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Abstract

Background: Microbial communities that live in and on the human body play a vital role in health and disease.
Recent advances in sequencing technologies have enabled the study of microbial communities at unprecedented
resolution. However, these advances in data generation have presented novel challenges to researchers attempting
to analyze and visualize these data.

Results: To address some of these challenges, we have developed animalcules, an easy-to-use interactive
microbiome analysis toolkit for 16S rRNA sequencing data, shotgun DNA metagenomics data, and RNA-based
metatranscriptomics profiling data. This toolkit combines novel and existing analytics, visualization methods, and
machine learning models. For example, the toolkit features traditional microbiome analyses such as alpha/beta
diversity and differential abundance analysis, combined with new methods for biomarker identification are. In
addition, animalcules provides interactive and dynamic figures that enable users to understand their data and
discover new insights. animalcules can be used as a standalone command-line R package or users can explore their
data with the accompanying interactive R Shiny interface.

Conclusions: We present animalcules, an R package for interactive microbiome analysis through either an
interactive interface facilitated by R Shiny or various command-line functions. It is the first microbiome analysis
toolkit that supports the analysis of all 16S rRNA, DNA-based shotgun metagenomics, and RNA-sequencing based
metatranscriptomics datasets. animalcules can be freely downloaded from GitHub at https://github.com/
compbiomed/animalcules or installed through Bioconductor at https://www.bioconductor.org/packages/release/
bioc/html/animalcules.html.
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Background

The complex role of the gut microbiota in shaping
human health and disease has been intensely investi-
gated and explored in recent years, largely due to the
availability of culture-independent molecular-based
high-throughput sequencing technologies. It is estimated
that every human host coexists with an average of 500—
1000 different bacterial species [1-3] and research has
discovered that the microbiome is associated with host
lifestyle and diet [4, 5] as well as many diseases such as
obesity, type 2 diabetes [6] and cancer [7]. New sequen-
cing technology brings not only more data and capacity
for microbiome research but also new challenges for
data analytics and interpretation. Improved tools and
methods for microbiome data analytics can enhance our
ability to understand the roles of microbes in diverse en-
vironments, particularly understanding how they interact
with each other as well as their human hosts.

Current microbiome analysis typically consists of two
important components: upstream community profiling
(e.g., what is the abundance of all microbes in each sam-
ple?) and downstream high-level analysis (e.g., alpha/beta
diversity analysis, differential abundance analysis) [8]. In
recent years, evolving data analytics, visualization, and
machine learning methods have been gradually applied
to the development of many software tools and web
servers for microbiome data analysis covering these two
components [9-13]. However, new techniques and se-
quencing technologies have steepened the learning curve
for scientific researchers applying new methods for
microbiome data analysis and interpretation [14]. Fur-
thermore, existing tools are mostly dedicated to one as-
pect of analysis and/or are restricted to analyzing one
type of microbiome data. For example, while there are
many tools and workflows for analyzing 16S rRNA data,
there are no existing tools and pipelines tailored for
comprehensively addressing the analytical needs of
RNA-based metatranscriptomics.
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Table 1 gives a summary of the functions of these
tools with respect to the analysis needs of microbiome
data. For marker gene-based data such as 16S rRNA,
QIIME 1I [15] and Mothur [16] provide a user interface
and a plethora of analytic and visualization tools, but do
not provide support for metagenomic and metatran-
scriptomic data. Vegan [17] provides a wide variety of
functions for metagenomic data visualization, but lacks a
user-interface, and tools for host and microbial read
alignment, differential expression, etc. BioBakery [18]
provides a comprehensive suite of tools for most meta-
genomic analysis needs for microbial communities, but
relies on a small set of markers to identify species, and
does not address host or microbial expression. Micro-
biome helper [19] is a collection of scripts in multiple
languages to facilitate interaction and interoperability
microbiome and metagenomic tools, but does not pro-
vide interactive visualizations or a graphical user inter-
face. The microbiome package in R [20] provides
command-line workflows for a wide variety of the meta-
genomic data analysis tasks. Phyloseq [21] has a Shiny
interface with tools for annotation, visualization, and di-
versity analysis, but does not provide abundance analysis,
and is no longer actively maintained by its developers.
Metavizr [22] provides an interface and suite of func-
tions for specific metagenomic visualizations. None of
these methods are comprehensive or specifically address
the needs for multiple types of 16S rRNA, metagenomic
or metatranscriptomic data. Therefore, there are no
existing toolkits that contain a complete workflow for
microbiome data analysis and interpretation (with or
without a graphical user interface).

Here, we present animalcules, an interactive analysis
and visualization toolkit for microbiome data. animal-
cules supports the importing of microbiome profiles in
multiple formats such as a species count table, an
organizational taxonomic unit (OTU) or amplicon se-
quence variants (ASV) counts table, or Biological

Table 1 Comparison of animalcules and other popular microbiome analysis tools

Biobakery Vegan Mothur

Microbiome Metavizr

Microbiome helper Qiime2 Phyloseq animalcules

Filtering and data summary v v v
Interactive visualization

Dimension reduction v v
Differential abundance analysis v v
Diversity analysis v v v
Support for 165 rRNA data v v v v
Support for total RNA-seq data v

Biomarker identification

Interface and command-line

Language/platform Python R R/Web R

v v v v
v v v
v v v v v
v v v v v
v v v v v
v v v v v
v
v v
v v v

R R/Python/Perl Python R R
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Observation Matrix (BIOM) format [23]. These formats
could be generated from common microbiome data
sources and analytical tools including 16S rRNA, meta-
genomics, and metatranscriptomic data. Once data is
uploaded, animalcules provides a useful data summary
and filtering function where users can view and filter
their dataset using sample metadata, microbial preva-
lence, or relative abundance. Filtering the data in this
way can significantly reduce the time spent performing
preprocessing and downstream analysis tasks. For data
visualizations, such as relative abundance bar charts and
3D dimension reduction plots (PCA/PCoA/tSNE/
UMAP), animalcules supports interactive operations
where users can check the sample/microbe information
on each data point and adjust the figure format as
needed, which is helpful for recognizing elements or
data patterns when the sample size or number of mi-
crobes is large. Aside from common diversity analysis,
differential abundance analysis, and dimension reduc-
tion, animalcules supports biomarker identification by
training a logistic regression or random forest model
with cross-validated biomarker performance evaluation.
animalcules provides a graphical user interface (GUI)
through R/Shiny, which can be used even by users with-
out prior programming knowledge, while experienced
programmers can choose the command-line based R
package or a combination of both.

Implementation

Data structures and software design

All data handling tasks and functions in animalcules are
based upon and work with the MultiAssayExperiment
(MAE) data structure [24]. The MAE class is a standard
data structure for multi-omics experiments with efficient
data retrieval and manipulation methods that support
the linkage of samples across multiple assays. The MAE
object has three key components: colData (contains sub-
ject or cell line level metadata), ExperimentList (stores
data for one or more assays), and sampleMap (relates
experiments and samples). In animalcules, three tables
(sample metadata table, microbe count table, and tax-
onomy table) as well as the mapping relationship be-
tween them are stored in the MAE class. It ensures
correct alignment of assays and subjects, and provides
coordinated subsetting of samples and features. Add-
itionally, it is easy to convert to or from a MAE object
from the SummarizedExperiment class, which has been
applied in many Bioconductor packages, enabling
smooth interaction between other tools [24]. One im-
portant advantage of applying the MAE class in the
microbiome research field is its extensible design sup-
porting many multi-omics layers of data. Multi-omics is
becoming a trend in the field, e.g, studying host-
microbe interactions by combining host gene expression
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data and microbial abundance data. animalcules is the
first software tool for microbiome analysis to integrate
the MAE object and takes advantage of its unique prop-
erties by allowing the user to store microbial data, host
transcriptomics, metabolomics, as well as taxonomy in-
formation within the same object (currently animalcules
only supports microbiome analysis, but the MAE struc-
ture enables future development that can address these
data types. Additionally, the MAE enables integration
with other tools that do manage these data types, e.g.
host transcriptomics). The MAE object can also store
processed versions of various assays (e.g., dimension-
reduced data) which allows for efficient manipulation
and analysis downstream. This approach advances stand-
ard microbiome analysis and data sharing by efficiently
integrating the various multi-omics datasets required.

Lastly, because all of the data is integrated within a
single R object, users can serialize the data to a single file
which can be used for further analysis or share with
other researchers. For example, after processing and
analyzing their data through the Shiny application, users
can export their datasets in the form of a serialized
MAE object file, which can be later uploaded to Shiny or
imported in R for further exploration through the ani-
malcules command line functions or other methods. In-
tegrating the MAE object brings efficiency, scalability,
and reproducibility to microbiome analysis through
animalcules.

Installation and usage

animalcules requires R > 4.0.0 and can be installed
through Github or Bioconductor. After loading the ani-
malcules library in R, users can choose between launch-
ing the R Shiny GUI (via the run_animalcules()
function), or using the available command-line functions
directly. In the GUI, users can choose from the following
tabs: Upload (select an example dataset, upload a new
dataset, or load a previously uploaded dataset), Summary
and Filter (understand the data distribution and filter
the data by microbial features or sample phenotypes),
Abundance (relative abundance bar charts, heatmaps,
and individual microbes boxplots), Diversity (statistical
tests and boxplots for alpha diversity and beta diversity),
Dimension Reduction (PCA, PCoA, tSNE, and UMAP),
Differential Abundance (microbial differential abun-
dance between sample groups), and Biomarker (identify
predictive microbial biomarkers). Common R functions
in the package are summarized in Table 2. A detailed tu-
torial on how to use the command-line version of ani-
malcules for microbiome data analysis can be found at
https://compbiomed.github.io/animalcules-docs/articles/
animalcules.html. In addition, we have released a Docker
container that comprises our animalcules package and
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Table 2 Table of exported functions and their descriptions available through the animalcules R package

Data and interface

run_animalcules()

Data summary and manipulation

filter_summary_bar_density()

filter_summary_pie_box()

filter_categorize()
counts_to_logcpm()
counts_to_relabu()
upsample_counts()
find_taxonomy()
find_taxon_mat()
mae_pick_samples()

mae_pick_organisms()

Sample level visualization

relabu_barplot()
relabu_boxplot()
relabu_heatmap()
dimred_pca()
dimred_pcoa()
dimred_umap()
dimred_tsne()

Alpha and beta diversity
diversities()
do_alpha_div_test()
alpha_div_boxplot()
diversity_beta_test()
diversity_beta_boxplot()

diversity_beta_heatmap()

Differential abundance analysis

differential_abundance()
Biomarker discovery

find_biomarker()

Initiates a local instance of the animalcules Shiny application

Visualize sample/microbe data with a bar plot (categorical) or density plot (continuous)
Visualize sample/microbe data with a pie chart (categorical) or box plot (continuous)
Convert continuous variables into a various number of factors

Covert counts table to a log counts per million table

Covert counts table to a relative abundances table

Up-sample counts table to a higher taxon level

Find taxonomy for unlimited ids

Find taxonomy information matrix for unlimited ids

Isolate or discard samples from a multi-assay experiment object

Isolate or discard microbes from a multi-assay experiment object

Generate stacked bar plots of sample and group level microbe relative abundances
Generate box plots comparing organism prevalence across groups of samples
Generate a sample by microbe heatmap of counts

Return a 2D/3D scatter plot for dimensionality reduction through PCA

Return a 2D/3D scatter plot for dimensionality reduction through PCoA

Return a 2D/3D scatter plot for dimensionality reduction through UMAP

Return a 2D/3D scatter plot for dimensionality reduction through t-SNE

Return alpha diversity

Compute various statistical tests for alpha diversity

Generate box plots comparing alpha diversity across groups of samples
Compute various statistical tests for beta diversity

Generate box plots comparing beta diversity across groups of samples

Generate a heatmap comparing beta diversity across groups of samples

Performs differential abundance analysis across groups of samples

Identifies microbes as potential biomarkers for groups of samples

all dependencies, which is available at: https://github.

com/compbiomed/animalcules.

Data upload and output

animalcules offers multiple options for importing data
into the GUI or working with the MAE object for com-
mand line analysis. These include simple tab-delimited
OTU, ASV, or other count matrices, typically generated
by other tools such as QIIME II [15] or PathoScope [25],
or using a MAE object available in the user’s session or

Six of the data importing options are described below:

1. Count Table or OTU File (without taxonomy): This
is the simplest option that enables the upload of an
out, ASV, or count table that has genomes/OTUs
in the rows and samples in the columns. All
functions and tools can be used for filtering,
visualization, analysis of the data, except the
individual microbiomes or OTUs cannot be
aggregated at different levels.

in a file from a previous session of animalcules. Regard- 2. Count Table or OTU File (with taxonomy): This

less of how the data is imported, the assay/OTU data
will be available in the “Assay Viewer” section of the Up-

load tab.

option provides an extension of the previous but
allows for associating the OTUs/ASVs with
taxonomy information and the aggregation of
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microbes at different levels (e.g., species, genus,
phylum, etc.). This information can be provided as
a separate table, with a row for each OTU in the
table. In addition, users can provide NCBI
taxonomy IDs or NCBI accession numbers [26] and
animalcules will automatically generate the
taxonomy table using the tools available in the
taxize R package [27]. The taxonomy table will be
stored as a separate assay in the MAE object, but
will be linked to the rows of the OTU table through
internal functions. The taxonomy table will be
available in the “Assay Viewer” section in the
Upload tab.

animalcules Object File: Users can also directly
upload a MAE object into the toolkit or workflow.
A MAE object could be generated from a previous
animalcules session (stored as an .rds file),
converted from the output of any pre-processing
pipeline, or generated from some other source. This
option allows for the efficient storage and re-upload
of data from a previous session, or enables the
interaction between the command-line version and
the GUI version of animalcules. For example, users
can conduct part of the analysis in the GUI, save
the results, and continue their analysis using
command-line tools (inside and outside of animal-
cules), and then re-upload the data to the GUI for
further analysis or visualization. This feature enables
compatibility and interactivity that is not available
in other microbiome GUI or command-line
toolkits.

Pathoscope Output Files: animalcules enables the
direct upload of files generated from the PathoScope
pipeline [25]. These files are generally single tab-
delimited tables for each sample in the dataset, and
contain NCBI taxonomy IDs for individual mi-
crobes. animalcules combines and converts these
files into a MAE object, and uses the taxize package
to generate the taxonomy table.

BIOM and other formats: The standard Blological
Observation Matrix (BIOM) format is a
commonly used format for representing samples
by observation contingency tables [23]. The
BIOM format is commonly used by QIIME II
pipeline tools. We used the biomformat R
package [28] for uploading a BIOM file into
animalcules as well as outputting a BIOM file
from animalcules. This enables interactivity
between animalcules and other microbiome
analysis tools such as QIIME II. Furthermore, we
have included instructions in our help
documentation on how to convert between
animalcules and Phyloseq objects [21] to enhance
interoperability between these tools.
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6. Example Data: In animalcules, we have three pre-
defined example datasets, including a simulated
dataset, a Tuberculosis 16S rRNA profiling dataset,
and an Asthma metatranscriptomic dataset. These
example datasets allow users to try all the features
and functions in animalcules before users upload
their own data, making it easy to learn how to use
animalcules and understand what analyses they can
perform.

Data filtering and summary

The animalcules Shiny interface provides summary sta-
tistics to help users efficiently and effectively assess data
quality and filter low-quality microbes and samples.
Users can visualize the total number of reads for each
organism through a scatter and density plot and filter
organisms based on average read number, relative abun-
dance, or prevalence. Additionally, users can visualize
sample covariates through a pie and bar plot for categor-
ical covariates or a scatter and density plot for continu-
ous covariates (Fig. 1). Samples can be filtered based on
one or more covariates. Finally, users have the option to
discard specific samples and/or organisms. As samples
and organisms are removed through any of the filtering
methods, summary statistics and plots are automatically
refreshed to display any changes that may occur. If
changes have been made, users may download the modi-
fied data for later use. Visualizations of sample and mi-
crobe data before and after filtering are generated with
animalcules:filter_summary_bar_density() and animal-
cules:filter_summary_pie_box() functions. For users who
wish to inspect their data before or after filtering, ani-
malcules enables users to view and download five types
of assays generated including a count table, relative
abundance table, logCPM table, taxonomy table, and an-
notation table. In addition, these tables can also be
accessed directly from the MAE object through standard
R command line tools.

Data visualization

A typical analysis involves visualization of microbe abun-
dances across samples or groups of samples. animalcules
implements three common types of visualization plots
including stacked bar plots, heatmaps, and box plots.
The stacked bar plots, generated with animalcules:
relabu_barplot() are used to visualize the relative abun-
dance of microbes at a given taxonomic level in each
sample, represented as a single bar (Fig. 2). Bars can be
color-labeled by one or more sample attributes and sam-
ples can also be aggregated by these attributes via sum-
ming microbe abundances within groups. This is an
efficient way for researchers to identify sample- or
group-level patterns at various taxonomic levels. Users
also have the option to sort the bars by sample attributes
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or by the abundance of one or more organisms. There is
also a convenient method for isolating or removing sam-
ples. With this tool, users can quickly scan through dif-
ferent combinations of sample attributes and taxon
levels for differential abundance in one or more groups,
outliers in terms of community profile, as well as sample
clusters not represented by known attributes.

Alternatively, users can investigate these questions
through the heatmap visualization, which represents a
sample-by-organisms matrix that can be visualized at
different taxonomic levels. Many of the previously men-
tioned options are also compatible with the heatmap
such as color-labeling samples, sorting matrix rows by
attributes or organisms, and isolating or discarding or-
ganisms and samples. After identifying potential differ-
entially abundant microbes, users can use the boxplot
visualization to directly compare the abundance of one
or more organisms between categorical attributes. Or-
ganisms can be chosen from a given taxonomic level and
abundance can be represented as either counts, logCPM,
or relative abundance. This plot can also be generated in
the command line using the animalcules::relabu_heat-
map() function.

Diversity analysis

Alpha diversity, which describes the richness and even-
ness of a microbial community, is a vital indicator and
measurement in microbiome analysis [29]. animalcules
provides an interactive box plot comparison of alpha di-
versity between selected groups of samples. Both
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taxonomy levels and alpha diversity metrics (e.g., Shan-
non, Gini Simpson, Inverse Simpson, unique organisms)
can be changed and diversity can be calculated at mul-
tiple taxonomic levels [30, 31]. Alpha diversity values for
each sample can be output into the MAE object or as
separate tables or files. Users can also conduct alpha di-
versity statistical tests including Wilcoxon rank-sum test,
T test, and Kruskal-Wallis test [32, 33]. The alpha diver-
sity boxplot as well as the statistical tests could be gener-
ated in the command line using the animalcules::alpha_
div_boxplot() function and animalcules::do_alpha_div_
test() function.

On the other hand, one can use distances between
each microbial community sample, or so-called beta di-
versity, as another key metric to consider for each ana-
lysis. Users can plot the beta diversity heatmap by
selecting different beta diversity dissimilarity metrics in-
cluding Bray-Curtis [34], Jaccard index [35], or
weighted/unweighted unifrac. Users can also conduct
beta diversity statistical testing between groups including
PERMANOVA [36], Wilcoxon rank-sum test, or
Kruskal-Wallis test (Fig. 3). The beta diversity compari-
son boxplot as well as the statistical tests can be gener-
ated in the command line using the animalcules:
diversity_beta_boxplot() function and animalcules::diver-
sity_beta_test() function.

Dimension reduction
A crucial step in any data analysis workflow is to
visualize and summarize highly variable data in a lower-
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Within negative Between 2 conditions




Zhao et al. Microbiome (2021) 9:76

dimensional space (Fig. 4). In animalcules, we imple-
ment four commonly used dimensionality reduction
techniques including principal components analysis
(PCA), principal coordinates analysis (PCoA), t-
distributed stochastic neighbor Eebedding (t-SNE), and
uniform manifold approximation and projection
(UMAP) [37-40]. Both PCA and PCoA project samples
onto a new set of axes whereby a maximum amount of
variation is explained by the first, second, and third axes
while t-SNE and UMAP are non-linear methods for
mapping data to a lower-dimensional embedding. Di-
mension reduction values for the dataset can be output
into the MAE object or as separate tables or files.

The original data used in each dimensionality reduc-
tion method can be either counts, logCPM, or relative
abundance, and can be visualized using a 2D or 3D (if
two dimensions of explained variance are inadequate)
scatter plot. Data points can be colored by continuous
sample attributes and shaped by categorical attributes.
With multiple dimensionality reduction techniques and
methods for data normalization, users can rapidly
visualize the global and local structure of their data,
identify clustering patterns across one or more condi-
tions, as well as detect sample outliers. Dimensionality
reduction can also be carried out in the command line
using the animalcules::dimred_pca() function for PCA,
animalcules::dimred_pcoa() function for PCoA, animal-
cules::dimred_tsne() function for t-SNE, and animal-
cules::dimred_umap() function for UMAP.
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Differential abundance analysis

There are many available tools for differential abundance
estimation and inference. For example, generalized linear
model (GLM)-based methods including DESeq2 [41],
edgeR [42], and limma [43] model count based micro-
biome data or gene expression data by a negative bino-
mial distribution (DESeq2 and edgeR) or using log-
counts (per million) and a Gaussian distribution (limma)
assumption. Core microbes that have different abun-
dance in different groups could be identified. Here in
animalcules, we provide a DESeq2-based differential
abundance analysis (Fig. 5). With the command-line
function animalcules::differential_abundance(), which by
default uses the “DESeq2” method. Users can choose the
target variable, covariate variable, taxonomy level, mini-
mum count cut-off, and an adjusted p value threshold.
The analysis report will output not only the adjusted p
value and log2-fold-change of the microbes but also the
percentage, prevalence, and the group size-adjusted fold
change. Besides using DESeq2, in animalcules we also
support differential abundance analysis with limma,
which requires users to specify in the command-line
function as: animalcules::differential_abundance
(method="limma’).

Biomarker identification

One unique feature of animalcules is the biomarker iden-
tification module. Users can choose either a logistic re-
gression [44] or a random forest [45] classification model
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Fig. 4 animalcules Dimension Reduction tab. In the subtab panel, the user could select between PCA, PCoA, t-SNE, and UMAP. Here in the PCA
subtab, the user could choose the taxonomy level, color by variable, and in advanced options, the user could also specify up to three PCs for

® negative
® positive

® ‘
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eo o
o o 9*
© 2 @
% e °
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DESeq2 limma

Note: For multi-level target viariable, all significant results will be printed if existed

Show entries Search:

Taxonomy Level

genus -
Group Size
microbe padj pValue log2FoldChange positive negative prevalence adjusted fold
Select condition change
DISEASE M 1 Paracoccus 0.00529 0.000212 293  19/28 14/22 66.00% 1.07
@ Advanced Options 2 Acinetobacter 0073 0.00584 116 28/28 22/22 100.00% 1
. . 3 Schizosaccharomyces 0.176 0.0211 -0.772  28/28 22/22 100.00% 1
Select (multiple) covariates
4 Corynebacterium 0.323 0.0544 212 20/28 11/22 62.00% 1.43
5} Dialister 0.323 0.0646 -4 5/28 5/22 20.00% 1274
Minumum count cut-off
6 Pestivirus 0.348 0.0961 -0.651 27/28 22/22 98.00% 1.04
500
7 Rhizoctonia 0.348 0.0974 -29  6/28 6/22 24.00% 1.27
Choosepadicuto Showing 1 to 7 of 7 entries Previous Next
0.5
Run

Fig. 5 animalcules Differential Abundance tab. In the subtab panel, users select between DESeg2 and limma. In the left panel, users specify
taxonomy level, target condition, covariate variables, count cut-off, and adjusted p-value threshold. In the right panel, a detailed differential
abundance result table is shown

Biomarker Importance plot CV ROC plot

Taxonomy Level

genus v Malassezia
Select Target Condition: Etioma
DISEASE ¥ Dialister
g
E Herbaspirillum
Number of CV nfolds 8
5
3 Coccodinium

Acinetobacter
Number of CV repeats

Actinomyces

3

importance

Top biomarker proportion

0.1

Select Model

logistic regression v

Note: we recommend to use this section
only when sample size is larger than
100. Smaller dataset might be biased to
imbalanced class in split folds.

Run

Fig. 6 animalcules Biomarker tab. In the left panel, users select taxonomy level, and target condition. In the advanced options: number of cross-
validations folds, number of cross-validations repeats, biomarker proportion, and classification model. In the right panel, animalcules will show the
biomarker list, importance plot, and ROC plot
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to identify a microbe biomarker. The feature importance
score for each microbe will be provided (Fig. 6), in
addition to AUC values and average cross-validation ROC
curves for evaluating biomarker prediction performance.
The biomarker identification can also be conducted by the
command-line function animalcules::find_biomarker().

Biomarker identification is often a relatively difficult
task in microbiome research projects. By default, we've
selected the logistic regression model, which has better
model interpretability and lower model complexity com-
pared to the random forest approach. However, when lo-
gistic regression underfits the dataset, then users are
able to easily switch to the random forest method. For
parameter selection, most of the hyper-parameters are
selected heuristically and automatically by a grid-search
based hyperparameter tuning embedded in the N-time
K-fold cross-validation, using K = 3 as a default. Smaller
values for K are beneficial for small to moderate sample
sizes, as it will decrease the possibility that any fold has
an imbalanced class distribution. When a user has a lar-
ger dataset, we recommend a larger K, such as 5 or 10.
The method produces the proportion of candidate bio-
markers (form the cross-validation) that include a par-
ticular microbe as an “importance score” to aid in the
selection of microbes for the final biomarker. The user-
supplied parameter P (default P = 0.20) controls the im-
portance score cutoff for inclusion of a microbe in the
final model and evaluation. There is no strict rule or in-
tuition selecting P, but most often it is beneficial to try a
few different values of P and compare the performance
of the final biomarker predictions in the testing set.

We emphasize a concern that for small datasets (e.g.,
with less than 100 samples), the identified biomarker
can be biased due to model overfitting. Our current
strategy to avoid overfitting in larger datasets relies on
repeated k-fold cross-validation. However, when sample
size is small, it can still be biased to a subset of the sam-
ples because one fold of the cross-validation might ran-
domly have an unbalanced class distribution (e.g., 1
positive and 10 negative samples). Therefore, we advise
users to use extreme caution when using the biomarker
identification module when they have a smaller dataset.

Results

To illustrate the utility of animalcules, we include two
example analyses using the pre-loaded datasets packaged
within animalcules; the first being an asthma metatran-
scriptomic dataset, and the second a TB 16S rRNA data-
set. For brevity, we do not explore all animalcules
functions in each analysis, but focus on and expand the
relevant analyses for the scientific questions for each ex-
ample. Both analyses could be reproduced within the an-
imalcules Rshiny app by using the corresponding
example datasets.

Page 10 of 16

Example 1: asthma nasal swabs metatranscriptomic dataset
The asthma metagenomic shotgun RNA sequencing
dataset was generated from participants of the AsthMap
(Asthma Severity Modifying Polymorphisms) project and
originally reported in a research article characterizing
asthma-associated microbial communities [46]. It con-
tains 14 total samples of nasal epithelial cells collected
from 8 children and adolescents with asthma and 6
healthy controls. The goal of this study was to further
understand the relationship between the microbiome
and host inflammatory processes in asthmatic children.

To characterize the relationship between microbial
communities and asthma, species-level abundances were
visualized by plotting the group-wise relative abundance
of microbes across asthma and control subjects. This
plot can be generated with the animalcules:relabu_bar-
plot() function as well as under the Abundance tab of
the Shiny application. It is clear that Moraxella catar-
rhalis is overrepresented in asthmatics versus controls,
which was a major discovery in the original publication.
This microbe—which is known to cause infections in the
respiratory system—could serve as a biomarker for early
disease detection, severity of disease, or potential for ex-
acerbation. In addition, other dysbiosis to the airway
microbiome included differences in other genera such as
Corynebacterium aurimucosum, which is underrepre-
sented in asthmatics versus controls (Fig. 7).

To further investigate the overrepresentation and un-
derrepresentation of M. catarrhalis and C. aurimucosum
respectively in asthmatics versus controls, we use box-
plots, generated with the animalcules::boxplot() function,
to visualize the relative abundance in each group and to
get a better sense of the mean and variance of the distri-
bution across samples. These plots confirm the previous
results by showing a drastic difference in abundance
(Fig. 8). Furthermore, we employed DESeq2 to conduct
a differential abundance analysis of microbe species for
asthmatics versus controls. This analysis shows that M.
catarrhalis is significantly (g = 1.78e-3) overrepresented
(LogoFC = 5.9) in asthmatics. It also shows that C. auri-
mucosum is overrepresented (Log,FC = 2.66) in controls,
however not at a statistically significant level (g = 0.236).
This table was generated with the animalcules:differen-
tial_abundance() feature.

Through the animalcules interface, we were able to
rapidly visualize sample- and group-level microbial com-
munities between asthmatic and control samples and
test for over- and underrepresented organisms in asth-
matics, identifying M. catarrhalis and C. aurimucosum
respectively.

Example 2: tuberculosis 16S rRNA profiling dataset
This 16S rRNA TB dataset comes from a pilot TB
study containing 12 subjects, 30 respiratory tract
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Fig. 7 Relative abundance of microbial species bat plot. A stacked bar plot representing the group-wise relative abundance of microbial species
in asthmatics (purple) and healthy controls (yellow)

samples and 417 species of microbe [47] Among the the microbial community differences in the respira-
12 subjects, there are 6 patients with pulmonary tu- tory tract between healthy and TB patients, and to
berculosis and 6 healthy control individuals. Sample evaluate the sample/tissue types that were most ef-
tissue type includes sputum, oropharynx, and nasal fective for exploring differences between the micro-
respiratory tract. The goal of this study is to learn biome of TB samples vs. controls.
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1

1 control
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Fig. 8 Relative abundance boxplot for differentially abundant species. Left. A boxplot of relative abundance of M. catarrhalis in asthmatics (green)

and healthy controls (blue). Right. A boxplot of relative abundance of C. aurimucosum in asthmatics (green) and healthy controls (blue)
. J
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We first conducted an overall assessment of the data, As for comparing beta diversity, we plotted the Bray-
focusing on how the microbial taxonomy affects sample  Curtis distance to compare: within the TB group, within
variables such as disease status. We used the barplot the control group, and between the TB/control (Fig.
function in animalcules to visualize the taxonomic 10b). The average distance between the two groups is
profile for each sample, colored by any annotation vari-  higher than two separate within-group distances, mean-
able (here we used disease information, where dark blue ing both TB samples and control samples are more simi-
represents control and yellow represents TB samples). In  lar to themselves. Furthermore, we conducted a PERM
Fig. 9, we display the genus and phylum level ANOVA test between the two groups, and it shows a
abundances. significant difference with a p value of 0.003. The beta

From the taxonomy barplot, we find different patterns  diversity comparison boxplot was generated by animal-
that exist in TB vs. control samples. At the genus level cules:diversity_beta_boxplot(), and the PERMANOVA
(Fig. 9a), Streptococcus appears to have a higher relative  test was generated by animalcules::diversity_beta_test().
abundance in TB samples compared to the control sam- After exploring this TB dataset in terms of relative
ples. In the phylum level (Fig. 9b), we found Firmicutes abundance and diversity analysis, we were certain that
to be more abundant in TB samples. Both figures were there is a significant difference between TB and control
generated using command-line function animalcules: groups in the microbiome. Here, with the biomarker
rebalu_barplot(). function in animalcules, we were able to build a micro-

To obtain a quantitative understanding of the eco- bial biomarker that could help us predict TB status.
logical diversity difference between TB and control Using a logistic regression model, 3-fold cross-validation
samples, we compared the alpha and beta diversity of (CV), the number of CV repeats as 3, and top biomarker
our samples. For alpha diversity, we compared the proportion as 0.05, we identified an 8-genus biomarker
Shannon index in TB vs. control samples (see Fig. for TB classification. Then we tested the biomarker
10a). animalcules automatically conducted a non- performance by using only the 8-genus biomarker for
parametric Wilcoxon rank-sum test and a parametric  cross-validation, and the prediction performance ROC is
Welch two-sample T test on these diversity measures. displayed in (Fig. 11). We used animalcules:find_bio-
Here, the Wilcoxon rank-sum test gives a p value of marker() to identify the biomarker, plot the feature im-
0.0060, while Welch two-sample T test gives a p  portance score barplot and the ROC curve. Here, we
value 0.0077, thus showing a significant difference in  have a very high AUC = 0.913, thus providing evidence
diversity between TB and control groups. From the that the microbiome could serve as a biomarker for TB
boxplot, we observe that the alpha diversity is higher prediction, and our biomarker has a differentiating
in the control group. The alpha diversity boxplot was  power between TB vs. healthy controls. This result sug-
generated by animalcules::alpha_div_boxplot(), and the gests that further evaluation of microbial biomarkers for
statistical test was generated by animalcules:do_  TB is warranted. Previously, people have been using
alpha_div_test(). transcriptomic biomarkers for TB diagnosis [48], our

-
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Fig. 9 Sample-wise relative abundance bar plot. A stacked bar plot representing the sample-wise relative abundance of microbial species in TB
(yellow) and healthy controls (blue). Panel a is the genus level and panel b is the phylum level
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new finding of using microbes as diagnosis biomarker
can lead to a potential total RNA-seq directed TB dis-
ease biomarker that involves both host transcriptome
gene expression as well as microbial abundance, which
has the potential of higher accuracy for TB diagnosis be-
cause it considers both host and microbial side, or even
the host-microbe interaction in TB.

To summarize, with the help of animalcules, we ex-
plored and compared the microbial community differ-
ence between TB and control samples. Our analysis
shows that the microbial community structure in the
control group is more diverse and evenly distributed
compared to the one in the TB group. Also, the TB
group as well as control group each has a specific micro-
bial composition that is shared within the group. Finally,
we identified a subset of microbes that indicate its differ-
entiating power between TB vs. control samples, which
can be used as a new TB disease biomarker.

Discussion

A fundamental characteristic of animalcules is its seamless
interaction with the user through dynamic visualization
tools. This design logic is rooted in the fact that
researchers in microbiology must analyze their data at
multiple levels (taxonomy) and multiple scales
(normalization), thus data visualization and analysis be-
come complicated without an organized analysis frame-
work and workflow. animalcules solves this problem by
providing a platform for interactively exploring large data-
sets, making it easier for users to identify patterns inherent
in the dataset through appropriate analysis methods. Key
analysis methods allow users to investigate differences in
grouped relative abundance patterns between multiple
sample groups in the phylum level, check the top abun-
dant species in one specific sample group, or to check the
individual sample-wise microbiome composition at differ-
ent taxon levels. Patterns identified can be further tested
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through alpha/beta diversity statistical tests, differential
abundance analysis, as well as biomarker identification.

Furthermore, animalcules utilizes the MAE object, an ef-
ficient data structure for multi-omic sequencing data, which
could be extended in the future to incorporate host sequen-
cing assays, and enable compact methods for analyzing
host-microbe interactions. The flexibility of animalcules
makes it also a helpful tool for future integration across dif-
ferent data sources and downstream analyses: in addition to
helping analyze 16S rRNA and shotgun sequencing micro-
biome data, animalcules could be used to visualize the out-
comes of simulated microbiome studies [49] and of
microcosm experiments involving synthetic microbial con-
sortia [50]. The taxonomic abundance information proc-
essed through animalcules could further be used for the
systematic estimation of microbial co-occurrence networks
[51], expanding the possibilities for informative visualization
of complex datasets, and the comparison with mechanistic
models of microbe-microbe interdependencies [52].

On the reproducibility front, one unfortunate weak-
ness in R/Shiny at the time of this publication is the lack
of a systematic structure for generating histories or
tracking analyses. More specifically, because each minute
change in the interface (e.g., filtering numerical scales)
triggers an action in the server-side of the application,
logging the R History may become too large too quickly
to be useful. Rather, for the sake of reproducibility, we

recommend using GUI for preliminary and exploratory
analyses, and then follow up with command line func-
tions and code within R Markdown documents for creat-
ing reproducibility reports that can be shared.

Conclusion

In this report, we present animalcules, an open-source R
package and Shiny application dedicated to microbiome
analysis for both 16S rRNA and shotgun sequencing
(metagenomics and metatranscriptomics) data. We in-
corporate leading and novel methods in an efficient
framework for researchers to characterize and under-
stand the microbial community structure in their data,
leading to valuable insights into the connection between
the microbial community and phenotypes of interest.

Availability and requirements
Project name: animalcules

Project home page: https://github.com/compbiomed/
animalcules

Official/formal distribution: https://www.bioconductor.
org/packages/release/bioc/html/animalcules.html

Help documentation: https://compbiomed.github.io/
animalcules-docs/

Operating system(s): Linux, OS X, Windows

Programming language: R

License: GNU GPLv3
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