions (e.g., soil fertility) can influence plant
residue decomposition by altering community, and as a re-
sult the importance of a species can vary [14–16].
Actinobacteria, one of the most widely distributed

phyla among soil bacteria [17], are well known for their
ability to degrade plant residues [17–19]. However, the
extant knowledge regarding the propensity of Actinobac-
teria to degrade plant residues is mainly based on stud-
ies with pure cultures [20, 21]. In situ conditions
generally are quite different from those in the laboratory
and consequently our assumptions on the in situ eco-
physiological roles of Actinobacteria could be off and
need validating [22]. Physiologically, Actinobacteria
communities harbor the complete catalog of hydrolytic
enzymes (e.g., β-glucosidase, cellobiohydrolase, ligninase,
acetyl xylan esterase, arabinofuranosidase, and/or their
assembled supramolecular cellulosomes) needed for
plant residue decomposition [11, 17, 23]. In addition, the
high C:N ratio of plant residues limits the available N
for microorganisms to reproduce [24], while the nitro-
gen fixation ability of Actinobacteria may increase N
availability during microbial-driven plant residue decom-
position [25]. Ecologically, Actinobacteria can suppress
competitors by synthesizing antibiotics [26]. Collectively,
ecological and physiological aspects both suggest a broad
adaptation of Actinobacteria communities to degrade
plant residues and potential importance of Actinobac-
teria to residue decomposition and soil carbon seques-
tration. Microorganisms involved in plant residue
decomposition are deterministically enriched from the
surrounding soil [27]. Thus, we hypothesize that Actino-
bacteria play important ecophysiological roles in plant
residue decomposition and are prevalent in environ-
ments where this process occurs.
It is well established that there is great variability of

microbial taxonomic and functional composition across
contrasting ecological contexts [28, 29], which highlights
that the ecophysiological importance of specific micro-
bial groups can vary across contrasting ecological envi-
ronments [30]. Yet the importance of a given species in
the degradation network is not a given. The current

related studies are exclusively limited to small scales [11,
31, 32]. The extent of ecophysiological importance of
Actinobacteria to degrade plant residues across contrast-
ing ecological contexts remains elusive. It was found that
the oligotrophs would dominate organic material de-
composition when nutrients were limited [15, 33] and
Actinobacteria are typically oligotrophic bacteria [34].
Thus we further hypothesize that the importance of
Actinobacteria is enhanced in less fertile soils.
To test our hypotheses, we firstly used rice straw buried

in nylon mesh bags—as a model system for plant residue
decomposition—in paddy fields at three experimental sites
(Chongqing (CQ), Changshu (CS), and Yingtan (YT)) with
contrasting ecological contexts, especially with respect to
soil fertility across subtropical China [27]. Amplicon se-
quencing combined with function predictions was then
employed to reveal the ecological variability of the com-
munity and functional composition of several dominant
straw-associated bacterial phyla (that is, Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria, and Acidobac-
teria) at both local (that is, within site) and regional (that
is, across sites) scales and their co-occurrence patterns in
eutrophic vs. oligotrophic soils were analyzed. Subse-
quently, laboratorial 13C-straw-based DNA stable-isotope
probing (DNA-SIP) combined with shotgun metagenomic
sequencing approaches were performed to characterize
the physiological functional attributes of the active domin-
ant bacterial decomposers and to verify the amplicon se-
quencing results at both local and regional scales under
different soil fertilities.

Results
Dynamics of Actinobacterial taxonomic and functional
profiles during straw decomposition
The taxa in litter bags were dominated by five bacterial
phyla: Proteobacteria, Firmicutes, Bacteroidetes, Actinobac-
teria, and Acidobacteria (Fig. 1a). Generally, the average
relative abundance of Proteobacteria across decomposition
stages was low at weeks 1 (19.5%) and 8 (29.9%), and higher
at weeks 2 (43.8%), 4 (43.8%), and 16 (43.8%) (ANOVA, P <
0.05). Firmicutes in CQ and YT had higher relative abun-
dance at weeks 1 (46.1% and 15.9%, respectively) and 8
(46.6% and 12.1%, respectively) and lower relative abun-
dance at weeks 2 (25.9% and 6.8%, respectively), 4 (26.6%
and 4.7%, respectively), and 16 (22.1% and 8.0%, respect-
ively) (ANOVA, P < 0.05). The relative abundance of Firmi-
cutes in CS was nearly stable (30.9%) across the stages.
Bacteroidetes had the highest average relative abundance at
week 1 (39.9%) (ANOVA, P < 0.05), while Acidobacteria
had a higher average relative abundance in the later decom-
position stages (4%) (ANOVA, P < 0.05). The relative abun-
dance of Actinobacteria in CQ and CS was low during the
first three stages (3.6% and 2.4%, respectively) and increased
at later stages (7.3% and 4.5%, respectively), while the
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opposite was true in YT (ANOVA, P < 0.05). We further
evaluated the changing patterns of the relative abundances
of the five dominant phyla across decomposition stages at
both local and regional scales (Additional file 1: Fig. S1). It
was found that the relative abundance of Actinobacteria
was less variable (with lower F scores, ANOVA, P < 0.05)
than that of other phyla at both local and regional scales
(except for Firmicutes and Bacteroidetes in CQ).
Specifically, the Actinobacteria phylum was mainly

represented by 9 families in this study (Fig. 1b). Nocar-
diopsaceae and Streptomycetaceae were the two major
families (average relative abundance: 56.5%) in CQ, while

Cellulomonadaceae, Microbacteriaceae, and Propioni-
bacteriaceae had higher relative abundance (average
relative abundance: 50.3%) during the first four stages in
CS (ANOVA, P < 0.05). Nocardiopsaceae, Streptomyce-
taceae, and Pseudonocardiaceae were dominant (average
relative abundance: 69.0%) during the first four stages in
YT, while Microbacteriaceae, Micrococcaceae, and Myco-
bacteriaceae were dominant (average relative abundance:
44.8%) at week 16. Although the taxonomic composi-
tions of the dominant five phyla were highly variable
across decomposition stages and experimental sites (with
higher average F scores varying from 12.9 to 46.5,

Fig. 1 Taxonomic and functional profiles of straw decomposition bacteria at different decomposition stages. Relative abundances of dominant
bacteria at the phylum level (a). Relative abundances of Actinobacteria at the family level (b). Relative abundances of carbohydrate-active enzymes
encoding genes (one color per gene) involved in straw decomposition predicted by Actinobacteria (c). For more detailed functional gene profiles
of (c), see Additional file 1: Table S1
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ANOVA, P < 0.05) (Fig. 1a; Additional file 1: Fig. S1),
the functional composition (44 genes potentially related
to plant residue decomposition, Additional file 1: Table
S1) of Actinobacteria communities was similar (with
lower average F score = 12.7, ANOVA, P < 0.05), both
across stages and sites (Fig. 1c).
To evaluate the pattern of bacterial community compos-

ition change during straw decomposition at the local scale,
the dominant bacteria taxa in each experimental site (that
is, at the local scale) were quantified. Nonmetric multidi-
mensional scaling analysis (NMDS) plots showed that
across decomposition stages at each experimental site, the
dissimilarities of taxonomic community composition of
Actinobacteria and Acidobacteria were smaller than those
of Proteobacteria, Firmicutes, Bacteroidetes (Additional file
1: Figs. S2 A-C), which was further confirmed by the re-
sults (F scores) of permutational multivariate analysis of
variation (PERMANOVA) tests (Additional file 1: global
test, P = 0.001, Table S2). In addition, no significant dis-
similarities of the functional composition of Actinobac-
teria between stages were found in CQ (week 2 vs. week
4, P = 0.416; week 4 vs. week 16, P = 0.190), CS (week 1
vs. week 2, P = 0.326; week 1 vs. week 4, P = 0.083; week 4
vs. week 8, P = 0.061; week 4 vs. week 16, P = 0.130), and
YT (week 1 vs. week 4, P = 0.054; week 2 vs. week 4, P =
0.134; week 4 vs. week 16, P = 0.062) (Additional file 1:
Fig. S2D and Table S2).

The taxonomic and functional compositions of the
dominant straw decomposition bacterial taxa were fur-
ther quantified to evaluate their composition at the re-
gional scale (Fig. 2). This revealed that distinct clusters
of the dominant bacteria taxa were formed in the ordin-
ation space, with significant differences being found at
both taxonomic and functional levels (PERMANOVA
test, P < 0.001, Fig. 2). Although the taxonomic compos-
ition of Actinobacteria was highly variable (with higher F
score) among all experimental sites (Fig. 2a), the func-
tional composition of Actinobacteria was most similar
(with the lowest F score) at the regional scale (Fig. 2b).

Associations among environmental factors and
Actinobacterial taxonomic and functional compositions
Mantel tests indicated that all soil chemical properties
(e.g., available P, total K, total P, available K, SOM, and
pH) were significantly correlated to soil and straw-
associated bacterial community composition (Additional
file 1: P = 0.001, Table S3). To associate the changing
patterns of straw-associated bacterial community com-
position to straw chemistry composition at local and re-
gional scales, straw components Euclidean distances
were estimated by using all straw chemical components
(that is, “all factors combined” in Additional file 1: Table
S4) since the vast majority of straw components had
significant correlations with the dominant bacterial

Fig. 2 NMDS and PERMANOVA analyses of the dominant straw-associated bacterial taxonomic (a) and functional (b) composition, based on Bray-
Curtis distance, across three experimental sites (n = 180, each plot). The circles indicate a 95% standard error of each stage
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taxonomic and functional composition (Additional file 1:
Mantel tests, P < 0.05, Table S4). It was shown that
straw chemistry was significantly correlated to both
community and functional composition (Additional file
1: Mantel tests, P < 0.01, Table S4). Linear regressions
further revealed significant associations between straw
chemistry composition and community (Additional file
1: Fig. S3A; Fig. 3a) and functional (Additional file 1: Fig.
S3B; Fig. 3b) composition at both local (Additional file 1:
Fig. S3) and regional (Fig. 3) scales (P < 0.0001).
For the local scale, it was found that plots of Actinobac-

teria community similarity versus straw chemistry dis-
tance in CQ showed more flattened slopes (− 0.809) than
other members (− 1.015~− 1.119, P < 0.05) (except for
Acidobacteria (− 0.729, P > 0.05)). For CS, slop for Actino-
bacteria (− 1.064) was flattened than Proteobacteria (−

1.513, P < 0.0001), Firmicutes (− 1.155, P = 0.883), and
Bacteroidetes (− 2.090, P < 0.0001). For YT, slop for
Actinobacteria (− 0.879) was flattened than Proteobac-
teria (− 0.974, P = 0.388), Bacteroidetes (− 0.931, P =
0.903), and Acidobacteria (− 1.311, P < 0.0001) (Additional
file 1: Fig. S3). Concerning plots of functional similarity
versus straw chemistry distance, the slops between Actino-
bacteria and Firmicutes at each site were not a significant
difference (P > 0.05). For CQ, slop for Actinobacteria
(− 0.576) was flattened than Proteobacteria (− 0.751, P =
0.179) and Acidobacteria (− 1.883, P < 0.0001). For CS,
slop for Actinobacteria (− 0.562) was flattened than
Proteobacteria (− 0.789, P = 0.174), Bacteroidetes (− 1.078,
P < 0.0001), and Acidobacteria (− 2.152, P < 0.0001).
While for YT, slop for Actinobacteria (− 0.274) was
flattened than Proteobacteria (− 0.442, P = 0.971),

Fig. 3 Distance matrix regressions between straw chemistry and community (a) and functional (b) composition during decomposition across
three experimental sites as well as the significance of the linear regression slopes between Actinobacteria and other members tested by
permutation tests (c). Horizontal axes indicate Euclidean distances based on all straw components. Linear models and associated slopes and
correlation coefficients are provided on each panel
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Bacteroidetes (− 0.601, P < 0.0001), and Acidobacteria
(− 2.073, P < 0.0001) (Additional file 1: Fig. S3).
For the regional scale, plots of Actinobacteria commu-

nity similarity versus straw chemistry distance showed
more significantly (P < 0.001) flattened slopes (− 0.316)
than other members (− 0.435~− 0.621), except for Acido-
bacteria (− 0.324, P = 0.322); while plots of Actinobac-
teria functional similarity versus straw chemistry
distance showed more significantly (P < 0.001) flattened
slopes (− 0.252) than Proteobacteria (− 0.403), Firmicutes
(− 0.367), and Bacteroidetes (− 0.474) (Fig. 3).
Significantly flattened slopes of Actinobacteria at both

community and functional level indicated that the taxo-
nomic and functional composition of Actinobacteria was
less variable and that they may have a relatively stable
metabolic function during straw decomposition at local
and regional scales.

The importance of Actinobacteria in ecological co-
occurrence networks of straw decomposition bacterial
communities
We generated phylogenetic molecular ecological net-
works (pMENs) for each experimental site to delineate
the straw decomposition bacterial co-occurrence pat-
terns under different soil fertilities based on correlation
coefficients and P values for correlations (Fig. 4a). The
topology indices are tabulated in Additional file 1 (Table
S5). The modularity index value in each group was
ranged from 0.465 to 0.578, which was higher than 0.4,
indicating that they were all modularly structured co-
occurrence networks [35]. The number of nodes and
edges were found lower in YT than those in CQ and CS.
Average degree (avgK; 5.321, 6.078, and 5.169 for CQ,
CS, and YT respectively) measured the complexity of the
network, thus YT obtained a less complex network than
the other two sites (Fig. 4).
For each site, the number of links between Actinobac-

teria and other members was calculated (Fig. 4b). The
number of links between Actinobacteria and other mem-
bers in the networks was the highest (13.4% of the total
links) in YT and lower in CQ and CS (3.1% and 3.8% of
the total links respectively) (Fig. 4b). Similarly, the posi-
tive and negative links between Actinobacteria and other
members were also the highest in YT (3.7% and 9.5% of
the total links, respectively) and lower in CQ (2.6% and
0.6% of the total links, respectively) and CS (1.1% and
2.7% of the total links, respectively) (Fig. 4b). In network
ecology, the positive links between species may suggest
preferred cooperative behavior, such as metabiosis and
symbiosis, while negative links between species may re-
flect competition (e.g., antagonism) [36]. Thus, the co-
operation and competition co-occurrence patterns
between Actinobacteria and other members may be
most important in YT (Fig. 4b). More specifically, it was

found that most of the species linked to Actinobacteria
were reported to possess the functional traits involved in
plant residue decomposition (Additional file 2: Table S6).

The CAZymes repertoire of bacterial consortia revealed
by DNA-SIP-based shotgun metagenomic sequencing
Because of the high functional redundancy in the micro-
bial taxonomic pool, understanding the metabolic pro-
files of microbial communities is more important and
necessary than just taxonomic composition when study-
ing ecosystem functions. To better understand carbohy-
drate degradation in the straw decomposition ecosystem,
carbohydrate-active enzymes (CAZymes) that catalyze
the hydrolysis of plant residues were screened by DNA-
SIP-based shotgun metagenomic sequencing. The
CAZymes in the metagenome of the five dominant phyla
(that is, Proteobacteria, Firmicutes, Bacteroidetes, Actino-
bacteria, and Acidobacteria) accounted for 74.5% of the
total bacterial CAZymes (data not shown), which sug-
gests that these five dominant phyla encompass the
major degrading bacteria in this study. The proportions
of CAZymes derived from Actinobacteria, Proteobac-
teria, Firmicutes, Bacteroidetes, and Acidobacteria were
14.5%, 23.5%, 24.7%, 23.8%, and 13.4% of the total
CAZymes encoded by the five dominant phyla in CS,
and were 17.5%, 20.3%, 26.2%, 22.0%, and 13.9% in YT
(Fig. 5a). The CAZymes profile of the five dominant
phyla were all distributed among the six CAZymes clas-
ses: glycoside hydrolase (GH), glycosyl transferase (GT),
carbohydrate esterase (CE), carbohydrate binding mod-
ule (CBM), polysaccharide lyase (PL), and auxiliary activ-
ities (AA). More specifically, the relative abundances of
GH, GT, CE, CBM, PL, and AA derived from Actinobac-
teria were 15.7%, 14.8%, 14.4%, 17.0%, 10.2%, and 12.3%,
respectively, of each CAZyme class encoded by the five
dominant phyla in CS, and were 17.8%, 19.1%, 18.1%,
19.8%, 10.0%, and 16.7% in YT (Fig. 5a).
Because the taxonomic relative abundances were dis-

tributed unequally among the dominant phyla (Fig. 1a;
Additional file 1: Fig. S4), the average number of
CAZymes of each dominant phylum was calculated
(CAZymes relative abundance/phyla relative abundance).
It was found that despite Actinobacteria contributing
lower proportions to the total CAZymes (Fig. 5a), the
average number of CAZymes derived from Actinobac-
teria was significantly higher than that of Proteobacteria
in CS, and higher than that of Proteobacteria and Firmi-
cutes in YT (P < 0.05, Fig. 5b). Therefore, the relative
high hydrolytic capability of Actinobacteria suggests that
they contribute more to plant residue decomposition
than those phyla. In addition to Actinobacteria, the high
average hydrolytic capability of Bacteroidetes suggests
that these organisms too have the potential to play
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important physiological roles in plant residue decompos-
ition in soils.

The variation distributions of the relative abundances of
CAZymes in the straw decomposition consortia
To verify the findings of dominant bacteria functional pro-
files in the field experiment, the variations of the relative
abundance (shown as the standard deviation of the relative
abundance of CAZymes during decomposition) of
CAZymes in the dominant bacteria at both local and re-
gional scales were also evaluated (Fig. 6a). For the local scale,

it was found that the average variation in CAZymes relative
abundance increased in the order of Acidobacteria (0.034) <
Actinobacteria (0.042) < Proteobacteria (0.275) < Bacteroi-
detes (0.537) < Firmicutes (0.556) < Bacteria (1.257) in CS
(Fig. 6a), while the order was Acidobacteria (0.059) < Actino-
bacteria (0.175) < Proteobacteria (0.264) < Firmicutes
(0.540) < Bacteroidetes (0.626) < Bacteria (1.414) in YT. For
the regional scale, the order was Acidobacteria (0.054) <
Actinobacteria (0.163) < Proteobacteria (0.267) < Bacteroi-
detes (0.602) < Firmicutes (0.605) < Bacteria (1.273). In gen-
eral, the variations of the relative abundance of each class of

Fig. 4 The co-occurrence network interactions of straw decomposition bacteria at each experimental site based on random matrix theory (RMT)
analysis from OTU profiles (a). Subnetworks to visualize interactions between Actinobacteria and other members at each experimental site (b).
Each node represents a bacterial phylotype (an OTU clustered at 97% identity threshold). Red and blue lines respectively represent negative and
positive correlations between nodes. The size of each node is proportional to the relative abundance of OTU. For more detailed information on
(b), see Additional file 2: Table S6
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CAZymes in the metagenome of Actinobacteria and Acido-
bacteria during straw decomposition at both local and re-
gional scales were smaller than those of other members (Fig.
6a). In addition, we further evaluated the variations of the
relative abundance of the 44 functional genes (Additional
file 1: Table S1) potentially related to plant residue decom-
position (Fig. 6b). Again, variations in the relative abundance
of functional gene groups responsible for cellulose, hemicel-
lulose, lignin, and cello-oligosaccharides degradation were

lower in Actinobacteria and Acidobacteria than in other
phyla, both at the local and the regional scale.

Differences in the abundances of Actinobacteria and their
functional genes between soils with different fertilities
Further to the above analyses, we evaluated whether the
functional genes in the metagenome can support our sec-
ond hypothesis that Actinobacteria are more important in
less fertile soils. First, we found the relative abundance of

Fig. 5 Phylogenetic distributions of CAZymes in the dominant bacterial phyla possessing CAZyme encoding-genes (a). The average number of
CAZymes of each dominant phylum (CAZymes relative abundance/phyla relative abundance) (b). The relative abundances of CAZymes in (a)
were log-transformed. GH glycoside hydrolase, GT glycosyl transferase, PL polysaccharide lyase, CE carbohydrate esterase, CBM carbohydrate-
binding module, AA auxiliary activities
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Actinobacteria in less fertile soil (YT) was higher than in
fertile soil (CS) (P = 0.055, Fig. 7). Second, the relative
abundances of total CAZymes and of various CAZymes
classes (e.g., GH, GT, and CE) in the Actinobacteria meta-
genome were significantly higher in less fertile soil than in
fertile soil (P < 0.05, Fig. 7). Moreover, detailed BLAST
search based analysis of the genes for CAZymes in the Acti-
nobacteria metagenome showed that the relative abun-
dances of various CAZyme families with biochemical
functions involved in plant residue decomposition were sig-
nificantly higher in less fertile soil than in fertile soil (Add-
itional file 3: Table S7). Third, analogous results of
antibiotic synthesis genes and nitrogen fixation genes were
also obtained (Fig. 7). As a potential negative control, we
also evaluated the differences in the abundance of taxo-
nomic and functional genes of another phylum—Acidobac-
teria—which has low functional variability under different
soil fertilities (Fig. 6), and indeed, no significant differences
were found for this phylum (Additional file 1: Fig. S5).

Discussion
Actinobacteria are not dominant but have capabilities to
play an important ecophysiological role in plant residue
decomposition
This study provides compelling evidence that Actinobac-
teria have the potential to play important ecophysiological

roles in plant residue decomposition in soil. Actinobac-
teria contained the full set of CAZymes in higher propor-
tion, and showed relatively low variations in taxonomic
and functional composition during decomposition no
matter the fertility or the climate zone where the soil was
located. Low variability across spatial gradients has been
attributed to the wide environmental adaptation of the
functional Actinobacteria communities in natural ecosys-
tems [17, 37] and to the conjecture that the genomes of
the majority of the Actinobacterial taxa within a commu-
nity possess all sets of related metabolic functional traits
to maintain a stable presence during plant residue decom-
position [38, 39]. In agreement with this theory, our study
identified all classes of CAZymes and carbohydrate-active
genes in the Actinobacteria metagenome (Figs. 5a and 6),
a finding that supports and extends findings of Wang
et al. [11] on Actinobacterial communities in compost
heaps. Moreover, the genomes of Actinobacteria possess
genes for nitrogen fixation and production of antibiotics
(Fig. 7) which may enhance their fitness and competing to
acquire carbon sources and protect against environmental
perturbations [25, 26].
Even though the CAZymes derived from Actinobacteria

were 14.5% and 17.5% of the total CAZymes for CS and
YT, respectively (Fig. 5a), the average relative abundances
of Actinobacteria only accounted for 2.5% and 6.6% of the

Fig. 6 Distributions and variations (shown as standard deviation) of CAZymes (a) and the 44 functional genes (b) revealed by DNA-SIP based
shotgun metagenomic sequencing that potentially related to plant residue decomposition in the dominant bacterial phyla across decomposition
stages. The functional genes were merged into four groups (that is, cellulose degradation, hemicellulose degradation, lignin degradation, and
cello-oligosaccharides degradation) according to substrate classification. The relative abundances of CAZymes and functional genes were Z-score
transformed. GH glycoside hydrolase, GT glycosyl transferase, PL polysaccharide lyase, CE carbohydrate esterase, CBM carbohydrate-binding
module, AA auxiliary activities. For more detailed functional gene profiles of (b), see Additional file 1: Table S1
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total bacteria for CS and YT (Additional file 1: Fig. S4),
which was partly not consistent with our first hypothesis
that Actinobacteria are prevalent in plant residue decom-
position. The mechanism behind this phenomenon needs
further investigation. Consistently, non-dominant Actino-
bacteria metagenome encoded relatively high abundant
CAZymes than other phyla (except for Bacteroidetes Fig.
5b). This finding is consistent with a previous study on the
phylogenetic distribution of potential cellulases in bacteria,
which found that the Actinobacteria genome harbored a
high GH (a class of CAZymes) abundance for cellulose deg-
radation [40]. Our study is highly consistent with previous
work on the microbial-driven decomposition of chestnut
biochar [41], as well as leaf litter [42] and wood [43], which
supports the general perspective that Actinobacteria play
important roles in plant residue decomposition, as the cell
walls of nearly all green plants are made up of carbohy-
drates (e.g., cellulose, hemicellulose, and lignin) [44].
Although all classes of CAZymes were also found in

other phyla, the high functional variability in these phyla
in our study suggests that the reason behind it may dif-
fer from that of Actinobacteria. For example, several dif-
ferent subsets of taxa within these phyla may possess
only subset classes of CAZymes for plant residue de-
composition, which made most of the specific taxa im-
portant only on a specific time point and/or a specific

site point (Fig. 6). In contrast, only a few generalists (i.e.,
Actinobacteria) that harbored all sets of enzymes for de-
composition were dominant in the entire decomposition
processes [11].
Also, although Bacteroidetes possesses the highest aver-

age CAZymes abundance (Fig. 5b), which may be taken to
suggest that they thus play important physiological roles
in plant residue decomposition [45], the high taxonomic
and functional variability of Bacteroidetes (that is, their
survival or life strategy may be more affected by environ-
mental conditions) at the community level during decom-
position at both local and regional scales (Figs. 3 and 6;
Additional file 1: Figs. S1 and S3) implies that they are less
important than Actinobacteria over a large spatiotemporal
scale from the ecological point. Collectively, these results
show that non-dominant Actinobacteria consistently play
important ecophysiological roles throughout all straw de-
composition stages by possessing high proportions of
CAZymes and maintaining relative stability in taxonomic
and functional composition during decomposition across
spatial and environmental gradients.

The importance of Actinobacteria for the decomposition
of plant residues is greater in low fertility soils
Mantel tests between soil chemical properties and straw-
associated bacterial community composition suggested

Fig. 7 Boxplots showing the average relative abundance of Actinobacteria and related gene classes associated with different ecological traits in
Actinobacteria metagenome under different soil fertilities. The relative abundances were log-transformed. GH glycoside hydrolase, GT glycosyl
transferase, PL polysaccharide lyase, CE carbohydrate esterase, CBM carbohydrate-binding module, AA auxiliary activities. “*” denotes significantly
different at P < 0.05, “**” denotes significantly different at P < 0.01, “n.s.” denotes P > 0.05
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that soil fertility (represented by available P, total K, total
P, available K, and SOM) strongly affects straw-
associated bacterial community composition (Additional
file 1: Table S3). CAZymes revealed by shotgun metage-
nomic sequencing suggested that lower soil fertility (rep-
resented by YT soil) enhanced the importance of
Actinobacteria by promoting the relative abundances of
CAZymes in Actinobacteria (Fig. 7; Additional file 3:
Table S7). This finding was consistent with previous
work showing that oligotrophic microorganisms (e.g.,
members of the phylum Actinobacteria and the class
Deltaproteobacteria) have the ability to compete for re-
sources in a resource-limited environment [46, 47]. In
addition to Actinobacteria, other taxa also require car-
bon sources to provide energy for metabolism [48].
Thus, the enhanced ability of Actinobacteria for plant
residue decomposition in less fertile soils may provide
more carbon sources for other taxa when nutrients are
limited, which also suggests that Actinobacteria are es-
pecially important in less fertile soils.
Soil nutrient status can influence microbial interac-

tions [15, 49]. Microorganisms can improve their ability
to compete for nutrients under resource-limited condi-
tions by streamlining into smaller cells and genomes and
forming extensive species-species symbiosis among mi-
crobial members [15, 46, 50]. Co-occurrence networks
provided further evidence that lower soil fertility en-
hanced the importance of Actinobacteria by increasing
both the positive and negative links between Actinobac-
teria and other members (Fig. 4), which was in accord-
ance with the streamlining theory that increases in cell-
cell interactions within microbial communities are
always concurrent with an increase in the competition
for resources [50]. Those bacterial taxa that had the
carbohydrate-active function and were positively linked
to Actinobacteria may co-operate with Actinobacteria
and jointly promote plant residue decomposition under
lower soil fertility [51, 52]. The high relative abundance
of nitrogen fixation genes in Actinobacteria under lower
soil fertility (Fig. 7) may be one of the potential explana-
tions for this result as these nitrogen fixation genes may
increase nitrogen availability for decomposers and thus
foster interspecies interactions between Actinobacteria
and other community members for plant residue decom-
position [19]. The negative links between Actinobacteria
and bacterial taxa that had a carbohydrate-active func-
tion indicate that Actinobacteria may compete for carbo-
hydrates by suppressing competitor growth [53, 54],
which in turn increased the importance of Actinobac-
teria for decomposition under lower soil fertility. The
higher relative abundance of antibiotic synthesis genes
among Actinobacteria under lower soil fertility (Fig. 7)
may be one of the potential explanations for their preva-
lence as these antibiotic synthesis genes may potentially

promote antibiotic synthesis and suppress competitors
for resource acquisition [26, 55]. Our results are in line
with other studies indicating that under oligotrophic
conditions microorganisms form associations and com-
pete with each other to survive [15, 46]. Collectively,
these results confirm our second hypothesis that Actino-
bacteria are more important in less fertile soils as they
possess higher proportions of functional genes and
higher proportions of interspecies interactions under
lower soil fertility. However, the present data suggest
but do not prove that soil fertility is the main driver be-
hind the differences observed. Other factors such as
heavy metals, trace elements, or other soil conditions
may well have played a role too; further research is
needed to unequivocally establish the role of soil fertility
here. In addition, the final supporting evidence of all our
findings in this study will require a series of studies in-
cluding ones on the importance of antibiotic synthesis
and the importance of nitrogen fixation by Actinobac-
teria for the organisms themselves and for the wider
community. Here, we have built a case where a series of
observations all point in the same direction: Actinobac-
teria potentially play an important ecophysiological role
in plant residue decomposition. Further research is
needed to unequivocally prove the true importance of
Actinobacteria in plant residue degradation in this and
other microbial ecosystems.

Conclusions
DNA-based evidence presented here suggests that non-
dominant Actinobacteria communities play important
ecophysiological roles throughout all plants residue de-
composition stages by possessing higher proportions of
involved CAZymes and maintaining relative stability in
taxonomic and functional composition during decom-
position assisted by fitness-enhancing nitrogen fixing
and antibiotics-producing abilities. Moreover, Actinobac-
teria are especially important in less fertile soils, as these
organisms possess a relatively higher proportion of the
genes involved in plant residue decomposition and are
more heavily involved in interspecies interactions. Our
study provides valuable insights into the important eco-
physiological roles of Actinobacteria for carbon cycling
in terrestrial ecosystems.

Methods
The field straw decomposition experiment
The field straw decomposition experiment was con-
ducted at three experimental sites in CQ, CS, and YT
across the subtropical zone of China (Additional file 1:
Fig. S6) with a wide geographic distance (~ 1300 km)
and various in soil fertilities. Details of the experimental
design and site information have been described in Bao
et al. [27, 56] and in Additional file 1: Tables S8 and S9
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[57]. In brief, nylon litter bags (41 μm pore size, which
permitted the free transfer of bacteria between paddy
soils and litter bags) containing rice straw were ran-
domly buried at 10 cm depth in a 48 m2 area before rice
cultivation. Then, the bags and their adjacent soil sam-
ples with 12 replicates were collected at 1, 2, 4, 8, and 16
weeks after they were buried. In total, 180 straw samples
and 180 soil samples were used in this investigation.
Subsamples of straw for decomposition and chemistry
assays were stored at − 20 °C, and subsamples for DNA
extraction were stored at − 80 °C. We note that these
samples were also used in previous studies [27, 56]. The
straw decomposition ratio was determined according to
the methods described in Bao et al. [27]. The straw de-
composition ratios of CQ, CS, and YT were supplied in
Additional file 1: Table S10 [27].

Straw chemical properties measurement
The straw components of cellulose, hemicellulose, and
lignin were determined according to validated methods
described by Van Soest [58] with some modifications
[59]. In brief, thermogravimetric analysis with 1 g straw
sample was performed using the crude fiber extractor
FIWE 3 (Velp Scientifica, Italy). The straw sample was
boiled in neutral detergent solution (sodium dodecyl sul-
fate, EDTA, pH 7.0, 100 mL) for 1 h, then washed with
hot water and acetone, and finally dried at 105 °C for
12 h. Neutral detergent fiber fraction was weighed. The
same procedure except samples boiled in acidic deter-
gent solution (cetyltrimethyl ammonium bromide in 1 N
H2SO4, 100 mL) was taken to measure acidic detergent
fiber fraction. The cellulose was extracted 4 h by adding
20 mL of 72% sulfuric acid to the residue. Then, the
sample was thoroughly rinsed with hot water and finally
with acetone then dried at 105 °C for 12 h. Acid deter-
gent lignin fraction was weighed. Then the cellulose,
hemicellulose, and lignin content were calculated. The
water-soluble polysaccharides (WSP) was extracted at 70
°C for 30 min with distilled water (straw:water = 1:10).
Insoluble material was removed by filtration. After the
extracted solution was roto-evaporated to 25 mL, crude
polysaccharide was precipitated by ethanol. Finally, this
was dried and weighed for calculating the content of
WSP [60].

Amplicon high-throughput sequencing and data
processing
To test our hypotheses, we determined the straw decom-
position bacterial communities by Illumina sequencing
of 16S rRNA genes. Genomic DNA was extracted using
a FastDNA® SPIN Kit for soil (MP Biomedicals, Santa
Ana, CA) with a negative control following the manufac-
turer’s instructions. The 16S rRNA gene V4-V5 frag-
ments were amplified using primer pairs 519F (5′-

CAGCMGCCGCGGTAATWC-3′) and 907R (5′-CCGT
CAATTCMTTTRAGTTT-3′). The 5-bp bar-coded oli-
gonucleotides were fused to the forward primer to dis-
tinguish different samples. The procedures of PCR
reaction, amplicon high-throughput sequencing libraries
preparing, and data processing were fully described in
Bao et al. [27]. In total, 6,528,688 quality bacterial 16S
rRNA gene sequences were obtained, and between 8081
and 39,732 sequences per sample (with a median value
of 17,228 sequences per sample). Then, all samples were
randomly rarified to 8000 sequences for downstream
analyses, which was extremely close to the minimum se-
quence number for all samples.

Microbial community analyses
Functional characteristics of bacterial communities
during straw decomposition in the field experiment
were analyzed by phylogenetic investigation of com-
munities by reconstruction of unobserved states
(PICRUSt) [61]. In brief, a PICRUSt-compatible oper-
ational taxonomic unit (OTU) table was constructed
using the closed-reference OTU-picking protocol in
Quantitative Insights Into Microbial Ecology (QIIME,
USA) [62] against the Greengenes database, then the
ancestral states in the reference tree were recon-
structed and the gene function spectrum of tips that
lack sequenced genomes were predicted by identifying
the nearest corresponding ancestor, and function pre-
diction was compared to the annotated whole-genome
sequencing metagenome across KEGG Orthology.
Finally, the gene functions were identified. The straw-
associated bacterial community composition was visu-
alized by NMDS based on Bray-Curtis distance.
PERMANOVA [63] was conducted to test for statisti-
cally significant differences in community composition
among stages, using R software (the “vegan” package
[64], Version 2.2-1).

Molecular ecological network analysis
To reveal the co-occurrence patterns in straw-associated
bacterial communities in the field experiment, phylogen-
etic molecular ecological networks (pMENs) in CQ, CS,
and YT were constructed using the random matrix the-
ory (RMT)-based network approach [65]. The pMEN
construction and analysis were performed with the on-
line pipeline of Deng et al. [66]. Network parameters,
such as total nodes, total links, average degree, geodesic
efficiency, harmonic geodesic distance, and transitivity
were used to evaluate the topological structure of the
co-occurrence networks. The constructed networks for
bacterial communities involved in straw decomposition
were visualized using Gephi software [67].
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13C-straw amended microcosms and DNA stable isotope
probing gradients
To further verify our hypotheses, we determined the
straw decomposition bacterial community and func-
tional composition by DNA stable-isotope probing
(DNA-SIP) microcosms and metagenomic shotgun se-
quencing. Two soils with different fertility (as represen-
tatives of different soil fertility levels) were sampled from
the abovementioned rice field experimental sites in CS
and YT. Ten grams of soil were added per serum bottle
(120 mL, 10 cm in height) and then pre-incubated for 3
days in the dark at 27 °C. Soil moisture was then ad-
justed to 60% of the maximum water holding capacity.
After that, 0.1 g of 13C-labeled rice straw (ca. 70 at%)
was added to each bottle (13C) (the 13C-labeled rice
straw was obtained from the previous study [68]). The
serum bottles were flushed with N2 for 10 min to obtain
an anaerobic condition, and then bottles were sealed and
incubated in the dark at 27 °C for sampling. Due to 12C
controls were extremely useful to identify the “heavy”
DNA fractions from SIP incubations [69], thus bottles
amended with natural 12C-rice straw (ca. 1.08% of 13C to
ΣC) (12C) were established as the control of the 13C
treatment. Each treatment was replicated three times.
Soil samples were respectively collected at 8, 24, 56, and
90 days after they were incubated, and a total of 12 soil
samples were collected for each experimental site. In
total, there were 24 soil samples in this investigation.
DNA stable isotope fractionation was performed as de-

scribed by Jia and Conrad [70]. In brief, the gradient
fractionation of total DNA (3.0 μg) extract from the soil
of all SIP microcosms was conducted with an initial
CsCl buoyant density of 1.720 g/mL; then the solutions
were centrifugated at 177,000 g for 44 h under vacuum
using a Beckman optima TLX (Beckman Coulter, Inc.,
Palo Alto, CA, USA). After ultracentrifugation, the solu-
tion was immediately separated from bottom to top into
15 equal fractions using a calibrated infusion pump
(New Era Pump System, Inc., Farmingdale, NY, USA).
DNA was separated from CsCl by PEG 6000 precipita-
tion and dissolved in TE buffer.
The copy numbers of the bacterial 16S rRNA gene

V4-V5 fragments in each DNA fractions were quantified
by real-time quantitative PCR (qPCR) according to the
previously described procedures [19]. Shifts in the bac-
terial 16S rRNA gene copy numbers of the isotopically
fractionated DNA gradients were shown in Additional
file 1: Fig. S7. DNA fractions with green circles in the
figure were defined as “heavy” DNA fractions.

Shotgun metagenomic sequencing of DNA in “heavy”
buoyant fractions
To generate sufficient DNA for preparing of shotgun
metagenomic sequencing library, “heavy” DNA fractions

of 13C-straw treatments were amplified by the multiple
displacement amplification (MDA) method using
REPLI-g Single Cell (sc) Kit (#150345; QIAGEN, Hilden,
Germany) according to standard protocols of the manu-
facturer. Negative controls were conducted following the
same protocol. Then, DNA was fragmented to ~ 300 bp
using Covaris M220 (Gene Company Limited, China) for
paired-end library construction. TruSeq™ DNA Sample
Prep Kit (Illumina, San Diego, CA, USA) was used to
prepare the paired-end library. Adapters were ligated to
the Blunt-end fragments. The HiSeq 3000/4000 SBS
Kits, HiSeq 3000/4000 PE Cluster Kit, and Illumina
HiSeq 4000 platform (Illumina Inc., San Diego, CA,
USA) were used for sequencing at Majorbio Bio-Pharm
Technology Co., Ltd. (Shanghai, China) according to
standard protocols of the manufacturer. Totally, ~ 10
Gbp paired-end Illumina data were obtained for each
sample. All the raw metagenomics datasets have been
deposited into the NCBI SRA database (accession no.,
PRJNA669350).
Adaptors were stripped using SeqPrep (https://github.

com/jstjohn/SeqPrep). Low-quality reads (length < 50 bp
or with a quality value < 20 or having N bases) were fil-
tered with Sickle (https://github.com/najoshi/sickle)
using default parameters. The de Bruijn graph-based
assembler SOAPdenovo (http://soap.genomics.org.cn,
Version 1.06) was employed to assemble short reads (K-
mers range 47-97, step-10). K-mers varying from 1/3 to
2/3 of read lengths were then tested for all samples.
Scaffolds with a length > 500 bp were retained for statis-
tical tests; the quality and quantity of scaffolds generated
were evaluated by each assembly and chose the best K-
mer, which yielded the maximum value of N50 and N90
and the minimum scaffold number, respectively. Scaf-
folds with a length > 500 bp were then extracted and
broken into contigs without gaps. These contigs were
used for further gene prediction and annotation.
Open reading frames (ORFs) from each metagenomic

sample were predicted using MetaGene (http://
metagene.cb.k.u-tokyo.ac.jp/). The predicted ORFs with
length being or over 100 bp were retrieved and trans-
lated to amino acid sequences using the NCBI transla-
tion table (http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/index.cgi?chapter=tgencodes#SG1).
All sequences from gene sets with a 95% sequence iden-
tity (90% coverage) were clustered as the non-redundant
gene catalog by the CD-HIT (http://www.bioinformatics.
org/cd-hit/). Reads after quality control were mapped to
the representative genes with 95% identity using
SOAPaligner (http://soap.genomics.org.cn/), and gene
abundance in each sample was evaluated. BLASTP
(Version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi)
was employed for taxonomic annotations by aligning
non-redundant gene catalogs against the NCBI NR
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database with an e value cutoff of 1e−5. The cluster of
orthologous groups of proteins (COG) for the ORFs an-
notation was performed using BLASTP against the egg-
NOG database (v4.5) with an e value cutoff of 1e−5. The
KEGG pathway annotation was conducted using the
BLASTP search (Version 2.2.28+) against the Kyoto
Encyclopedia of Genes and Genomes database (http://
www.genome.jp/keeg/) with an e value cutoff of 1e−5.
For the analysis of carbohydrate-active enzymes
(CAZymes) in the dominant bacterial phyla, the non-
redundant gene catalogs were firstly taxonomically
assigned by BLASTP as mentioned above, then the
CAZymes functions of the non-redundant gene catalogs
with taxonomic assignment were annotated using
hmmscan (http://hmmer.janelia.org/search/hmmscan)
against CAZy database V5.0 (http://www.cazy.org/) with
an e value cutoff of 1e−5. All the shotgun metagenomic
sequencing data were normalized with the reads
assigned per kilobase of target per million mapped reads
(RPKM) method [71].

Statistical analysis
Mantel tests were conducted between environmental
factors (soil chemical properties and/or straw chem-
ical components) and bacterial community (taxonomic
and/or functional composition) using R software (the
“vegan” package [64], version 2.2-1). Linear regres-
sions between Bray-Curtis distance and changes in
straw chemical components were conducted to deter-
mine the relationship between bacterial communities
and straw chemical components. The changes in
straw chemical components were calculated using 4
chemical components of straw samples (Additional
file 1: Table S11) [56] based on Euclidean distances.
The significance of the linear regression slopes within
phylum and between Actinobacteria and other mem-
bers were tested by permutation tests. Separation of
mean values among different samples was evaluated
with one-way ANOVA followed by post-hoc Tukey’s
HSD tests using the IBM Statistical Product and Ser-
vice Solutions (SPSS) Statistics for Windows (Version
13). The difference of P < 0.05 was considered
significant.
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