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Accurate and sensitive detection of ®

microbial eukaryotes from whole
metagenome shotgun sequencing
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Abstract

Background: Microbial eukaryotes are found alongside bacteria and archaea in natural microbial systems, including
host-associated microbiomes. While microbial eukaryotes are critical to these communities, they are challenging to
study with shotgun sequencing techniques and are therefore often excluded.

Results: Here, we present EukDetect, a bioinformatics method to identify eukaryotes in shotgun metagenomic
sequencing data. Our approach uses a database of 521,824 universal marker genes from 241 conserved gene
families, which we curated from 3713 fungal, protist, non-vertebrate metazoan, and non-streptophyte
archaeplastida genomes and transcriptomes. EukDetect has a broad taxonomic coverage of microbial eukaryotes,
performs well on low-abundance and closely related species, and is resilient against bacterial contamination in
eukaryotic genomes. Using EukDetect, we describe the spatial distribution of eukaryotes along the human
gastrointestinal tract, showing that fungi and protists are present in the lumen and mucosa throughout the large
intestine. We discover that there is a succession of eukaryotes that colonize the human gut during the first years of
life, mirroring patterns of developmental succession observed in gut bacteria. By comparing DNA and RNA
sequencing of paired samples from human stool, we find that many eukaryotes continue active transcription after
passage through the gut, though some do not, suggesting they are dormant or nonviable. We analyze
metagenomic data from the Baltic Sea and find that eukaryotes differ across locations and salinity gradients. Finally,
we observe eukaryotes in Arabidopsis leaf samples, many of which are not identifiable from public protein
databases.
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how microbial eukaryotes contribute to microbiomes.

metagenome sequencing

Conclusions: EukDetect provides an automated and reliable way to characterize eukaryotes in shotgun sequencing
datasets from diverse microbiomes. We demonstrate that it enables discoveries that would be missed or clouded
by false positives with standard shotgun sequence analysis. EukDetect will greatly advance our understanding of
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Background
Eukaryotic microbes are ubiquitous in microbial systems,
where they function as decomposers, predators, para-
sites, and producers [1]. Eukaryotic microbes inhabit vir-
tually every environment on earth, from extremophiles
found in geothermal vents, to endophytic fungi growing
within the leaves of plants, to parasites inside the animal
gut. Microbial eukaryotes have complex interactions
with their hosts in both plant- and animal-associated
microbiomes. For example, in plants, microbial eukary-
otes assist with nutrient uptake and can protect against
herbivory [2]. In animals, microbial eukaryotes in the
gastrointestinal tract metabolize plant compounds [3].
Microbial eukaryotes can also cause disease in both
plants and animals, as in the case of oomycete pathogens
in plants or cryptosporidiosis in humans [4, 5]. In
humans, microbial eukaryotes interact in complex ways
with the host immune system, and their depletion and
low diversity in microbiomes from industrialized soci-
eties mirror the industrialization-driven “extinction”
seen for bacterial residents in the microbiome [6-8].
Outside of host-associated environments, microbial eu-
karyotes are integral to the ecology of aquatic and soil
ecosystems, where they are primary producers, partners
in symbioses, decomposers, and predators [9, 10].

Despite their importance, eukaryotic species are often
not captured in studies of microbiomes [11]. By far, the
most frequently used metabarcoding strategy for study-
ing host-associated and environmental microbiomes tar-
gets the 16S ribosomal RNA gene, which is found
exclusively in bacteria and archaea, and therefore cannot
be used to detect eukaryotes. Alternatively, amplicon se-
quencing of eukaryotic-specific (18S) or fungal-specific
(ITS) ribosomal genes are effectively used in studies spe-
cifically targeting eukaryotes. Our understanding of the
eukaryotic diversity in host-associated and environmen-
tal microbiomes is largely due to advances in eukaryotic-
specific amplicon sequencing [12-15]. However, like all
amplicon strategies, they can suffer from limited taxo-
nomic resolution and difficulty in distinguishing between
closely related species [16, 17].

Unlike amplicon strategies, whole metagenome se-
quencing captures fragments of DNA from the entire
pool of species present in a microbiome, including

eukaryotes. Whole metagenome sequencing data is in-
creasingly common in microbiome studies, as these data
can be used to assemble new genomes, disambiguate
strains, and reveal presence and absence of genes and
pathways [18]. As well as these methods work for identi-
fying bacteria and archaea, multiple challenges remain to
robustly and routinely identify eukaryotes in whole
metagenome sequencing datasets. First, eukaryotic spe-
cies are estimated to be present in many environments
at lower abundances than bacteria, and comprise a much
smaller fraction of the reads of a shotgun sequencing li-
brary than do bacteria [1, 19]. Despite this limitation,
interest in detecting rare taxa and rare variants in micro-
biomes has increased alongside falling sequencing costs,
resulting in more and more microbiome deep-
sequencing datasets where eukaryotes could be detected
and analyzed in a meaningful way.

Apart from sequencing depth, a second major barrier
to detecting eukaryotes from whole metagenome se-
quencing is the availability of methodological tools. Re-
search questions about eukaryotes in microbiomes using
whole metagenome sequencing have primarily been ad-
dressed by using eukaryotic reference genomes, genes,
or proteins for either k-mer matching or read mapping
approaches [20, 21]. However, databases of eukaryotic
genomes and proteins have widespread contamination
from bacterial sequences, and these methods therefore
frequently misattribute bacterial reads to eukaryotic spe-
cies [22, 23]. Gene-based taxonomic profilers, such as
Metaphlan3, have been developed to detect eukaryotic
species, but these target a small subset of microbial eu-
karyotes (122 eukaryotic species as of the mpa_v30 re-
lease) [24, 25].

To enable routine detection of eukaryotic species from
any environment sequenced with whole metagenome se-
quencing, we have developed EukDetect, a bioinformat-
ics approach that aligns metagenomic sequencing reads
to a database of universally conserved eukaryotic marker
genes. As microbial eukaryotes are not a monophyletic
group, we have taken an inclusive approach and incor-
porated marker genes from 3713 eukaryotes, including
596 protists, 2010 fungi, 146 non-streptophyte archae-
plastida species, and 961 non-vertebrate metazoans
(many of which are microscopic or near-microscopic).
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This gene-based strategy avoids the pitfall of spurious
bacterial contamination in eukaryotic genomes that has
confounded other approaches. The EukDetect pipeline
will enable different fields using whole metagenome se-
quencing to address emerging questions about microbial
eukaryotes and their roles in human and other host-
associated and environmental microbiomes.

We apply the EukDetect pipeline to public human-
associated, plant-associated, and aquatic microbiome
datasets to make inferences about the roles of eukaryotes
in these environments. We show that EukDetect’s
marker gene approach greatly expands the number of
detectable disease-relevant eukaryotic species in host-
associated and environmental microbiomes.

Results

Bacterial sequences are ubiquitous in eukaryotic

genomes

Eukaryotic reference genomes and proteomes have many
sequences that are derived from bacteria, which have en-
tered these genomes either spuriously through contam-
ination during sequencing and assembly or represent
true biology of horizontal transfer from bacteria to eu-
karyotes [22, 23]. In either case, these bacterial-derived
sequences overwhelm the ability of either k-mer match-
ing or read mapping-based approaches to detect eukary-
otes from microbiome sequencing, as bacteria represent
the majority of the sequencing library from many micro-
biomes. We demonstrate this problem by simulating
paired-end sequence reads from the genomes of 971
common human gut microbiome bacteria, representing
all major bacterial phyla in the human gut—including
Bacteroidetes, Actinobacteria, Firmicutes, Proteobacteria,
and Fusobacteria [26]. We aligned these reads against a
database of 2449 genomes of fungi, protists, and meta-
zoans taken from NCBI GenBank. We simulated 2 mil-
lion 126-bp paired-end reads per bacterial genome. Even
with stringent read filtering (mapping quality > 30,
aligned portion > 100 base pairs), a large number of sim-
ulated reads aligned to the eukaryotic database, from al-
most every individual bacterial genome (Fig. la). In
total, 112 bacteria had more than 1% of simulated reads
aligning to the eukaryotic genome database, indicating
that the potential for spurious alignment to eukaryotes
from human microbiome bacteria is not limited to a few
bacterial taxa (Figure S1). The majority (1367/2449) of
the eukaryotic genomes contained at least 100 bp of
genome sequence where bacterial reads spuriously
aligned; 318 genomes had more than 1 Kb of bacterial
sequence. These genomes came from all taxonomic
groups tested (Fig. 1c), indicating that bacterial contam-
ination of eukaryotic genomes is widespread and that
simply removing a small number of contaminated ge-
nomes from an analysis will not be sufficient. As the
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majority of the sequencing library from many human
microbiome samples is expected to be mostly comprised
of bacteria [19], this spurious signal drowns out any true
eukaryotic signal.

In practice, progress has been made in identifying eu-
karyotes from whole metagenome sequencing data by
using alignment-based approaches coupled with exten-
sive masking, filtering, and manual curation [20, 21, 27].
However, these approaches still typically require exten-
sive manual examination because of the incomplete na-
ture of the databases used to mask. These manual
processes are not scalable for analyzing the large
amounts of sequencing data that are generated by
microbiome sequencing studies and the rapidly growing
number of eukaryotic genomes.

Using universal marker genes to identify eukaryotes

To address the problem of identifying eukaryotic species
in microbiomes from whole metagenome sequencing
data, we created a database of marker genes that are
uniquely eukaryotic in origin and uncontaminated with
bacterial sequences. We chose genes that are ostensibly
universally conserved to achieve the greatest identifica-
tion power. We focused on universal eukaryotic genes
rather than clade-, species-, or strain-specific genes be-
cause many microbial eukaryotes have variable size pan-
genomes, and universal genes are less likely to be lost in
a given lineage [28, 29]. The chosen genes contain suffi-
cient sequence variation to be informative about which
eukaryotic species are present in sequencing data.

More than half of eukaryotic microbial species with se-
quenced genomes in NCBI GenBank do not have anno-
tated genes or proteins. Therefore, we used the
Benchmarking Universal Single Copy Orthologs
(BUSCO) pipeline, which integrates sequence similarity
searches and de novo gene prediction to determine the
location of putative conserved eukaryotic genes in each
genome [30]. Other databases of conserved eukaryotic
genes exist, including PhyEco and the recently available
EukCC and EukProt [31-33]. We found the BUSCO
pipeline was advantageous, as BUSCO and the OrthoDB
database have been benchmarked in multiple applica-
tions including gene predictor training, metagenomics,
and phylogenetics [34, 35].

We ran the BUSCO pipeline using the OrthoDB
Eukaryote lineage [35] on 3713 eukaryotic genomes and
transcriptomes (2010 fungi, 596 protists, 961 non-
vertebrate metazoans, and 146 non-streptophyte archae-
plastida species) downloaded from NCBI GenBank or
curated from other sources into the EukProt database,
most of which do not have gene or protein predictions
deposited in public databases [31] (Fig. 2a). Marker gene
sequences were then extensively quality filtered (see
“Methods”). As part of the filtering process, we removed
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genomes where bacterial reads aligned

Fig. 1 Human gut microbiome bacterial sequence reads are misattributed to eukaryotes. a Metagenomic sequencing reads were simulated from
971 species total from all major phyla in human stool (2 million reads per species) and aligned to all microbial eukaryotic genomes used to
develop EukDetect. Even after stringent filtering (see “Methods”), many species have thousands of reads aligning to eukaryotic genomes, which
would lead to false detection of eukaryotes in samples with only bacteria. b Amount of eukaryotic genome sequence aligned by simulated
bacterial reads in 1367 eukaryotic genomes. ¢ Taxonomic distribution of eukaryotes in whole-genome database. Dark blue indicates eukaryotic

~71,000 marker genes that were potentially bacterial in
origin or contained regions similar to bacterial genomes,
which comprised ~16% of the unfiltered database. Genes
with greater than 99% sequence identity were combined
and represent the most recent common ancestor of the
species with collapsed genes. A final set of 521,824
marker genes from 214 BUSCO orthologous gene sets
was selected, of which 500,508 genes correspond to indi-
vidual species and the remainder to internal nodes (i.e.,
genera, families) in the taxonomy tree (Fig. 2b, Table
S3).

Confirming that reads from bacteria would not spuri-
ously align to this eukaryotic marker database, zero
reads from our simulated bacterial sequencing data (Fig.
1), or from reads simulated from ~55,000 human-
associated and environmental metagenome, assembled
genomes (see “Methods”) align to this database. To fur-
ther investigate the possibility that bacterial sequences
may be present in marker genes, we analyzed 6661
whole metagenome samples from 7 studies of human-
associated, plant-associated, and aquatic microbiomes
(see “Methods”), and compared the number of reads
aligning to a given species to the median coverage of ob-
served marker genes (Figure S2). We did not observe
any cases where large numbers of reads align to small
portions of marker genes, demonstrating that in these

real datasets, bacterial contamination does not contrib-
ute to detected eukaryotic species.

Despite the BUSCO universal single-copy nomencla-
ture, the EukDetect database genes are present at vari-
able levels in different species (Fig. 2b). We uncovered a
number of patterns that explain why certain taxonomic
groups have differing numbers of marker genes. First,
BUSCOs may be absent because the genomes for a spe-
cies are incomplete. Second, many of the species present
in our dataset, including microsporidia and many of the
pathogenic protists, function as parasites. As parasites
rely on their host for many essential functions, they fre-
quently experience gene loss and genome reduction [36],
decreasing the representation of BUSCO genes. It is also
possible that the BUSCO pipeline does not identify all
marker genes in some clades with few representative ge-
nomes. Conversely, some clades have high rates of dupli-
cation for these typically single-copy genes. These
primarily occur in fungi; studies of fungal genomes have
demonstrated that hybridization and whole genome du-
plication occur frequently across the fungal tree of life
[37, 38].

As the representation of each marker gene differs
across taxonomic groups, we identified a subset of 50
marker genes that are most frequently found across all
eukaryotic taxa (Table S3). This core set of genes has
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Fig. 2 The EukDetect database comprises marker genes from protists, fungi, archaeplastida species, and metazoans. a Taxonomic distribution of
the species with transcriptomes and genomes included in the EukDetect database. b Total number of marker genes identified per species by




Lind and Pollard Microbiome (2021) 9:58

the potential to be used for strain identification, abun-
dance estimation, and phylogenetics, as has been dem-
onstrated for universal genes in bacteria [33].

EukDetect: a pipeline to accurately identify eukaryotes
using universal marker genes

We incorporated the complete database of 214 marker
genes into EukDetect, a bioinformatics pipeline (https://
github.com/allind/EukDetect) that first aligns metage-
nomic sequencing reads to the marker gene database,
and filters each read based on alignment quality, se-
quence complexity, and alignment length. Sequencing
reads can be derived from DNA or from RNA sequen-
cing. EukDetect then removes duplicate sequences, cal-
culates the coverage and percent identity of detected
marker genes, and reports these results in a taxonomy-
informed way. When more than one species per genus is
detected, EukDetect determines whether any of these
species are likely to be the result of off-target alignment
and reports these hits separately (see “Methods” for
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more detail). Optionally, results can be obtained for only
the 50 most universal marker genes.

EukDetect is sensitive and accurate even at low sequence
coverage

To determine the performance of EukDetect, we simu-
lated reads from representative species found in host-
associated and environmental microbiomes, including
one human-associated fungus (Candida albicans) and
one soil fungus (Trichoderma harzianum), one human-
associated protist (Entamoeba dispar) and one environ-
mental protist (the widely distributed ocean haptophyte
Emiliania huxleyi), and one human-associated helminth
(Schistosoma mansoni) and one plant pathogenic nema-
tode (Globodera rostochiensis). These species represent
different groups of the eukaryotic tree of life and are
variable in their genome size and representation in the
EukDetect marker gene database. The number of reads
aligning to the database and the number of observed
marker genes vary based on the total number of marker
genes per organism and the overall size of its genome
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(Fig. 3). We simulated metagenomes with sequencing
coverage across a range of values for each species and
performed 10 simulations for each species. We foubet-
weennd that EukDetect is highly sensitive and aligns at
least one read to 80% or more of all marker genes per
species at low simulated genome coverages between
0.25x and 0.5x (Fig. 3a).

Using a detection limit cutoff requiring at least 4
unique reads aligning to 2 or more marker genes, Can-
dida albicans is detectable in 8 or more out of 10 simu-
lations at 0.005x coverage (Fig. 3b). Schistosoma
mansoni and Trichoderma harzianum are both detected
in 8 or more out of 10 simulations at 0.01x coverage.
Emiliania huxleyi and Globodera rostochiensis are both
detected in 8 or more out of 10 simulations at 0.05x
coverage, and Acanthamoeba castellanii is detected in 8
or more out of 10 simulations at 0.1x coverage.

Off-target alignment happens when reads from one
species erroneously align to another, typically closely re-
lated, species. This can occur due to errors in sequen-
cing or due to high local similarities between gene
sequences. To account for this error, when more than
one species from a genus is detected in a sample, EukDe-
tect examines the reads aligning to each species and deter-
mines whether any detected species are likely to have
originated from off-target alignment. To test this ap-
proach, we simulated reads from the genomes of two
closely related species found in human microbiomes, the
amoebozoan parasite Entamoeba histolytica and the
amoebozoan commensal Entamoeba dispar. These species
are morphologically identical, and their genomes have an
average nucleotide identity of 90% (calculated with fas-
tANI [39]). While simulated reads from both genomes do
align to other closely related Entamoeba species, EukDe-
tect accurately marks these as off-target hits and does not
report them in the primary result files (Fig. 3c).

To determine whether EukDetect can accurately distin-
guish true mixtures of very closely related species, we sim-
ulated combinations of both Entamoeba species with
genome coverage from 0.0001x coverage up to 1x cover-
age and determined when EukDetect results report both,
either one, or neither species (Fig. 3d). In general, EukDe-
tect accurately detected each of the species when present
at above the detection limit we determined from simula-
tions of the single species alone (0.01x coverage for Ent-
amoeba histolytica and 0.0075x coverage for Entamoeba
dispar) in 8 or more out of 10 simulations. However, in
several edge cases where one species was present at or
near its detection limit and the other species was much
more abundant, EukDetect was not able to differentiate
the lower abundance species from possible off-
target alignments and did not report them in the final out-
put. As pre-filtered results are reported as a secondary
output by EukDetect, users can examine these files for
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evidence of a second species in cases where two closely re-
lated eukaryotic species are expected in a sample.

One additional scenario that may produce reads align-
ing to multiple species within a genus is if a sample con-
tains a species that is not in the EukDetect marker gene
database but is within a genus that has representatives in
the database. The most conservative option is to con-
sider the most recent common ancestor of the closely
related species, which usually resolves at the genus level.
This information is provided by EukDetect (Figure S3).

Vignettes of microbial eukaryotes in microbiomes

To demonstrate how EukDetect can be used to under-
stand microbiome eukaryotes, we investigated several
biological questions about eukaryotes in microbiomes
using publicly available datasets from human- and plant-
associated microbiomes.

The spatial distribution of eukaryotic species in the gut
While microbes are found throughout the human digest-
ive tract, studies of the gut microbiome often examine
microbes in stool samples, which cannot provide infor-
mation about their spatial distribution [40]. Analyses of
human and mouse gut microbiota have shown differ-
ences in the bacteria that colonize the lumen and the
mucosa of the GI tract, as well as major differences be-
tween the upper GI tract, the small intestine, and the
large intestine, related to the ecology of each of these en-
vironments. Understanding the spatial organization of
microbes in the gut is critical to dissecting how these
microbes interact with the host and contribute to host
phenotypes.

To determine the spatial distribution of eukaryotic
species in the human gut, we analyzed data from two
studies that examined probiotic strain engraftment in
the human gut. These studies used healthy adult humans
recruited in Israel and collected stool samples along with
biopsies performed by endoscopy from 18 different body
sites along the upper GI tract, small intestine, and large
intestine [41, 42]. A total of 1613 samples from 88 indi-
viduals were sequenced with whole metagenome
sequencing.

In total, eukaryotes were detected in 325 of 1613 sam-
ples with the EukDetect pipeline (Table S4). The most
commonly observed eukaryotic species were subtypes of
the protist Blastocystis (236 samples), the yeast Saccha-
romyces cerevisiae (66 samples), the protist Entamoeba
dispar (17 samples), the yeast Candida albicans (9 sam-
ples), and the yeast Cyberlindnera jadinii (6 samples).
Additional fungal species were observed in fewer sam-
ples and included the yeast Malassezia restricta, a num-
ber of yeasts in the Saccharomycete class including
Candida tropicalis and Debaromyces hansenii, and the
saprophytic fungus Penicillium roqueforti.
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The prevalence and types of eukaryotes detected var-
ied along the GI tract. In the large intestine and the ter-
minal ileum, microbial eukaryotes were detected at all
sites, both mucosal and lumen derived. However, they
were mostly not detected in the small intestine or upper
GI tract (Fig. 4). One exception to this is a sample from
the gastric antrum mucosa which contained sequences
assigned to the fungus Malassezia restricta. Blastocystis
species were present in all large intestine and terminal
ileum samples, while fungi were present in all large in-
testine samples and the lumen of the terminal ileum.
The protist Entamoeba dispar was detected almost ex-
clusively in stool samples; only one biopsy-derived sam-
ple from the descending colon lumen contained
sequences assigned to an Entamoeba species. The sapro-
phytic fungus Penicillium roqueforti, which is used in
food production and is likely to be allochthonous in the
gut [43], was only detected in stool samples.

Our detection of microbial eukaryotes in mucosal sites
suggests that they may be closely associated with host
cells and not just transiently passing through the GI
tract. We detected both protists and fungi (Blastocystis,
Malassezia, and Saccharomyces cerevisiae) in mucosal as

well as lumen samples. These findings are consistent
with previous studies of Blastocystis-infected mice that
found Blastocystis in both the lumen and the mucosa of
the large intestine [44]. Taken together, our findings in-
dicate that certain eukaryotic species can directly inter-
act with the host, similar to mucosal bacteria [40].

A succession of eukaryotic microbes in the infant gut

The gut bacterial microbiome undergoes dramatic
changes during the first years of life [45]. We sought to
determine whether eukaryotic members of the gut
microbiome also change over the first years of life. To
do so, we examined longitudinal whole metagenome se-
quencing data from the three-country DIABIMMUNE
cohort, where stool samples were taken from infants in
Russia, Estonia, and Latvia during the first 1200 days of
life [46]. In total, we analyzed 791 samples from 213
individuals.

Microbial eukaryotes are fairly commonly found in
stool in the first few years of life. We detected reads
assigned to a eukaryotic species from 108 samples taken
from 68 individuals (Table S5). The most frequently ob-
served species were Candida parapsilosis (31 samples),
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species do not change over time

Fig. 5 Changes in eukaryotic gut microbes during the first years of life. a Age at collection in the DIABIMMUNE three-country cohort for samples
with no eukaryote or with any of the four most frequently observed eukaryotic families. b The mean age at collection of samples from individuals
with no observed eukaryotes compared to the mean age at collection of individuals where one of three eukaryotic families were detected.
Individuals where more than one eukaryotic family was detected are excluded. Malasseziaceae is excluded due to low sample size. Group
comparisons were performed with an unpaired Wilcoxon rank-sum test. *p < 0.05; **p < 0.01; ***p < 0.001. ¢ Model of eukaryotic succession in
the first years of life. Debaryomycetaceae species predominate during the first 2 years of life, but are also detected later. Blastocystidae species and
Saccharomycetaceae species predominate after the first 2 years of life, though they are detected as early as the second year of life. Malasseziaceae

Saccharomyces cerevisiae (29 samples), various subtypes
of the protist Blastocystis (18 samples), Malassezia spe-
cies (14 samples), Candida albicans (8 samples), and
Candida lusitaniae (8 samples). These results are con-
sistent with previous reports that Candida species are
prevalent in the neonatal gut [47, 48]. Less frequently
observed species were primarily yeasts in the Saccharo-
mycete class; the coccidian parasite Cryptosporidium
meleagridis was detected in one sample.

These species do not occur uniformly across time.
When we examined covariates associated with different
eukaryotic species, we found a strong association with
age. The median age at collection of the samples ana-
lyzed with no eukaryotic species was 450 days, but Blas-
tocystis protists and Saccharomycetaceae fungi were
primarily observed among older infants (median 690
days and 565 days, respectively) (Fig. 5a). Fungi in the
Debaromycetaceae family were observed among younger
infants (median observation 312 days). Samples contain-
ing fungi in the Malasseziaceae family were older than
Debaromycetaceae samples (median observation 368
days), though younger than the non-eukaryotic samples.
To determine whether these trends were statistically sig-
nificant, we compared the mean ages of two filtered
groups: individuals with no observed eukaryotes and in-
dividuals where only one eukaryotic family was observed
(Fig. 5b). We found that Saccharomycetaceae fungi and
Blastocystis protists were detected in significantly older
children (Wilcoxon rank-sum p=0.0012 and p=2.6e-06,
respectively). In contrast, Debaromycetaceae fungi were
found in significantly younger infants (p=0.035). As only
three samples containing Malasseziaceae came from in-
dividuals where no other eukaryotic families were de-
tected, we did not analyze this family.

These findings suggest that, as observed with bacteria,
the eukaryotic species that colonize the gastrointestinal
tract of children change during early life [45]. Our re-
sults support a model of eukaryotic succession in the in-
fant gut, where Debaromycetaceae fungi, notably
Candida parapsilosis in these data, dominate the
eukaryotic fraction of the infant gut during the first year
of life, and Blastocystis and Saccharomyces fungi, which
are commonly observed in the gut microbiomes of
adults, rise to higher prevalence in the gut in the second

year of life and later (Fig. 5c). Altogether these results
expand the picture of eukaryotic diversity in the human
early life GI tract.

Differences in RNA and DNA detection of eukaryotic species
suggests differential transcriptional activity in the gut
While most sequencing-based analyses of microbiomes
use DNA, microbiome transcriptomics can reveal the
gene expression of microbes in a microbiome, which has
the potential to shed light on function. RNA sequencing
of microbiomes can also be used to distinguish dormant
or dead cells from active and growing populations. We
sought to determine whether eukaryotic species are de-
tectable from microbiome transcriptomics and how
these results compare to whole metagenome DNA
sequencing.

We leveraged data from the Inflammatory Bowel Dis-
ease (IBD) Multi-omics Data generated by the Integra-
tive Human Microbiome Project (IHMP), which
generated RNA-Seq, whole-genome sequencing, viral
metagenomic sequencing, and 16S amplicon sequencing
from stool samples of individuals with Crohn’s disease,
ulcerative colitis, and no disease (IBDMDB; http://
ibdmdb.org) [49]. We analyzed samples with paired
whole metagenome sequencing and RNA sequencing. In
the IHMP-IBD dataset, there were 742 sets of paired
DNA and RNA sequencing from a sample from 104 in-
dividuals, 50 of whom were diagnosed with Crohn’s dis-
ease, 28 of whom were diagnosed with ulcerative colitis,
and 19 with no with IBD. Samples were collected longi-
tudinally, and the median number of paired samples per
individual was seven.

Microbial eukaryotes were prevalent in this dataset.
EukDetect identified eukaryotic species in 409/742
RNA-sequenced samples and 398/742 DNA-sequenced
samples. The most commonly detected eukaryotic spe-
cies were Saccharomyces cerevisiae, Malassezia species,
Blastocystis species, and the yeast Cyberlindnera jadinii
(Table S6). Eukaryotic species that were detected more
rarely were primarily yeasts from the Saccharomycete
class. We examined whether eukaryotic species were
present predominantly in DNA sequencing, RNA se-
quencing, or both, and found different patterns across
different families of species (Fig. 6). Of the 585 samples
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where we detected fungi in the Saccharomycetaceae fam-
ily, 314 of those samples were detected from the RNA-
sequencing alone and not from the DNA. A further 178
samples had detectable Saccharomycetaceae fungi in
both the DNA and the RNA sequencing, while 17 sam-
ples only had detectable Saccharomycetaceae fungi in
the DNA sequencing. Fungi in the Malasseziaceae family
were only detected in DNA sequencing (115 samples
total), and the bulk of Cyberlindnera jadinii and Debar-
yomycetaceae fungi (Candida albicans and Candida tro-
picalis) were detected in DNA sequencing alone. In
contrast, Blastocystis protists were mostly detected both
from RNA and from DNA, and Pichiaceae fungi (Pichia
and Brettanomyces yeasts) were detected in both RNA
and DNA sequencing, DNA sequencing alone, and in a
small number of samples in RNA-seq alone.

From these findings, we can infer information about
the abundance and possible functions of these microbial
eukaryotes. Blastocystis is the most frequently observed
gut protist in the human GI tract in industrialized na-
tions [50], and its high relative abundance is reflected in
the fact that it is detected most frequently from both
RNA and DNA sequencing. The much greater detection
of Saccharomycetaceae fungi from RNA than from DNA
suggests that these cells are transcriptionally active and
that while the absolute cell counts of these fungi may
not be detectable from DNA sequencing, they are ac-
tively transcribing genes and therefore may impact the
ecology of the gut microbiome. In contrast, fungi in the
Malasseziaceae family are found at high relative abun-
dances on human skin, and while they have been sug-
gested to play functional roles in the gut [51-53], the

data from this cohort suggest that the Malasseziaceae
fungi are rarely transcriptionally active by the time they
are passed in stool. Fungi in the Phaffomycetaceae,
Pichiaceae, and Debaromycetaceae families likely repre-
sent a middle ground, where some cells are transcrip-
tionally active and detected from RNA-sequencing, but
others are not active in stool. These results suggest that
yeasts in the Saccharomycete clade survive passage
through the GI tract and may contribute functionally to
the gut microbiome.

Eukaryotes in the Baltic Sea differ across environments and
salinity gradients
As the EukDetect marker database contains eukaryotic
species from all environments, it can be used to detect
eukaryotes outside of the animal gut microbiome. As
one example, we applied it to whole metagenome se-
quencing from the Baltic Sea. The Baltic Sea is one of
the world’s largest brackish bodies of water, and it con-
tains multiple geochemical gradients across its surface
and depths including salinity and oxygen gradients [54].
Influx of fresh water into the Baltic Sea creates a halo-
cline, which results in low mixing between upper oxy-
genated and lower anoxic waters. This stratification
results in an intermediate layer with a strong vertical
redox gradient, which is referred to as the redoxcline.
We examined 80 whole metagenome sequenced sam-
ples from the Baltic Sea sampled across geographic loca-
tion, depth, and geochemical characteristics for
eukaryotic species using EukDetect. Of these samples, 37
were obtained at the Linnaeus Microbial Observatory
near Oland, Sweden (referred to as LMO samples) [55].
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Fig. 7 Eukaryotes in the Baltic Sea differ across environments and salinity gradients. a Counts of observed eukaryotic groups detected in the
Baltic Sea across different environment. LMO samples were obtained at the Linnaeus Microbial Observatory near Oland, Sweden. Transect
samples were obtained from 9 different geographic locations across the Baltic Sea. Redox samples were obtained from the redoxcline. Dark-
colored bars indicate the number of samples from a given environment that contain at least one species belonging to the eukaryotic subgroup.
Light-colored bars indicate the number of samples that do not contain a given eukaryotic subgroup. b The mean salinity of samples where
eukaryotic species were detected. Bars indicate 1 standard deviation. Only species detected in 3 or more samples were included

An additional 30 samples were taken from 9 different
geographic locations across the Baltic Sea at different
depths (referred to as transect samples) and 14 samples
collected across different zones of the redoxcline (re-
ferred to as redox samples).

EukDetect identified one or more eukaryotic species in
75 or these 80 samples (Table S7, Figure S6). All sam-
ples from the LMO and the transect sets contained eu-
karyotes; 9 of the 14 Redox samples contained
eukaryotes (Figure S6). The four most frequently ob-
served species were chloroplastids (Fig. 7a); in total, 70
samples contained at least one chloroplastid species,
with species in the Mamiellophyceae class being most
widespread (Figure S7). Protists were also frequently de-
tected; stramenopiles, in particular diatoms (Figure S7),

were detected in 42 samples, while haptophytes and al-
veolates were detected in 33 and 29 samples, respectively
(Fig. 7a).

Eukaryotes detected in the redoxcline differed from
those seen in LMO and transect samples. The most fre-
quently observed species in these samples was the choa-
noflagellate Hartaetosiga  balthica (prev. Codosiga
balthica), which was detected in four redox samples
(Table S7). This choanoflagellate has been previously de-
scribed to inhabit hypoxic waters of the Baltic Sea, and
it possesses derived mitochondria believed to reflect an
adaptation to hypoxia [56]. Notably, this choanoflagellate
is the only observed eukaryotic species in samples with
zero dissolved oxygen. Two additional species exclu-
sively detected in the redoxcline are an ascomycete
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fungus Lecanicillium sp. LECO1, which was originally
isolated from jet fuel [57], and the bicosoecid marine fla-
gellate Cafeteria roenbergensis (Table S7).

Salinity is a major driver in the composition of bacterial
communities in the Baltic Sea [58]. To determine how eu-
karyotes vary across the salinity gradients in the Baltic
Sea, we examined the mean and variance of the salinity of
eukaryotes detected in three or more samples (Fig. 7b).
Some eukaryotic species are found across broad ranges of
salinities, while others appear to prefer narrower ranges.
Eukaryotes found across a broad range of salinities may be
euryhaline, or alternatively, different populations may
undergo local adaptation to salinity differences. The
eukaryote found across the broadest range of salinities,
the diatom Skeletonema marinoi, was shown previously to
undergo local adaptation to salinity in the Baltic Sea [59].
Further, one eukaryote found over a broad range of salin-
ities, Tetrahymena thermophila, readily undergoes local
adaptation in response to temperature gradients in experi-
mental evolution experiments [60]. We hypothesize that
similar processes are occurring in response to salinity gra-
dients in the Baltic Sea.

Eukaryotes in the plant leaf microbiome

EukDetect can also be used to detect eukaryotes in non-
animal host-associated microbiomes. To demonstrate
this, we analyzed 1394 samples taken from 275 wild Ara-
bidopsis thaliana leaves [61]. From these samples, we
detect 37 different eukaryotic species and 25 different
eukaryotic families (Table S8). We found pathogenic
Peronospora oomycetes in 374 samples and gall-forming
Protomyces fungi in 311 samples. Other frequently ob-
served eukaryotes in these samples are Dothideomycete
fungi in 101 samples, Sordariomycete fungi in 29 sam-
ples, Agaricomycete fungi in 26 samples, and Tremello-
mycete fungi in 10 samples. Malassezia fungi are also
detected in 14 samples, though we hypothesize that
these are contaminants from human skin. Many of the
most commonly detected microbial eukaryotic species in
these samples, including the Arabidopsis-isolated yeast
Protomyces sp. C29 in 311 samples and the epiphytic
yeast Dioszegia crocea in 10 samples, do not have anno-
tated genes associated with their genomes and have few
to no gene or protein sequences in public databases.
These taxa and others would not be identifiable by align-
ing reads to existing gene or protein databases. These re-
sults demonstrate that EukDetect can be used to detect
microbial eukaryotes in non-human host-associated
microbiomes, and reveal more information than aligning
reads to gene or protein databases.

Discussion
Here, we have presented EukDetect, an analysis pipeline
that leverages a database of conserved eukaryotic genes
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to identify eukaryotes present in metagenomic sequen-
cing. By using conserved eukaryotic genes, this pipeline
avoids inaccurately classifying sequences based on the
widespread bacterial contamination of eukaryotic ge-
nomes (Fig. 1) [22, 23]. The EukDetect pipeline is sensi-
tive and can detect fungi, protists, non-streptophyte
archaeplastida species, and non-vertebrate metazoans
present at low sequencing coverage in metagenomic se-
quencing data.

We apply the EukDetect pipeline to public datasets
from the human gut microbiome, the plant leaf micro-
biome, and an aquatic microbiome, detecting eukaryotes
uniquely present in each environment. We find that
fungi and protists are present at all sites within the lower
GI tract of adults and that the eukaryotic composition of
the gut microbiome changes during the first years of life.
Using paired DNA and RNA sequencing from the iHMP
IBDMBD project, we demonstrate the utility of EukDe-
tect on RNA data and show that some eukaryotes are
differentially detectable in DNA and RNA sequencing,
suggesting that some eukaryotic cells are dormant or
dead in the GI tract, while others are actively transcrib-
ing genes. We find that salinity gradients impact
eukaryote distribution in the Baltic Sea. Finally, we find
oomycetes and fungi in the Arabidopsis thaliana leaf
microbiome, many of which would not have been de-
tectable using existing protein databases.

One important limitation of our approach is that only
eukaryotic species with sequenced genomes or that have
close relatives with a sequenced genome can be detected
by the EukDetect pipeline. Due to taxonomic gaps in se-
quenced genomes, the EukDetect database does not
cover the full diversity of the eukaryotic tree of life. We
focused our applications on environments that have
been studied relatively well. But nonetheless, some eu-
karyotes that are known to live in human GI tracts, such
as Dientamoeba fragilis [62], have not been sequenced
and would have been missed if they were present in the
samples we analyzed. Improvements in single-cell se-
quencing [63] and in metagenomic assembly of eukary-
otes [64] will increase the representation of uncultured
eukaryotic microbes in genome databases. Because
EukDetect uses universal genes, it will be straightforward
to expand its database as more genomes are sequenced.

EukDetect enables the use of whole metagenome se-
quencing data, which is frequently generated in micro-
biome studies for many different purposes, for routine
detection of eukaryotes. Major limitations of this ap-
proach are that eukaryotic species are often present at
lower abundances than bacterial species and thus some-
times excluded from sequencing libraries, and that
EukDetect is limited to species with sequenced genomes
or transcriptomes. Marker gene sequencing, such as 18S
for all eukaryotes or ITS for fungi, is agnostic to whether
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a species has a deposited genome or transcriptome and
can detect lower-abundance taxa than can whole meta-
genome sequencing. However, unlike whole metagen-
ome sequencing, these approaches can be limited in
their abilities to distinguish species, due to a lack of dif-
ferences in ribosomal genes between closely related spe-
cies and strains. Further, marker gene sequencing
cannot be used for downstream analysis such as detect-
ing genetic variation or assembling genomes. Whole
metagenome sequencing and marker gene sequencing
can therefore function as complementary approaches for
interrogating the eukaryotic portion of microbiomes.

Conclusions

Taken together, the work reported here demonstrates
that eukaryotes can be effectively detected from whole
metagenome sequencing data with a database of con-
served eukaryotic genes. As more metagenomic sequen-
cing data becomes available from host-associated and
environmental microbiomes, tools like EukDetect will
reveal the contributions of microbial eukaryotes to di-
verse environments.

Methods

Identifying universal eukaryotic marker genes in

microbial eukaryotes

Microbial eukaryotic genomes were downloaded from
NCBI GenBank for all species designated as “Fungi,”
“Protists,” “Other,” non-vertebrate metazoans, and non-
streptophyte archaeplastida species. One genome was
downloaded for each species; priority was given to ge-
nomes designated as “reference genomes” or “represen-
tative genomes”. If a species with multiple genomes did
not have a designated representative or reference gen-
ome, the genome assembly that appeared most contigu-
ous was selected. In addition to the GenBank genomes,
314 genomes and transcriptomes comprised of 282 pro-
tists, 30 archaeplastida species, and 2 metazoans curated
by the EukProt project were downloaded [31].

To identify marker genes in eukaryotic genomes, we
ran the Benchmarking Universal Single-Copy Orthologs
(BUSCO) version 4 pipeline on all eukaryotic genomes
with the Eukaryota OrthoDB version 10 gene models
(255 universal eukaryote marker genes) using the Augus-
tus optimization parameter (command --long) [30, 35].
To ensure that no bacterial sequences were erroneously
annotated with this pipeline, we also ran BUSCO with
the same parameters on a set of 971 common human
gut bacteria from the Culturable Genome Reference [26]
and found that this pipeline annotated 41 of the 255 uni-
versal marker genes in one or more bacteria. We dis-
carded these predicted markers from each set of BUSCO
predicted genes in eukaryotes. While these marker genes
comprised ~16% of the total marker genes, removing
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them from the database reduced the number of simu-
lated reads from the CGR genomes that align to the
eukaryotic marker genes from 28,314 to zero. The 214
marker genes never predicted in a bacterial genome are
listed in Table S1.

Constructing the EukDetect database

After running the BUSCO pipeline on each eukaryotic
genome and discarding gene models that were annotated
in bacterial genomes, we extracted full-length nucleotide
and protein sequences from each complete BUSCO
gene. Protein sequences were used for filtering purposes
only. We examined the length distribution of the pre-
dicted proteins of each potential marker gene, and genes
whose proteins were in the top or bottom 5% of length
distributions were discarded. We masked simple repeti-
tive elements with RepeatMasker version open-4.0.7 and
discarded genes where 10% or more of the sequence was
masked.

To further reduce bacterial contamination, we simu-
lated 2 million sequencing reads from each of 52,515 en-
vironmental bacterial metagenome assembled genomes
from the GEM catalog [65] and 4644 human-associated
bacterial metagenome assembled genomes from the
UHGG catalog [66], and aligned these reads to the nu-
cleotide marker gene set. In total, bacterial-simulated
reads aligned to portions of 8 eukaryotic marker genes.
These 8 marker genes were discarded.

In addition to bacterial contamination, eukaryotic ge-
nomes can erroneously contain sequences from other
eukaryotic genomes [23]. To minimize the impact of this
type of contamination, we performed a modified alien
index search [67, 68] for all marker genes. The protein se-
quences of all marker genes were aligned to the NCBI nr
database using DIAMOND [69]. To calculate the alien
index (AI) for a given gene, an in-group lineage is chosen
(for example, for the fungus Saccharomyces cerevisiae, the
phylum Ascomycota may be chosen as the in-group).
Then, the best scoring hit for the gene within the group is
compared to the best scoring hit outside of the group (for
S. cerevisiae, to all taxa that are not in the Ascomycota
phylum). Any hits to the recipient species itself are

maxO _ maxG

skipped. The Al is given by the formula: Al = ™ 5

, where maxO is the bitscore of the best-scoring hit out-

side the group lineage, max@ is the bitscore of the best-
scoring hit inside the group lineage, and S is the max-
imum possible bitscore of the gene (i.e., the bitscore of the
marker gene aligned to itself). Marker genes where the Al
was equal to 1, indicating that there is no in-group hit and
the best out-group hit is a perfect match, were discarded.
After filtering, we used CD-HIT version 4.7 to collapse
sequences that were greater than 99% identical [70]. For
a small number of clusters of genomes, all or most of
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the annotated BUSCO genes were greater than 99%
identical. This arose from errors in taxonomy (in some
cases, from fungi with a genome sequence deposited
both under the anamorph and teleomorph name) and
from genomes submitted to GenBank with a genus des-
ignation only. In these cases, one genome was retained
from the collapsed cluster. Some collapsed genes were
gene duplicates from the same genome which are desig-
nated with the flag “SSCollapse” in the EukDetect data-
base, where “SS” designates “same species”. Genes that
were greater than 99% identical between species in the
same genus were collapsed, re-annotated as representing
NCBI Taxonomy ID associated with the last common
ancestor of all species in the collapsed cluster, and anno-
tated with the flag “SGCollapse”. Genes that were col-
lapsed where the species in the collapsed cluster came
from multiple NCBI Taxonomy genera were collapsed,
annotated as representing the NCBI Taxonomy ID asso-
ciated with the last common ancestor of all species in
the collapsed cluster, and annotated with the flag
“MGCollapse”. The EukDetect database is available from
Figshare (https://doi.org/10.6084/m9.figshare.12670856.
v7). A smaller database of 50 conserved BUSCO genes
that could potentially be used for phylogenetics is avail-
able from Figshare (https://doi.org/10.6084/m9.figshare.
12693164.v2). These 50 marker genes are listed in Table
S3.

The EukDetect pipeline

The EukDetect pipeline uses the Snakemake workflow
engine [71]. Sequencing reads are aligned to the EukDe-
tect marker database with Bowtie2 [72]. Reads are fil-
tered for mapping quality greater than 30, and
alignments that are less than 80% of the read length of
the gene are discarded. Aligned reads are then filtered
for sequence complexity with komplexity (https://github.
com/eclarke/komplexity) and are discarded below a
complexity threshold of 0.5. Duplicate reads are re-
moved with samtools [73]. Reads aligning to marker
genes are counted, and the percent sequence identity of
reads is calculated. The marker genes in the EukDetect
database are each linked to NCBI taxonomy IDs. Only
taxonomy IDs where more than 4 reads align to 2 or
more marker genes are reported in the final results by
EukDetect.

Further quality filtering is subsequently performed to
reduce false positives arising from various off-target read
alignment scenarios (i.e., where sequencing reads origin-
ate from one taxon but align to marker genes belonging
to another taxon). One cause of off-target alignment is
when a marker gene is present in the genome of the off-
target species but not in the genome of the source spe-
cies, due to a gap in the source species’ genome assem-
bly or from the removal of a marker gene by quality
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control during database construction. A second cause of
off-target alignment is when reads originating from one
species align spuriously to a marker gene in another spe-
cies due to sequencing errors or high local similarity be-
tween genes.

When more than one species within a genus contains
aligned reads passing the read count and marker count
filters described above, EukDetect examines the align-
ments to these species to determine if they could be off-
target alignments. First, species are sorted in descending
order by maximum number of aligned reads and marker
gene bases with at least one aligned read (i.e., marker
gene coverage). The species with the highest number of
aligned reads and greatest coverage is considered the
primary species. In the case of ties, or when the species
with the maximum coverage and the maximum number
of reads are not the same, all tied species are considered
the primary species set. Next, each additional species in
the genus is examined to determine whether its aligned
sequencing reads could be spurious alignments of reads
from any of the species in the primary set. If we do not
find evidence that a non-primary species originated from
off-target alignments (details below), it is retained and
added to the set of primary species.

The first comparison to assess whether a non-primary
species could have arisen from off-target alignment is
determining whether all of the marker genes with
aligned reads in the non-primary species are in the pri-
mary species’ marker gene set in the EukDetect database.
If not, it is likely that the primary species has those
genes but they are spuriously missing from the database
due to genome incompleteness or overly conservative fil-
tering in the BUSCO pipeline. In this case, the non-
primary species is designated a spurious result and dis-
carded. Next, for shared marker genes, the global per-
cent identity of all aligned reads across the entire gene is
determined for both species. If more than half of these
shared genes have alignments with an equivalent or
greater percent identity in the non-primary compared
with the primary species, the non-primary species is
considered to be a true positive and added to the set of
primary species. Otherwise, it is discarded. In cases
where five or fewer genes are shared between the pri-
mary and non-primary species, all of the shared genes
must have an equivalent or greater percent identity in
the non-primary species for it to be retained. This
process is performed iteratively across all species within
the genus.

Simulations demonstrated that in most cases, this
method prevents false positives from single-species sim-
ulations and accurately detects mixtures of closely re-
lated species (Fig. 3¢, d). However, in some cases where
a species is very close to the detection limit and the
other species is present at a high abundance, EukDetect
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may not detect the low abundance species. EukDetect
retains files with alignments for all taxa before any filter-
ing occurs (see Figure S1) for users who wish to examine
or differently filter them. We recommend exploring
these unfiltered results when a specific low-abundance
species is expected in a microbiome or in cases where
two very closely related species are thought to be present
in a sample at different abundances.

Results are reported both as a count, coverage, and per-
cent sequence identity table for each taxonomy IDs that
passes filtering and as a taxonomy of all reported reads
constructed with ete3 [74]. A schematic of the EukDetect
pipeline is depicted in Figure S1.

Simulated reads

Paired-end Illumina reads were simulated from one
human-associated fungus (Candida albicans) and one soil
fungus (Trichoderma harzianum), one human-associated
protist (Entamoeba dispar) and one environmental protist
(the widely distributed ocean haptophyte Emiliania hux-
leyi), and one human-associated helminth (Schistosoma
mansoni) and one plant pathogenic nematode (Globodera
rostochiensis) with InSilicoSeq [75]. Each species was simu-
lated at 19 coverage depths: 0.0001x, 0.001x, 0.01x, 0.02x,
0.03x, 0.04x, 0.05x, 0.1x, 0.25x, 0.5x, 0.75x, 1x, 2x, 3x, 4x,
and 5x. Each simulation was repeated 10 times. Simulated
reads were processed with the EukDetect pipeline.

Analysis of public datasets

All sequencing data and associated metadata were taken
from public databases and published studies. Sequencing
data for determining eukaryotic GI tract distribution was
downloaded from the European Nucleotide Archive
under accession PRJEB28097 [41, 42]. Sequencing data
and metadata for the DIABIMMUNE three country co-
hort was downloaded directly from the DIABIMMUNE
project website (https://diabimmune.broadinstitute.org/
diabimmune/three-country-cohort) [46]. DNA and RNA
sequencing from the IHMP IBDMDB project was down-
loaded from the NCBI SRA under Bioproject
PRJNA398089 [49]. Sequencing data from the Arabidop-
sis thaliana leaf microbiome was downloaded from the
European  Nucleotide  Archive under accession
PRJEB31530 [61]. Sequencing data from the Baltic Sea
microbiome was downloaded from the NCBI SRA under
accessions PRINA273799 and PRJEB22997 [55, 76].

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-021-01015-y.

Additional file 1: Figure S1. Percentage of simulated bacterial reads
from 971 human gut microbiome bacteria that align to 2,449 eukaryotic
genomes (see Figure 1a).
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Additional file 2: Figure S2. (A) Number of aligned reads to a species
versus the median coverage of observed marker genes for that species.
Median coverage and aligned read counts was calculated for each
species within each of the 7 datasets analyzed in this work (see
Methods). Red box indicates region depicted in (B).

Additional file 3: Figure S3. Schematic of the EukDetect pipeline. (PDF)

Additional file 4: Figure S4. Distribution of Blastocystis in the
gastrointestinal tract taken from biopsies. Fungi were detected at all sites
in the large intestine and terminal ileum, in both lumen and mucosal
samples. Slashes indicate no Blastocystis detected in any samples from
that site. (PDF)

Additional file 5: Figure S5. Distribution of fungal species in the
gastrointestinal tract taken from biopsies. Fungi were detected at all sites
in the large intestine in both lumen and mucosal samples, and in the
lumen of the terminal ileum. One biopsy of gastric antrum mucosa in the
stomach contained a Malassezia yeast. Slashes indicate no fungi detected
in any samples from that site. (PDF)

Additional file 6: Figure S6. (A) Counts of eukaryotic taxa observed in
each Baltic Sea sample. (B) Counts of detected chloroplastid subgroups in
different environments. (C) Counts of detected stramenopile subgroups
in different environments. (D) Counts of detected metazoan subgroups in
different environments.

Additional file 7: Table S1. OrthoDB v10 Eukaryota marker genes that
were not predicted in any of 971 bacterial genomes. (CSV)

Additional file 8: Table S2. Genomes with species-level marker genes
in the EukDetect database. (CSV)

Additional file 9: Table S3. Subset of 50 conserved marker genes
found broadly across microbial eukaryotes. (CSV)

Additional file 10: Table S4. Eukaryotes in gut biopsy and stool
samples. (CSV)

Additional file 11: Table S5. Eukaryotes in DIABIMMUNE three-country
cohort samples. (CSV)

Additional file 12: Table S6. Eukaryotes in IHMP IBD samples. (CSV)
Additional file 13: Table S7. Eukaryotes in Baltic Sea samples. (CSV)

Additional file 14: Table S8. Eukaryotes from Arabidopsis thaliana leaf
samples. (CSV)
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