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Abstract

Background: The spread of antibiotic resistance has become one of the most urgent threats to global health,
which is estimated to cause 700,000 deaths each year globally. Its surrogates, antibiotic resistance genes (ARGs), are
highly transmittable between food, water, animal, and human to mitigate the efficacy of antibiotics. Accurately
identifying ARGs is thus an indispensable step to understanding the ecology, and transmission of ARGs between
environmental and human-associated reservoirs. Unfortunately, the previous computational methods for identifying
ARGs are mostly based on sequence alignment, which cannot identify novel ARGs, and their applications are
limited by currently incomplete knowledge about ARGs.

Results: Here, we propose an end-to-end Hierarchical Multi-task Deep learning framework for ARG annotation
(HMD-ARG). Taking raw sequence encoding as input, HMD-ARG can identify, without querying against existing
sequence databases, multiple ARG properties simultaneously, including if the input protein sequence is an ARG, and
if so, what antibiotic family it is resistant to, what resistant mechanism the ARG takes, and if the ARG is an intrinsic
one or acquired one. In addition, if the predicted antibiotic family is beta-lactamase, HMD-ARG further predicts the
subclass of beta-lactamase that the ARG is resistant to. Comprehensive experiments, including cross-fold validation,
third-party dataset validation in human gut microbiota, wet-experimental functional validation, and structural
investigation of predicted conserved sites, demonstrate not only the superior performance of our method over the
state-of-art methods, but also the effectiveness and robustness of the proposed method.

Conclusions: We propose a hierarchical multi-task method, HMD-ARG, which is based on deep learning and can
provide detailed annotations of ARGs from three important aspects: resistant antibiotic class, resistant mechanism,
and gene mobility. We believe that HMD-ARG can serve as a powerful tool to identify antibiotic resistance genes
and, therefore mitigate their global threat. Our method and the constructed database are available at http://www.
cbrc.kaust.edu.sa/HMDARG/.
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Background
The spread of antibiotic resistance has become one of the
most pressing threats to global health, estimated to cause
700,000 deaths each year globally, with this number pro-
jected to increase to 10 million by 2050 if no action is
taken [1, 2]. Antibiotic resistance genes (ARGs) are highly
transmittable between food, water, animal, and human to
mitigate the efficacy of antibiotics [3–7]. Accurately iden-
tifying ARGs is thus an indispensable step to understand-
ing the ecology and transmission of ARGs between
environmental and human-associated reservoirs [8].
Metagenomic high-throughput sequencing technolo-

gies have provided a quick and sensitive way to explore
the ARGs in a single genome or metagenomic samples,
and many bioinformatic tools were proposed to annotate
genes from the metagenomic datasets. Most methods fall
into two categories: assembly-based methods, those that
assemble sequencing reads into contiguous fragments
and then search against reference databases, and the
read-based methods, those that align raw reads to refer-
ence alleles directly [9]. The widely used AMRPlusPlus
[10] is a typical example of the read-based methods. It
directly aligns short reads to a custom reference data-
base using BWA [11] to predict the presence of ARGs.
Such methods scale well for complex metagenomic sam-
ples, but they may cause a large number of false posi-
tives due to local sequence similarity. On the other
hand, the assembly-based methods require assemblers
like SPAdes [12], Velvet [13], IDBA-UD [14], MEGA
HIT [15], and then comparing predicted protein-coding
regions against reference databases to identify ARGs.
The assembler’s performance may influence the overall
ARG prediction, but the upstream and downstream pos-
itional information from the assembly can compensate
for the false-positive problem to some extent. The differ-
ence between these two kinds of approaches is in the
pre-processing step, whereas their core ideas are similar.
That is, they use the pairwise alignment or multi-
sequence alignment algorithms to identify and annotate
resistance genes.
As discussed above, the alignment-dependent methods

are widely used, but they have the following disadvan-
tages. Firstly, due to the pairwise alignment setting, the
assembly-based methods are not sensitive to point muta-
tions. Consequently, they may ignore novel ARGs and
have limited power in mechanism analysis. Secondly, if
the users want to obtain satisfactory results using those
methods, they should have a clear understanding of how
to set the parameters in those algorithms correctly, such
as the similarity threshold. Such a domain knowledge
requirement limits the real usage of the methods, which
is one of the reasons that many people find the existing
tools not that useful. Thirdly, because the alignment-
based methods depend on the curated databases, such

methods cannot identify novel ARGs, and their applica-
tions are limited by currently incomplete knowledge
about ARGs [16]. Machine learning methods can poten-
tially learn the statistical patterns of ARGs and be able to
predict novel ones [17–20]. In particular, deep learning
may circumvent these obstacles because of its intrinsic su-
periority in feature extraction from raw data. Recently,
building upon a multi-layer perceptron model, DeepARG
[21] was developed to identity ARGs using similarity fea-
tures by comparing the query sequence to the existing
ARG databases. Although similarity might extract effective
features to identify ARGs, DeepARG still inherits the dis-
advantage of alignment-based methods. In addition, exist-
ing methods cannot predict the gene mobility, that is,
whether the ARG is intrinsic [22] or could be acquired
[23] via horizontal gene transfer [24].
In this work, we propose a multi-task deep learning

framework, called HMD-ARG (Fig. 1). With the raw
sequence encoding as input and without querying against
existing sequence databases, HMD-ARG predicts multiple
ARG properties simultaneously, including resolving if the
input protein sequence is an ARG, and if so, what anti-
biotic family it is resistant to, what resistant mechanism is
involved in the ARG, and whether the ARG is intrinsic or
acquired. In addition, if the predicted antibiotic family is
beta-lactamase, HMD-ARG further predicts the subclass
of beta-lactamase that the ARG is resistant to.

Methods
Database description
We curated a comprehensive multi-label ARG database,
HMD-ARG-DB, with a high degree of confidence and ex-
tensively manual curations, which can serve as a valuable
resource for the community. We collected and cleaned re-
sistance gene sequences from seven published ARG data-
bases: Comprehensive Antibiotic Resistance Database
(CARD) [25], AMRFinder [26], ResFinder [27], Antibiotic
Resistance Gene-ANNOTation (ARG-ANNOT) [28],
DeepARG [21], MEGARes [10], and Resfams [8]. Then,
we labeled these sequences from three perspectives with
manual check (Figs. 1 and 2c), (1) the antibiotic class they
confer to, (2) the mechanism of antibiotic resistance, (3)
and transferable ability. We removed the identical and du-
plicate sequences from our database following the same
procedure as DeepARG [21].
The resulting database, HMD-ARG-DB, is composed

of 17,282 high-quality sequences, coupled with labels of
15 antibiotic classes, 6 underlying resistance mecha-
nisms, and their mobility (Database construction in
Supp, Fig. 2a). This type of multiple label database en-
sures the trained models to capture the most relevant
features associated with ARGs automatically. Over 30 %
of the genes belong to beta-lactam category (5921), most
of which perform the resistance function through
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inactivating beta-lactams (5763). About 24% of the genes
are assigned to bacitracin category (4219), and almost
all of them perform antibiotic target alternation (4206)
(Fig. 2a). HMD-ARG-DB is the largest database to date,
including the most comprehensive annotations on the
three different aspects targeted (Fig. 2b).

Overview of HMD-ARG
HMD-ARG is a supervised machine learning framework
for ARG annotation, consisting of three models (Fig. 1
top panel), with a level-by-level prediction strategy.
Given a protein sequence, HMD-ARG can annotate it
from the following three aspects: antibiotic resistance

type, mechanism, and gene mobility. More specifically,
regarding the antibiotic resistance type, HMD-ARG pre-
dicts which of the 15 antibiotic families the predicted
ARG is resistant to. As for the mechanism, HMD-ARG
annotates the ARG based on the biochemical basis of its
resistance, including antibiotic efflux, antibiotic inactiva-
tion, antibiotic target alternation, antibiotic target pro-
tection, antibiotic replacement, and others. In terms of
gene mobility, HMD-ARG distinguishes the intrinsic
genes from the acquired ones in plasmid.
To perform these predictions, HMD-ARG is designed

to have three models with a level-by-level prediction
strategy, which deploys the hierarchical structure of the

Fig. 1 Overview of HMD-ARG. Top panel: HMD-ARG is composed of three deep learning models, which are responsible for three level
predictions. In level 0, one model is trained to predict whether an input sequence is an ARG or not. If it is an ARG, it will go through the second
level prediction, in which a multi-task deep learning model (more details shown in the bottom panel) is trained to predict the resistant antibiotic
family, resistant mechanism, and gene mobility information at the same time. If the sequence is predicted as beta-lactamase in level 1, it will be
fed into the level 2 model to predict its beta-lactamase subclass. Bottom panel: In order to train those models, we built the most comprehensive
ARG database to date by merging the sequences from seven existing databases, followed by a post-processing step to remove duplicates. Then,
we used the existing tools and manual curation to assign the annotations from three aspects, i.e., resistant antibiotic family, resistant mechanism,
and gene mobility, to each sequence in the database. Those sequences were then fed to deep learning models to train our models, as illustrated
in the right part
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ARG labeling space. For a given protein sequence, it first
classifies the sequence into ARG or non-ARG; if the
input sequence is an ARG, we predict its resistant anti-
biotic type; if the ARG is a beta-lactamase, we will fur-
ther annotate it with the refined beta-lactamase subtype.
Accordingly, given any sequence analyzed by the HMD-
ARG framework, the first model (level 0) predicts
whether it is ARG or non-ARG. If it is an ARG, the sec-
ond multi-task model (level 1) predicts the resistant
antibiotic type, the underlying mechanism of resistance,
and gene mobility. Furthermore, if the ARG is predicted
to resist to beta-lactam, the third model (level 2) predicts
its molecular subclass [29]. This hierarchical framework
helps deal with data imbalance problem and reduces the
computational complexity for non-ARG.
For each level of the prediction, the model is based on

an end-to-end convolutional neural network (CNN)
model, taking the raw representation of the sequence,
i.e., one-hot encoding, as inputs. To increase the

capacity, the model used in level 1 contains one add-
itional layer before the final multi-task outputs. The
structure of the multi-task learning model is illustrated
in Fig. 1 bottom panel. More details of the model struc-
ture could be referred to the “Deep learning model” and
“Implementation details” sections below.

Deep learning model
In each level of the prediction, the model is an end-to-
end convolutional neural network (CNN) model. For
these models, the inputs are protein sequences, which
are strings composed of 23 characters representing dif-
ferent amino acids. To render the inputs suitable for the
deep learning mathematical model, we used one-hot
encoding to represent the input sequences. Then, the
sequence encodings go through six convolutional layers
and four pooling layers, which are designed to detect im-
portant motifs and aggregate both useful local and global
information across the entire input sequence. The

Fig. 2 HMD-ARG database composition and the HMD-ARG database construction pipeline. a The statistics of the HMD-ARG database. The
number of sequences belonging to each antibiotic family is different. Meanwhile, different genes can resist the same drug with different
mechanisms, which are shown in different colors. b Different databases have various numbers of sequences as well as different labeling
information. HMD-ARG database is currently the largest one. At the same time, it is the most comprehensive one, with resistant antibiotic class,
resistant mechanism, and gene mobility labeled. c To construct the database, we merged the sequences from seven existing databases, followed
by a post-processing step to remove duplicates. Then, we either used the existing tools or manual curation to assign the annotations from three
aspects to each sequence in the database
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outputs of the last pooling layer are flattened and then
fed into three fully-connected layers, which are designed
to learn the functional mapping between the learned
representation from the convolutional layers and the
final labeling space. Since all of our tasks are classifica-
tion ones, for the ARG/non-ARG and the beta-lactam
subtype prediction, we used the standard cross-entropy
loss. The multi-task learning loss function will be
discussed in “Multi-task learning” section below. More
details about the hyper-parameter setting are discussed
in the “Implementation details” section and “Model
hype-parameters” in Supp.

Multi-task learning
Within the HMD-ARG framework, there is one model
(level 1) performing multi-task learning for the coarse
resistant antibiotic type, functional mechanism, and gene
mobility prediction. The model architecture is roughly
the same as that described in the “Deep learning model”
section above. However, for the last layer of the model,
instead of only having one fully-connected branch with a
Softmax activation function, we have three fully-
connected branches, which correspond to the three
tasks, respectively. In other words, the model for multi-
task learning is essentially composed of three models,
while those models share the convolutional and pooling
layers. One clear advantage of this multi-task learning
framework is that the three tasks altogether force those
layers to discover important features within the input se-
quences, which are useful for all the three tasks, and
thus prevent the model from overfitting. On the other
hand, the loss function is changed accordingly:

Lmulti − task ¼ α�Ldrug þ β�Lmechanism þ γ�Lsource;

where α, β, γ are the weights of the three tasks and are
hyper-parameters; Ldrug, Lmechanism, and Lsource are the
cross-entropy losses of the corresponding tasks, respect-
ively. Essentially, we optimize over the weighted Lmulti −

task, instead of each cross-entropy loss alone, to take care
of all the three tasks simultaneously. After training the
above model, given an input sequence, we obtain the
prediction results of the three tasks with one single
forward-propagation.

Implementation details
We collected 66k non-ARGs from UniProt [30] with
highest BLAST similarity scores against the ARGs in
HMD-ARG-DB, used them as the negative set so that
the negative set is as similar to the positive one as pos-
sible to force HMD-ARG to learn a more powerful
model, and then trained the level 0 model on the com-
bined dataset. The level 1 multi-task learning was per-
formed with HMD-ARG-DB. For beta-lactamase

subclass prediction, we trained our model on an up-to-
date beta-lactamase database, Beta-Lactamase DataBase
[31] (BLDB). The database contains more than 4000 beta-
lactamases sequences. Each of them has a molecular class
label, indicating which subclass the sequence belongs to. In
total, there are 6 subclasses, class A, B1, B2, B3, C, and D.
When training the models, we first converted each

amino acid into a one-hot encoding vector. So, protein
sequences are converted into a zero-padded numerical
matrix with the dimension as 1576 by 23, where 1576
meets the length of the longest ARGs and non-ARGs in
our dataset, and 23 stands for 20 standard amino acids,
two infrequent amino acids (B, Z), and X for unknown
ones. Such an encoded matrix is then fed into a deep
learning model with six convolutional layers and four
max-pooling layers. The model hyper-parameters are
discussed in “Model hype-parameters” in Supp.

Saliency map construction
The saliency map is constructed as follows. At each position
of the protein sequence, we replaced the amino acid with a
different amino acid, obtaining a mutated sequence, and fed
the mutated sequence to the level 0 model, which outputs
the predicted probability of the mutated sequence being an
ARG. We performed this procedure for each amino acid re-
placement and each position. As a result, the saliency map
has a dimension of L by 20, where L is the length of the se-
quence. When constructing the average saliency map, we
first performed multiple sequence alignment for a specific se-
quence against our database, obtaining the alignment results.
Then, we built a saliency map for each sequence that can be
aligned to the query sequence. Finally, we aligned the sali-
ency map based on the sequence alignment results and took
the average of the maps to obtain the average saliency map.
To compare our method against the sequence-alignment
based methods, we built a position-specific scoring matrix
[32] (PSSM) with PSI-BLAST [33], visualized the PSSM, and
compared it with our saliency map.

Wet experimental expression of predicted ARGs
Eight predicted ARGs in Pseudomonas aeruginosa strain
PA150567 were selected for this purpose. The ORF re-
gions of the predicted genes were amplified by PCR
using the iProof™ High-Fidelity DNA Polymerase (Bio-
Rad, USA) with the primers as listed in Table S2. Puri-
fied DNA fragments and the pET28a vector were
digested with BamHI and XhoI (NEB, USA). After
ligation using the Quick LigationTM Kit (NEB, USA) and
verification by PCR and DNA sequencing (BGI, China),
the resulting plasmids were transformed into E. coli
BL21 for antibiotic sensitivity analysis. Overnight culture
of E. coli BL21 strains containing the plasmids for over-
expression of the predicted genes were 1:100 diluted and
grown in LB medium supplemented with kanamycin
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(20 μg/ml) and Isopropyl β-D-1-thiogalactopyranoside
(IPTG) (0.5 mM). After incubation at 37 °C with 220-
rpm agitation for 90 min, bacterial cultures were trans-
ferred to a 24-well plate. After antibiotic was added with
indicated concentration (ampicillin: 50 μg/ml, carbenicil-
lin: 10 μg/ml; meropenem: 2 μg/ml; amikacin: 4 μg/ml),
cell growth (OD600nm) was measured every 10 min at
37 °C in the Synergy HTX Plate Reader (BioTek, USA)
with agitation. Assays were performed in duplicate.

Results
Overall performance of HMD-ARG
We first used 5-fold stratified cross-validation to evaluate
the performance of HMD-ARG and compared it with the
state-of-the-art methods [21, 25, 34, 35]. In this experi-
ment, we randomly divided HMD-ARG-DB into five folds.
Each time, we chose four folds of the dataset for the
model training and tested the trained model on the
remaining one. To avoid data bias, average results were
generated from repeating the above procedure for five
times. In general, as shown in Tables 1, 2, 3, 4, and 5,
HMD-ARG achieves the state-of-the-art results on all the
tasks (evaluation criteria definitions and the detailed steps
of executing other methods provided in “Evaluation cri-
teria” and “Protocols of other methods” in Supp). More
specifically, for the most important task, antibiotic class
prediction (Table 2), HMD-ARG shows significantly
higher accuracy (0.935), recall (0.847), and F1 score
(0.893) with a promising precision (0.950) than the exist-
ing methods. It is not surprising that CARD has a slightly
better precision score (0.981), because the database was
curated based on sequence similarity search. However,
similarity-based methods produce more false negatives,
resulting in a low recall rate, e.g., in CARD (0.452), AMR-
PlusPlus (0.278), and Meta-MARC (0.782). By combining
similarity features with a multi-layer perception, Dee-
pARG improves the overall prediction results, compared
with CARD, with the precision, recall, and F1 score being
0.914, 0.757, and 0.814, respectively, but it is still much
lower than HMD-ARG. For the resistance mechanism

prediction (Table 3), HMD-ARG significantly outperforms
CARD, especially on recall. As for the gene mobility pre-
diction (Table 4), our model can also achieve impressive
results, while the other commonly used methods cannot
perform this task. Although HMD-ARG is not designed
specifically for beta-lactamase prediction (Table 5), our
method still achieves remarkably accurate results, which is
similar to the state-of-the-art method that is trained spe-
cifically on this task, CNN-BLPred [36].

Robustness of HMD-ARG
We further investigated the robustness of HMD-ARG,
especially on the ARG/non-ARG prediction and anti-
biotic class prediction. HMD-ARG appears to be outper-
formed by DeepARG in discriminating ARGs from non-
ARGs (Table 1). DeepARG’s precision on identifying
ARG is very high, but this should be attributed to its se-
quence similarity filtering process before feeding their
model. There is no doubt that the pre-filtering used in
DeepARG has inherited the disadvantage of similarity-
based methods, resulting in a high false negative rate
and thus low recall. Furthermore, the similarity thresh-
old prerequisite might diminish the probabilistic model
used in DeepARG, eventually attenuating the robustness
of the method. On the contrary, taking the sequence
one-hot encoding as input, without additional pre-
processing, HMD-ARG remains as a genuine probabilis-
tic model. This might explain the better robustness of
HMD-ARG than DeepARG referring to the ROC curve
(Fig. S1). The ROC curve shows the smoothness in

Table 1 The ARG/non-ARG classification results between
different methods

Accuracy Precisiona Recall F1-score

HMD-ARG 0.948 0.939 0.971 0.948

CARD 0.71 0.999 0.421 0.592

DeepARG 0.965 0.998 0.93 0.963

AMRPlusPlusb 0.691 0.867 0.449 0.592

Meta-MARCc 0.848 0.847 0.85 0.848
aThe precision, recall, and F1-score are only for ARG
bAMR++ requires the input in a paired fastq format. So, we simulated the fastq
data from our test protein dataset. Details can be seen in the supplementary
cMeta-MARC can work with both assembly and raw data; we tested it with the
assembled sequences (our test dataset)

Table 2 The ARG antibiotic classes’ classification results
between different methods

Accuracy Precisiona Recall F1-score

HMD-ARG 0.935 0.950 0.847 0.893

CARD 0.418 0.983 0.452 0.585

DeepARG 0.887 0.914 0.757 0.814

AMRPlusPlusb 0.675 0.574 0.278 0.283

Meta-MARCc 0.909 0.750 0.782 0.745
aThe precision, recall, and F1-score are the macro average over the ARG
antibiotic classes
bAMR++ requires the input in a paired fastq format. So, we simulated the fastq
data from our test protein dataset. Details can be seen in the supplementary
cThe drug class label system of AMR++ and Meta-MARC are different from
ours, so we manually converted their labels into ours. Meta-MARC can work
with both assembly and raw data; we tested it with the assembled sequences
(our test dataset)

Table 3 The ARG antibiotic mechanism classification results
between different methods

Accuracy Precisiona Recall F1-score

HMD-ARG 0.936 0.867 0.768 0.795

CARD 0.423 0.832 0.476 0.566
aThe precision, recall, and f1-score are the macro average over the ARG
mechanism classes
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HMD-ARG’s prediction in contrast to a sharp changing
point that is caused by the similarity threshold in Dee-
pARG. Moreover, the area under ROC curve (AUROC)
of HMD-ARG (0.99) is higher than that of DeepARG
(0.97). Regarding the performance on each antibiotic
class, HMD-ARG is quite stable across different classes,
regardless of precision or recall (Fig. 3). On the other
hand, DeepARG and CARD have a very diverse perform-
ance on different classes, especially in terms of recall.
The robustness of HMD-ARG, on different levels and
different classes, indicates that it is a reliable tool.

Predicting novel ARGs in human gut microbiota
Identification of ARGs in human gut metagenomes has
a high clinical significance, because a large portion of
bacteria are uncultured [37, 38]. The resistome in the
human gut is also expected to be quite different from
ARGs in current databases since most known ARGs are
from cultured pathogens [37, 38]. Evaluating the pro-
posed method on the new third-party human gut dataset
shows the ability of HMD-ARG in identifying novel
ARGs. We collected the human gut microbiota dataset,
Mustard database, which contains 6095 predicted ARGs
in 20 families, from the most recent work [39]. These
labeled ARGs were predicted from a 3.9 million human
gut microbiome gene catalog, using a three-dimensional
structure-based method, with a portion of the sequences
being experimentally verified. Then, we compared the
sequences in the Mustard database with the training
sequences for HMD-ARG, ensuring that there is no
overlap between the two. Finally, we applied HMD-ARG
and DeepARG onto this third-party dataset. The num-
bers of novel ARGs belonging to different classes
correctly recovered by HMD-ARG and DeepARG were
used as surrogate measures for the prediction perform-
ance. Although DeepARG has better performance on
two classes, HMD-ARG outperforms it in 15 out of the 20
classes, being able to identify more novel ARGs (Fig. S2).
Moreover, although HMD-ARG only utilizes sequence
information, it can even achieve similar performance as

the structured-based method on some classes. Compared
with the structured-based method, HMD-ARG has a
broader application scenario since it does not require
structural information as the input.

Experimental validation
To validate the performance of our model on predicting
ARGs, five genes assigned to beta-lactamase and three genes
predicted as the aminoglycode class from a clinical strain
Pseudomonas aeruginosa PA150567 were randomly selected
for wet lab experimental validation (Table S1 and Fig. 4a).
Note that some of those randomly selected genes have a
BLAST [40] identity against the database lower than 50%,
which means they cannot be detected by the similarity-based
methods, including DeepARG. All of these genes were heter-
ologously expressed in Escherichia coli BL21 host (Fig. 4a left).
The growth was measured in presence of meropenem
(Fig. 4a middle) and amikacin (Fig. 4a right) for each suc-
cessful transformant with corresponding ARGs predicted
in the present study. Results demonstrate the antibiotic
resistance of all of these ARGs in E. coli transformants
and confirm the good performance of our model.
Although the lower activities of predicted ARGs to two
beta-lactam antibiotics were observed than the one show-
ing 100% identity with known ARGs (Fig. S3), the activ-
ities were still higher than those without transformed
ARGs. The lower functions are possibly attributed to the
unclear regulatory systems in vivo or the genuine low en-
zyme activities of these predicted ARGs. Altogether, since
we randomly selected these genes for validation, this
might be applicable for all predicted ARGs, at least for
those with mechanisms underlying inactivating
antibiotics.

Capturing evolutionary information
To further investigate the improved performance of
HMD-ARG, we first performed a saliency map (mutation
map) analysis [41] on the HMD-ARG model. For each
amino acid in an ARG sequence, we mutated it to a differ-
ent amino acid and fed the mutated sequence to the
trained HMD-ARG, obtaining the predicted probability of
the mutated sequence being an ARG. Since each amino
acid can be mutated to 20 amino acids (including itself),
the saliency map for each ARG will have a dimension of L
by 20, where L is the sequence length. From this mutation
map analysis, we were able to obtain the conserved sites
predicted by our model (Fig. 4b). Taking a beta-lactamase
resistance gene, AFB78806 [42] as an example, we built
the saliency map for every sequence in HMD-ARG-DB
that could be aligned to it. Then, based on the sequence
alignment, we aligned the saliency map and obtained the
averaged saliency map for the AFB78806 group. Mean-
while, we built the position-specific scoring matrix
(PSSM) for AFB78806. The averaged saliency map and

Table 4 The ARG antibiotic mobility classification results

Accuracy Precisiona Recall F1-score

HMD-ARG 0.909 0.964 0.89 0.926
aThe precision, recall, and F1-score are the macro average over the ARG
mobility classes

Table 5 The beta-lactamases Ambler classification results
between different methods

Accuracy Precisiona Recall F1-score

HMD-ARG 0.995 0.989 0.993 0.991

CNN-Blpred 0.987 0.983 0.991 0.986
aThe precision, recall, and F1-score are the macro average over the beta-
lactamases molecular type classes
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PSSM are shown in Fig. S4. The overall Pearson correl-
ation coefficient as 0.24 between the averaged saliency
map and PSSM was observed. Particularly, the most dis-
tinct positions, such as column 226, were determined with
a Pearson correlation coefficient higher than 0.5. PSSM
can capture the evolutionary information for a specific se-
quence, with a high value in the matrix indicating a highly
conserved position. On the other hand, the physical mean-
ing of the averaged saliency map is that if there is a muta-
tion with high resistant probability, this specific mutated
gene is likely to survive. Considering that when build-
ing the HMD-ARG models, we only used the raw se-
quence information, without utilizing the
evolutionary information or the alignment informa-
tion, the correlation between the group saliency map
and the PSSM indicates two things. Firstly, the pre-
diction of HMD-ARG is robust and consistent within
a group of ARGs; otherwise, the averaged saliency
map would not show clear patterns. Secondly, HMD-
ARG is able to detect the evolutionary information
in an implicit way, capturing the conserved positions
and mutations that are critical to the activity of en-
zymes. Thus HMD-ARG may serve as a tool for ana-
lyzing the evolution of ARGs.

Predicted conserved sites validation
We validated the predicted conserved sites obtained
from the model analysis above. We used the protein
AXX01_04100, which was validated by bioassays, as an
example. After performing the mutation map analysis,
we obtained the conserved site sequence logo shown in
Fig. 4b. As illustrated in the figure, we could recover
some known conserved sequence motifs, such as KTG
[43] (342–344). For comparison, we also built a PSSM to
check the ability of multiple sequence alignment-based
methods in capturing the motifs. The results are shown
in Fig. S5. We found that the PSSM is powerful in cap-
turing evolutionally conserved amino acids, but the KTG
signal in the figure is not so clear compared with that in
the saliency map of our method. In addition, we wanted
to validate the previously unknown conserved sites,
which were predicted by our analysis. We chose the
most significant signal from the mutation map, i.e., 346
(T to N), and made such mutation on the protein se-
quence. Using RaptorX [44], we obtained the predicted
structure of the mutated protein, which was then aligned
and compared with the wild type protein structure. The
comparison results were illustrated in Fig. 4c left figure.
Although we only mutated one single amino acid, the

Fig. 3 Detailed prediction performance comparison. Detailed performance comparison of HMD-ARG, DeepARG, CARD, AMRPlusPlus, and Meta-
MARC on each resistant antibiotic class. Meta-MARC can work with both assembly and raw data; we tested it with the assembled sequences
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local structure and environment have changed signifi-
cantly, which indicates the importance of such a con-
served site. To further test the newly predicted
conserved site, we performed docking experiments with
AutoDock Vina [45], using the beta-lactam antibiotic, to
bind against both the wild type structure and the
mutated one. As shown in Fig. 4c middle (wild) and
right (mutated) figures, the binding affinity between the
protein and the antibiotics has indeed decreased signifi-
cantly from the wild type (− 7.8 kcal/mol) to the mutated

protein (− 6.8 kcal/mol), although these in silico analyses
demonstrate the applicability of HMD-ARG in recogniz-
ing the antibiotic conserved sites and motifs.

Discussion and conclusions
We developed a hierarchical multi-task method, HMD-
ARG, based on deep learning, to facilitate the detection
and understanding of antibiotic resistance, providing
detailed annotations of ARGs from three important
aspects: resistant antibiotic class, resistant mechanism,

Fig. 4 Functional validation of the predicted ARGs and structural investigation of conserved sites detected by HMD-ARG. a Left figure: A diagram
showing the procedure of heterologous expression and functional analysis of the predicted ARGs from PA150567 in E. coli BL21 host. Middle
figure: Growth curves of E. coli hosts with expression of the predicted β-lactamases that inactivate β-lactam antibiotics in the presence of 2 μg/ml
meropenem. Right figure: Growth curves of E. coli hosts with expression of the predicted acetyltransferases that inactivate aminoglycoside
antibiotics in the presence of 4 μg/ml amikacin. b The HMD-ARG predicted conserved sites and the corresponding sequence logo from 319 to
393 in AXX01_04100. c After we mutated the conserved site (346) from T to N, the mutated protein’s (colored in red) local structure (predicted by
RaptorX) changed significantly from the wild type (colored in light blue). Moreover, the binding affinity (predicted by AutoDock) between the
mutated protein and the ligand (antibiotics) also reduced, as illustrated in the middle (wild type) and right (mutated protein) figures
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and gene mobility. Comprehensive experiments, includ-
ing cross-fold validation, third-party dataset validation,
wet-experimental functional validation, and structural
investigation of predicted conserved sites, demonstrate
the effectiveness and robustness of the proposed
method.
Most known ARGs were found from culturable

bacteria, and people used sequence comparison to
explore and identify those sequences. As a result, tools
based on sequence alignment, like DeepARG and CARD,
could achieve satisfactory precision. However, the per-
formance of DeepARG on characterizing the ARGs from
intestinal microbiota (which are generally not cultured
and distantly related to known ARGs) is worse than that
of our deep learning model, although both methods are
trained on known ARGs from culturable bacteria.
Indeed, currently, there is no consensus on the optimal
approach to detect ARGs, and all the methods play the
trade-off between precision and recall. Very recently,
DeepARG pushed a new version. We also did the cross-
validation experiments with the latest version, finding
out that its performance is similar to the old one, with a
slightly better precision but substantially lower recall.
Moreover, since the inputs of our model are assembled

sequences, its application scenarios may be limited, and
it cannot work on short reads directly unless heavy com-
putational pre-processing steps are done. This should be
considered as one limitation of our framework. Extend-
ing HMD-ARG to classify the metagenomics short reads
without assembling is a very promising research direc-
tion, which is desirable in many application scenarios. In
the future, we will combine our framework with the
newest sequencing technology, such as the Nanopore
sequencing [46–50], to develop a pipeline that works on
the short reads level or even the sequencing signal level.
We believe that HMD-ARG can serve as a powerful

tool to alleviate the global threat of the rising abundance
and diversity of antibiotic resistant genes. In the future,
we will incorporate other dimensions of information,
such as 3D structural information [39] and SNPs, into
our framework to further improve our method’s per-
formance and extend the application scenarios.
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Additional file 1: Figure S1: ROC curve comparison. For ARG/Non-ARG
prediction, we set different thresholds for the last layer of the HMD-ARG
model and different parameters for DeepARG, drawing the above ROC
curves. The figure suggests that HMD-ARG is more robust than DeepARG.
Figure S2: Human intestinal microbiota prediction. After removing over-
laps between HMD-ARG training data and the Mustard database, we
trained a new model and applied the model to this human gut dataset.
In the figure, we show the number of correctly predicted ARGs, by HMD-
ARG and DeepARG, across different classes in the Mustard dataset.

Compared to DeepARG, HMD-ARG can recover much more correct ARGs
in more diverse classes, which suggests the robustness and the sensitivity
of the proposed method. Figure S3: Growth curves of E. coli host with
the expression of the predicted novel ARGs that inactivate antibiotics in
the presence of antibiotics. a. The growth curve of E. coli under the pres-
ence of Ampicillins (50 μg/ml) b. The same to a, while removes the
AXX01_04100, which is a predicted novel ARGs shares high similarity
compared with known ones. c. The growth curve of E. coli under the
presence of Carbenicillin (10 μg/ml) d. The same to c, while removes the
AXX01_04100, which is a predicted novel ARG that shares high similarity
compared with known ones. Figure S4: Correlation between saliency
map and PSSM. a. For each position in a sequence, which is shown as
the columns, we mutated the amino acid to the other amino acids,
which are shown as the rows, and fed the mutated sequence to HMD-
ARG model, determining the probability of the sequence being an ARG
and filling in the value into the corresponding position in the saliency
map with the probability. The figure shows the averaged saliency map of
those sequences, which can be aligned to AFB78806. b. The figure shows
the position-specific scoring matrix (PSSM) of AFB78806, which indicates
the evolutionary information of that ARG. We can find a clear correlation
between a) and b), especially for row c (horizontal rectangle) and column
226 (vertical rectangle). This correlation suggests that although we only
used the protein sequence as input, without resorting to sequence align-
ment, HMD-ARG can capture the evolutional information of ARG se-
quences, which demonstrates the effectiveness of the proposed method.
Figure S5: The saliency map built with PSSM. The PSSM predicted con-
served sites and the corresponding sequence logo from 319 to 393 in
AXX01_04100. Table S1: The list of ARGs predicted in the study and vali-
dated using heterogenous expression in E. coli host. Table S2: Primers
used for constructing overexpression plasmids.
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