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Machine learning-aided analyses of
thousands of draft genomes reveal specific
features of activated sludge processes
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Abstract

Background: Microorganisms in activated sludge (AS) play key roles in the wastewater treatment processes.
However, their ecological behaviors and differences from microorganisms in other environments have mainly been
studied using the 16S rRNA gene that may not truly represent in situ functions.

Results: Here, we present 2045 archaeal and bacterial metagenome-assembled genomes (MAGs) recovered from
1.35 Tb of metagenomic data generated from 114 AS samples of 23 full-scale wastewater treatment plants (WWTPs).
We found that the AS MAGs have obvious plant-specific features and that few proteins are shared by different
WWTPs, especially for WWTPs located in geographically distant areas. Further, we developed a novel machine
learning approach that can distinguish between AS MAGs and MAGs from other environments based on the
clusters of orthologous groups of proteins with an accuracy of 96%. With the aid of machine learning, we also
identified some functional features (e.g., functions related to aerobic metabolism, nutrient sensing/acquisition, and
biofilm formation) that are likely vital for AS bacteria to adapt themselves in wastewater treatment bioreactors.

Conclusions: Our work reveals that, although the bacterial species in different municipal WWTPs could be different,
they may have similar deterministic functional features that allow them to adapt to the AS systems. Also, we
provide valuable genome resources and a novel approach for future investigation and better understanding of the
microbiome of AS and other ecosystems.
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Background
Activated sludge (AS) is the largest biotechnology ap-
plication in the world and is of eminent importance
for the remediation of anthropogenic wastewater [1].
The pollutant removal functions of AS are achieved by
microorganisms with diverse community structures, among
which populations with important metabolic functions have
been individually studied [2–4]. Meanwhile, AS is a unique
engineered ecosystem that can be controlled by a variety of
operating conditions, and its attributes make it attractive
for microbial ecologists studying the behaviors of microbial
community assembly [5, 6].
One major topic of AS microbiome research is investi-

gating the core populations that are consistent occupants

in a large number of AS communities and are potentially
important contributors to the system performance. Such
analysis has been performed using 16S rRNA gene sequen-
cing at different scales, including one full-scale wastewater
treatment plant (WWTP) in Hong Kong [7], 13 WWTPs
in Denmark [8], 14 WWTPs in Asia and North America
[9], and 269 WWTPs in 23 countries [1]. Core AS micro-
bial communities were identified at both regional and
global scales by counting shared species or operational
taxonomic units (OTUs), implying that a small number of
key microorganisms constitute an indispensable portion of
the AS community regardless of geographical and oper-
ational variations. However, the 16S rRNA gene, despite a
useful biomarker to explore microbial community and
construct phylogeny, does not necessarily reflect microbial
physiology [10]. Therefore, the in situ functions and eco-
logical contributions of the identified core AS populations
are still not clear. Moreover, vast metabolic diversity can
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be embedded in one species or OTU, which is usually de-
fined at 97% sequence identity or even higher levels [11].
Thus, further investigation of the AS community is war-
ranted using more advanced approaches that could resolve
metabolic potentials with higher resolution.
Metagenomics aimed at recovering population genomes

and annotating genetic potentials have been applied to AS
and uncovered individual microorganisms or functions that
are challenging to study using other methods [12–14],
demonstrating that this approach is promising for revealing
greater diversity at the functional level than the analysis of
16S rRNA gene sequences. However, few efforts have been
made to resolve microbial ecology, such as the core-
community phenomenon in AS, using metagenomics.
Furthermore, metagenomics could facilitate a comparative
analysis of microbiomes of AS and other ecosystems at
functional level. Microorganisms associated with fresh-
water systems, soil, human feces, rainwater, and storm-
water have been shown to seed the activated sludge via
influent sewage [15, 16]. Comparing the populations in AS
and various non-AS ecosystems could provide insights into
how the AS microbial community is assembled and
whether the AS populations possess unique functional fea-
tures that are vital to the adaption to the conditions of
wastewater treatment bioreactors.
The vast diversity observed in AS and tremendous infor-

mation obtained by metagenomics present new data ana-
lysis challenges. Conventional approaches mainly rely on
reducing dimensionality to retrieve and visualize ecological
patterns. Ordination analyses such as nonmetric multidi-
mensional scaling and principal coordinates analysis could
only present the first two or three eigenvectors that account
for a limited proportion of the entire variance. Phylogenetic
analysis is based on one or multiple selected conserved
genes out of thousands of genes in a prokaryotic genome,
which inevitably results in loss of information. In recent
years, machine learning approaches have received
growing attention and have been applied in genomics
research [17, 18]. Unlike conventional methods, they
can automatically detect patterns in data with less ex-
pert handcrafting and are therefore suitable to handle
and analyze large and complex datasets such as gen-
omic and metagenomic data [18, 19]. They can further
be used to disentangle the complexity and diversity in
the AS community by comparing different AS systems
and comparing AS with other environments.
Here, we present 2045 high- and medium-quality bac-

terial and archaeal metagenome-assembled genomes
(MAGs) recovered from 114 global municipal AS sam-
ples, representing one of the largest assemblies of MAGs
from the municipal AS microbiome. After the recovery
of the vast genomic information, we aimed to address
two questions. First, is there a significant core AS com-
munity at the MAG and protein level shared by a large

number of WWTPs, or are there obvious plant-specific
features in the AS MAGs? Second, are the AS MAGs
similar to genomes of populations from other environ-
ments, or do they have unique environment-specific
traits? In addition to a novel machine learning approach,
a collection of conventional methods including genome
and protein comparison, phylogenetics, and ordination
was applied, and their results were compared.

Results
2045 MAGs were obtained from AS of different WWTPs
Approximately 1.35 Tb of metagenomic sequencing data
generated from 114 AS samples of 23 municipal WWTPs
located in eight countries were used to construct MAGs
(Additional file 1: Figure S1, Table S1, Table S2). Among
the 7548 bacterial and archaeal MAGs obtained, 2045 are
estimated to have overall quality (defined as completeness
− 5 × contamination) ≥ 50 [20]. The average completeness
and contamination of the 2045 MAGs were 82.0% and
2.0%, respectively. Figure 1a shows that 743 of the 2045
MAGs are nearly complete (completeness ≥ 90%, average
contamination 2.6%). The other two groups contain 845
(70% ≤ completeness < 90%) and 456 MAGs (50% ≤ com-
pleteness < 70%), and their average contamination values
are 3.3% and 0.92%, respectively. The average contig num-
ber of these MAGs is 292, and the contig numbers have a
moderate association with contamination level (Spearman’s
rho = 0.47, P < 2.2e−16) but not with completeness level
(Spearman’s rho = − 0.11, P = 4.3e−08) (Additional file 1:
Figure S2). As shown in Additional file 1: Figure S2, most
of the MAGs have good overall quality (high completeness
and low contamination), while it was also found that some
MAGs have relatively smaller contig numbers and
medium-quality values (50–80%) (Additional file 1: Figure
S2a), which leads to the relatively weak association between
contig number and contamination level.
The 2045 MAGs were classified into 49 phyla (Fig. 1b

and Additional file 1: Table S3). Among these MAGs,
21 were assigned to three archaeal phyla (Halobacter-
ota, Micrarchaeota, and Nanoarchaeota). For bacteria,
the phylum containing the highest number of MAGs
was Proteobacteria (508 MAGs), followed by Bacteroidota
(409 MAGs), Patescibacteria (178 MAGs), Myxococcota
(164 MAGs), Actinobacteriota (161 MAGs), Planctomyce-
tota (122 MAGs), Chloroflexota (114 MAGs), and Acidobac-
teriota (96 MAGs). The remaining MAGs were assigned to
other miscellaneous bacterial phyla (Additional file 1:
Table S3). To further understand the diversity among
these MAGs, phylogenetic analysis was performed
using the universal core gene markers predicted from
each MAG [21]. Figure 1b shows that the clustering
patterns in the tree are highly consistent with the tax-
onomy assignments, with Proteobacteria and Bacteroi-
dales as the two most dominant clusters.
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To estimate the representativeness of the MAGs for
AS microbial genetic information, we mapped the meta-
genomic sequencing reads of each WWTP to the MAGs
and calculated the percentage of mapped reads in each
sample. As shown in Fig. 1c, 54–63% of reads (average
per WWTP) of AS samples from the first four WWTPs,
which have larger sequencing data volumes and signifi-
cantly contribute to the AS MAG catalog, were mapped
to the MAGs. For other WWTPs, the mapping ratios
ranged from 34 to 72%.

The AS MAGs show obvious plant-specific features
To evaluate the plant-specific features of the MAGs, we
first analyzed the distribution of reads mapped to the
MAGs obtained from different plants. As shown in Fig. 2a,
most (60–87%) of the mapped metagenomic reads from
each WWTP were mapped to its own MAGs. A relatively
small fraction of reads in each WWTP (approximately 33%
in WWTP1, 32% in WWTP2, 35% in WWTP3, and 13% in

WWTP4) were mapped to MAGs from other WWTPs.
MAGs of WWTP1 and WWTPs shared more mapped
reads than other WWTP pairs (approximately 20% of
sequencing reads of WWTP1 and WWTP2 were mapped
to each other’s MAGs), likely because they are located in
the same city.
In addition to mapping reads to MAGs, we also com-

puted the average nucleotide identity (ANI) values by
comparing the MAGs with an all-against-all strategy.
The results in Fig. 2b and Additional file 1: Figure S3
show that 214 MAG pairs have ANI > 95% between
WWTP1 and WWTP2, suggesting that these 214 bacter-
ial or archaeal species (43% MAGs in WWTP1 and 33%
MAGs in WWTP2) were shared between WWTP1 and
WWTP2. However, the numbers of potentially shared
species between other WWTPs were relatively small. For
example, no MAG pairs with ANI > 95% were observed
between WWTP3 and WWTP4, and only four MAG
pairs with ANI > 95% were found between WWTP1 and

Fig. 1 Overview of the 2045 MAGs assembled from 114 AS microbiomes. a Estimated completeness and contamination of the 2045 MAGs. The
position of each horizontal red line refers to the mean contamination value of the corresponding group. b A maximum likelihood phylogenetic
tree of the AS archaeal and bacterial MAGs based on universal core gene markers. The genome phylogenetic tree was generated using the
universal PhyloPhlAn markers conserved across the bacterial and archaeal domains. A total of 98 MAGs with fewer than 80 universal markers were
not included in this tree. The taxonomy of the MAGs was determined using GTDB-Tk, and it is shown in different colors. c Percentages of
metagenomic sequencing reads of the different AS samples mapped to the 2045 MAGs
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WWTP3. A number of MAG pairs were also observed
between WWTP1 and “other WWTPs” (109) and be-
tween WWTP2 and “other WWTPs” (73). This is prob-
ably because a large fraction (9/19) of WWTPs in “other
WWTPs” are located in China and near WWTP1 and
WWTP2 (Additional file 1: Table S1).
Since the MAGs represent only part (34 to 72%) of the

AS microbiome according to the mapping results, we
also conducted a pairwise comparison of protein se-
quences predicted from all assembled contigs of the first
four WWTPs. Other WWTPs were not included in this
comparison because of their low sequencing depths. As
shown in Additional file 1: Figure S4, 62% of proteins
predicted from WWTP1 are highly similar (identity >
90%) to those of WWTP2. However, only a small num-
ber of proteins predicted from WWTP3 (10–27%) and
WWTP4 (7.9–28%) have highly similar hits (identity >
90%) in other WWTPs. We further identified 24,850,093
clusters (identity cutoff 90%) from the 44,212,953 pro-
tein sequences predicted from all AS samples. A fre-
quency distribution plot (Fig. 2c) shows that 73.2% of
the protein clusters were found in one WWTP, and
17.0% were found in two WWTPs. Among the protein

clusters observed in two WWTPs, over half (57.8%) were
shared by WWTP1 and WWTP2, which were located in
the same city. Only 0.1% of total protein clusters were
present in > 10 WWTPs. The protein comparison re-
sults confirmed the results of read mapping and ANI
calculation. It further suggested that, although a certain
amount of proteins and MAGs may be shared by differ-
ent WWTPs, a large proportion of bacterial populations
in different WWTPs are largely different at both the
DNA and protein levels, i.e., the bacterial genomes have
plant-specific features.

Phylogeny and functional features cannot well separate
MAGs from AS and MAGs from other environments
In addition to comparing MAGs among different
WWTPs, we also explored whether the 2024 bacterial AS
MAGs obtained in this study could be distinguished
from the 7164 MAGs of other non-engineered (natural
and animal/human-related) environments [20]. We con-
structed a maximum likelihood phylogenetic tree encom-
passing 1000 randomly selected AS MAGs and 1000
randomly selected non-AS MAGs (Fig. 3a). The tree
shows that both AS and non-AS MAGs are distributed

Fig. 2 Comparison of MAGs and protein sequences in different WWTPs. a Relative abundance of metagenomic sequencing reads of each sample
mapped to the MAGs from different WWTPs. b Numbers of MAG pairs with ANI > 95% between different WWTPs. The values on the diagonal
also refer to the MAG number in each of the first four WWTPs and the total MAG number of other WWTPs. c Frequency distribution of protein
clusters across WWTPs. The protein sequences predicted from all assembly contigs were clustered at an identity cutoff of 90% with CD-HIT, and
then the protein clusters observed at each frequency were counted. The y-axis values were transformed to percentages, and the numbers on the
top of bars refer to the absolute values of protein clusters observed in n WWTPs
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in a wide range of phyla. Non-AS MAGs were domin-
ant in the Firmicutes clade (which contained only 2%
AS MAGs). More AS MAGs than non-AS MAGs
belonged to Myxococcota (93% AS MAGs) and Plancto-
mycetota (80% AS MAGs). Considerable amounts of both
AS and non-AS MAGs were present in most of the
remaining clades. These patterns remained basically un-
changed when the number of AS and non-AS MAGs used
for tree construction increased. Overall, the large-scale phylo-
genetic analysis based on random selection shows that the
AS MAGs are phylogenetically interspersed among non-AS
MAGs, and no clear separation patterns were observed.

We further investigated the differences between AS and
non-AS MAGs by annotating them with the database of
clusters of orthologous groups of proteins (COGs). As pro-
teins in each COG have the same domain architecture and
likely have the same function [22], comparison of COG
profiles may reflect the different functions encoded in the
MAGs. A COG presence/absence matrix was generated for
the 2024 bacterial AS MAGs and 7164 non-AS bacterial
MAGs. A t-Distributed Stochastic Neighbor Embedding (t-
SNE) analysis based on the COG presence/absence matrix
was able to separate MAGs associated with different phyla
(Fig. 3b). However, no clear grouping patterns between AS

Fig. 3 Phylogenetic and functional comparison of AS MAGs and non-AS MAGs. a A whole-genome maximum likelihood phylogenetic tree consisting
of AS MAGs and non-AS MAGs. One thousand MAGs randomly selected from AS bacterial MAGs and 1000 MAGs randomly selected from other
environments (Parks et al. [20]) were used to build this whole-genome tree with the same methods as in Fig. 1b. The outside percent value refers to
the relative abundance of AS MAGs in each clade. b Clustering of the AS and non-AS MAGs based on the COG presence/absence matrix with the t-
SNE algorithm. The 2000 MAGs in a were used to generate this figure. The points representing MAGs are colored according to the taxonomy of each
MAG. c The same clustering plot as in b, with the red points representing AS MAGs and blue points representing non-AS MAGs
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MAGs and non-AS MAGs (Fig. 3c) were observed, which
was similar to the results of the phylogenetic tree. Most of
the AS and non-AS MAGs were widely distributed and co-
present in most phyla, except that few AS MAGs were
observed in Firmicutes and some AS MAGs were separated
from non-AS MAGs in the Bacteroidota cluster.

A machine learning approach to distinguish between AS
and non-AS MAGs based on COGs
We further explored whether machine learning can bet-
ter distinguish between AS and non-AS MAGs. To do
so, the COG presence/absence matrix generated from
the 2024 AS and 7164 non-AS MAGs was used as an in-
put of the random forest model (Fig. 4). After the model
was constructed and trained, its accuracy and applicabil-
ity were further evaluated. Both the holdout method and
k-fold cross-validation were applied to verify the model
to avoid the overfitting issue. For the holdout method,
the dataset was divided into two partitions as testing
(20%) and training (80%) sets. The number of trees is an
important parameter affecting the accuracy of the ran-
dom forest algorithm and should be tuned. As shown in
Additional file 1: Figure S5, after the tree number (n es-
timators) was increased to 200, the accuracy did not in-
crease with the number of trees, and other parameters
(tree depth and max features) were also simultaneously
optimized (Additional file 1: Figure S5). With optimized
parameters (n estimators 300, tree depth 20, and max
features 100), the training and testing data groups were
analyzed (Fig. 5a), and the overall prediction accuracy of
the random forest model achieved 96.6% (94% for AS
and 97% for non-AS MAGs, Additional file 1: Table S4).
Particularly, the recall (i.e., true positive rate) for non-AS
MAGs was 98%, which was higher than that of the AS
MAGs (91%). This result suggests that approximately 9%

of AS MAGs were wrongly classified as non-AS MAGs.
The F1-score, which is the harmonic average of the pre-
cision and recall, of AS and non-AS MAGs was 0.93 and
0.98, respectively. The classification accuracy obtained
from 10-fold stratified cross-validation ranged from 95.0
to 95.6% (Fig. 5b), suggesting that the model is reliable
and accurate, and no overfitting was observed. Receiver
operating characteristic (ROC) curves also demonstrated
the excellent performance (area under the ROC curve
(AUC) ranged from 0.94 to 1; for the mean ROC curve,
AUC = 0.98) of the random forest model (Fig. 5c).
We further investigated the quality (completeness and

contamination) and phylogeny of the wrongly predicted
MAGs. Figure 5d indicates that the wrongly predicted
MAGs were evenly distributed among correctly predicted
MAGs. There was no significant difference between the
contamination values of the two groups of MAGs (t test,
P < 0.05). The average contamination of the wrongly pre-
dicted MAGs (1.7%) was lower than that of the correctly
predicted MAGs (2.2%), and the average completeness of
the wrongly predicted MAGs (82.1%) was slightly higher
than that of the correctly predicted MAGs (81.6%). This
suggests that the overall quality of wrongly predicted
MAGs is better than that of correctly predicted MAGs.
Therefore, completeness and contamination levels may
not be the major reasons leading to incorrect prediction.
Phylogenetic analysis showed that erroneously predicted
MAGs were distributed in various phyla, while many were
associated with Proteobacteria, which was inherently di-
verse (Additional file 1: Figure S6).

Different functional features between AS and non-AS
MAGs
During the random forest model training, an importance
value was assigned to each COG. The COGs with higher

Fig. 4 Flowchart of the implementation of machine learning for predicting AS and non-AS MAGs
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importance values were more informative when the model
was used to predict whether a MAG was from AS. There-
fore, by analyzing the importance of each COG, the func-
tions that differentiate the sources of MAGs can be
identified. Figure 6a shows the presence/absence of the top
20 COGs based on the importance value among the MAGs
(see Additional file 1: Table S5 for the importance values
and descriptions). Some COGs (e.g., COG1979, 1328, 1464,
2011, and 1636) were clearly rarely present in AS MAGs.
Proteins of these COGs are related to anaerobic metabo-
lisms or functions, such as alcohol dehydrogenase and an-
aerobic ribonucleoside-triphosphate reductase. In contrast,
several COGs (e.g., COG3324, 2114, 2107, and 3303) were
more frequently observed in AS MAGs than in MAGs from
other environments. Proteins of COG3324 and COG 2114
are related to sensing the nutritional contents of the sur-
rounding media or other environmental signals [23]. Pro-
teins of COG 3033 were annotated as tryptophanase, which

catalyzes the beta-elimination reaction of L-tryptophan to
yield indole, ammonium, and pyruvate, and the produced
indole molecules may affect biofilm formation and multi-
drug exporters [24].
Many COGs besides the top 20 also contributed to the

machine learning-based prediction. Among them, 148
COGs accounted for 50% of the cumulative importance,
and approximately 1500 COGs were needed to reach a
cumulative importance of 90% (Fig. 6b). This result indi-
cates the highly diverse functional features of the AS micro-
biomes and the strong capability of the machine learning
approach in capturing complex information. It also ex-
plained why the conventional phylogenetic and ordination
approaches failed to separate the AS and non-AS MAGs.

Discussion
Despite the important roles of AS microorganisms in re-
moving various pollutants from wastewater, the microbiome

Fig. 5 Performance of the random forest model. a Confusion matrix showing the performance of the random forest model on the 20% testing
data group of the holdout validation. b Prediction accuracy of the random forest model determined based on 10-fold cross-validation. c ROC
curves for evaluating the random forest model created from 10-fold cross-validation. d The completeness and contamination of correctly
predicted MAGs and wrongly predicted MAGs. Boxplots along the x- and y-axes show the means and quartiles of the completeness and
contamination values of correctly and wrongly predicted MAGs
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in AS remains largely uncharacterized. Based on metage-
nomic assembly and binning strategies, this study con-
structed an AS genome catalog consisting of 2024 bacterial
and 21 archaeal MAGs recovered from 114 global municipal
AS samples. This catalog likely represents the largest re-
ported AS genome collection. Its coverage of the bacteria in
AS systems is considered to be high, as up to 50–70% of the
metagenomic sequencing reads could be mapped to the
MAGs. Thus, this catalog could enable us to comprehen-
sively profile the AS bacterial community structures and
functions in a higher-resolution manner.
We found that the bacterial MAGs obtained from dif-

ferent WWTPs could be largely different according to
DNA and protein comparisons, especially for WWTPs
located in geographically distant areas. This suggests
that AS MAGs may have plant-specific features at the
genetic level and is consistent with a recent study based
on 16S rRNA gene sequencing showing that municipal
AS has a small, global core bacterial community [1].
Since MAGs contain much more genetic information
and have more variants than 16S rRNA genes, it can be
inferred that the genomes of the bacteria within the
small core determined based on the 16S rRNA gene
could also be largely different in different WWTPs.
Therefore, the number of highly similar bacterial ge-
nomes present in different WWTPs might be very lim-
ited. The observation of small-core populations is in line
with the previously reported functional redundancy in

AS ecosystems [25, 26]. Although the overall functions
of AS in all municipal WWTPs are carbon and nutrient
removal, different operational parameters and wastewa-
ter compositions may lead to significantly different
microbial communities with similar functions in differ-
ent WWTPs. Moreover, we found that the similarity
between MAGs of WWTP1 and WWTP2 located in the
same city is higher than the similarity between MAGs of
other WWTPs (Fig. 2 and Additional file 1: Figure S4).
This is probably due to the similar wastewater composi-
tions and environmental conditions in WWTP1 and
WWTP2. This finding agrees with previous reports [8, 9]
that regional WWTPs have more core bacteria taxa than
global WWTPs [1]. Overall, the low similarity of the
MAGs and proteins between different WWTPs suggests
that extremely high genetic diversity is present in the AS
ecosystem.
Due to the extremely high genetic complexity in AS,

the phylogenetic tree and COG ordination analysis failed
to distinguish between AS MAGs and non-AS MAGs.
The major reason is that phylogenetic analysis and COG
ordination are processes developed to reduce the dimen-
sionality of multivariate data. For phylogenetic tree con-
struction, only a limited number, usually a few hundreds,
of genes coding universally conserved proteins are selected
among 2000–3000 genes in a bacterial genome [21], lead-
ing to a concomitant loss of genetic information. Further
loss occurs when the sequencing data are converted into

Fig. 6 Feature importance determined by the random forest model. a The presence/absence of the top 20 COGs (with the highest importance
values) in each MAG (heatmap). The “red” and “white” colors represent presence and absence, respectively. The bar plot shows the percentage of
MAGs carrying each COG in the AS MAG group and in the non-AS MAG group. The importance values and descriptions are shown in Additional
file 1: Table S5. b Cumulative importance values of the COGs

Ye et al. Microbiome            (2020) 8:16 Page 8 of 13



distances (distance-matrix methods) or likelihood estima-
tions (maximum likelihood methods) or when singular
sites are discarded (parsimony methods) [27, 28]. The
ordination methods (including t-SNE) also suffer from
information loss due to the dimension reduction [29].
Although dimension reduction is important in some cases
to summarize significant information from redundant
high-dimensional data [30], its application could miss the
subtle dependencies in the datasets; for instance, the
differences between AS and non-AS MAGs were not
captured in this study. Here, we found that a machine
learning approach (random forest model) accurately dis-
tinguished between AS MAGs and non-AS MAGs based
on COG presence/absence because the random forest
algorithm could take full advantages of high-dimensional
data by constructing a multitude of decision trees [31].
The high prediction accuracy of machine learning also

suggests that municipal WWTPs can select bacteria with
specific functions. Although the bacterial species in dif-
ferent municipal WWTPs could be different [32], they
may have similar deterministic functional traits to adapt
themselves to the AS system. This idea complements the
recent finding that the stochastic process is more import-
ant than deterministic factors in shaping the community
assembly in AS based on 16S rRNA gene sequencing [1].
The higher resolution of genome-level analysis reveals that
AS bacterial genomes have specific functional traits des-
pite stochastic community assembly. Based on the random
forest algorithm, we identified several functional features
that are likely important for the bacteria in AS systems.
Some features are primarily related to aerobic conditions
in municipal WWTP bioreactors. Besides, we also found
that COGs involved in sensing the nutritional contents or
other environmental signals are important for bacteria in
AS. This is probably related to the more frequent changes
of loading rate and other conditions in wastewater treat-
ment bioreactors than other natural environments (e.g.,
soil and sea water). Another functional feature is regulat-
ing of the biofilm formation, which also important for AS
because most bacteria in AS are involved in floc (a special-
ized type of biofilm) formation. However, the role of many
other COGs and their co-occurrence contributions to the
machine learning model remain unexplained. It should
also be noted that the protein functions inferred based on
COG annotation may not be sufficient to reflect the de-
tailed functional features of the AS. Future efforts are
needed to investigate and confirm the functions of the
proteins assigned to these COGs.
Despite the high prediction accuracy of the random for-

est algorithm, we also noted some false positive and false
negative predictions. Further analysis shows that these er-
roneous results were not due to the quality (completeness
and contamination) of the MAGs, suggesting that the ran-
dom forest model could handle datasets with missing

values (incomplete MAGs) and a certain level of noise
(contaminated MAGs) well [33]. A small number of erro-
neous results are reasonable because AS is an open ecosys-
tem, and extraneous microorganisms could be introduced
into the AS through incoming raw sewage [8] or upstream
biological processes [34]. In addition, the microorganisms
in AS could also be easily spread to other environments via
effluent discharge to receiving water bodies [35]. These sto-
chastic propagation processes could not be captured by the
machine learning model, and other technologies should be
applied to identify these minor species.
Although high percentages of the metagenomic sequen-

cing reads (50–75% for most samples) were included in the
AS MAGs obtained in this study, a large number of bacter-
ial genomes in the AS still remain unavailable due to the
high complexity of the AS microbiome and microdiversity
issues, which significantly hampers genome assembly and
binning [12, 36]. Also, many MAGs may not be obtained
due to the relatively low sequencing depths of some sam-
ples analyzed in this study (Additional file 1: Table S1). We
anticipate that these genomes also possess functional fea-
tures similar to those of the MAGs obtained in this study,
and future investigations with higher sequencing depth
based on long-read sequencing [37] or single-cell sequen-
cing [38] are needed to confirm this hypothesis. In addition,
although thousands of COGs were identified by the ma-
chine learning model as important functional features to
distinguish between AS MAGs and non-AS MAGs, most
of them could not be well annotated. Further investigation
of these proteins would be beneficial to improve our under-
standing of the microbial ecology of AS systems and pro-
vide a theoretical foundation for optimizing AS processes.
Moreover, it should be noted, like other metagenomic stud-
ies, incorrect contig assembly and false assignment of as-
sembled contigs to MAGs [39] may also occur in the MAG
catalog of this study. Therefore, caution should be taken
when using this dataset in future studies and various ana-
lyses and experiments are encouraged to confirm the
results.

Conclusions
In summary, our work provides one of the largest gen-
ome resources for investigation of the AS microbiome.
Based on this, we found that the AS MAGs have obvious
plant-specific features and that few genomes and pro-
teins are shared by different WWTPs, especially for
WWTPs located in geographically distant areas. Despite
the differences, specific functional traits of AS MAGs,
including functions related to aerobic metabolism, nutri-
ent sensing/acquisition, and biofilm formation, were
identified by a machine learning approach based on the
COG presence/absence matrix. These features are likely
important for bacteria to adapt themselves in AS sys-
tems. By applying the machine learning approach, AS
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MAGs could be differentiated from non-AS MAGs with
an accuracy of 96.6%. The results demonstrated that ma-
chine learning approach could be a powerful tool for un-
derstanding the microbial ecology in different ecosystems.

Methods
Activated sludge sampling
In this study, 57 AS samples were collected from the aer-
ation tanks of 11 full-scale municipal WWTPs in 8 cities
of China for metagenomic sequencing (Additional file 1:
Table S1). For the two WWTPs in Nanjing City, time-
series sampling was conducted every month from January
2014 to December 2015, and 24 samples were obtained
from each of the two WWTPs. For other WWTPs, sam-
pling was conducted only once in each plant during the
period from April 2017 to July 2017. Detailed information
about the WWTPs is shown in Additional file 1: Table S1.
All sludge samples were fixed in 50% (v/v) ethanol aque-
ous solution and transported on ice to the laboratory for
DNA extraction.

DNA extraction and metagenomic sequencing
DNA was extracted from the AS samples using the Fas-
tDNA™ SPIN Kit for Soil (MP Biomedicals, Irvine, CA, USA)
following the manufacturer’s protocol. The DNA concentra-
tion and quality were determined using a NanoDrop One
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) and agarose gel (2%) electrophoresis. Metage-
nomic sequencing was conducted to obtain the entire gen-
omic information from the sludge samples. DNA extracted
from each AS sample was used for metagenomic library con-
struction and then sequenced on an Illumina HiSeq X Ten
platform (San Diego, CA, USA) with a paired-end (2 × 150)
sequencing strategy. The raw metagenome reads have been
deposited in the NCBI Sequence Read Archive and are avail-
able under the BioProject PRJNA556302.

Collection of public activated sludge metagenomic data
and metagenome-assembled genomes
In addition to the 57 AS metagenomes sequenced in this
study, we also downloaded 57 other municipal AS metage-
nomic datasets reported in previous studies for assembly
and genome binning. All of the datasets were generated
on the Illumina HiSeq platform with paired-end sequen-
cing strategy. The accession numbers and information of
these datasets are shown in Additional file 1: Table S1,
Table S2, and Fig. S1.
Moreover, a few thousands of bacterial MAGs in a pre-

vious study [20] were also used in this study. The MAGs
obtained from the anaerobic digesters and laboratory-
scale wastewater treatment reactors in this catalog were
excluded. Because the seed sludge of these reactors is usu-
ally activated sludge, but the influent and operational con-
ditions may be quite different from those of the typical

aerobic reactors in municipal wastewater treatment plants.
Therefore, their microbial communities may be quite dif-
ferent from those of the typical activated sludge. Finally,
7164 bacterial draft genomes recovered from the metagen-
omes of different environments in the previous study [20]
were used to prepare the input data for the machine learn-
ing model.

Metagenomic assembly and contig binning
The metagenomic data were trimmed and quality-
filtered using Trimmomatic v 0.32 [40] with default
parameters. Then, clean reads from all samples of each
WWTP were assembled into contigs using MEGAHIT
v1.1.1 [41] with the following parameters: --k-min 41
--min-contig-len 1000. Then, the clean reads of each
sample were mapped to the assembled contigs using
Bowtie2 v 2.2.9 [42]. A depth file was generated with the
jgi_summarize_bam_contig_depths included in Meta-
BAT2 [43] based on the mapping results. Then, draft ge-
nomes were recovered based on tetranucleotide frequency
and contig abundance using MetaBAT2 v 2.12.1 [43]. The
quality of the recovered genome bins was assessed by
using CheckM v 1.0.7 [44]. Open reading frames were pre-
dicted in the assembled scaffolds using Prodigal v 2.6.1
[45], CD-HIT v 4.7 [46] was used to group protein
sequences into clusters based on sequence identity, and
Diamond v0.9.24.125 [47] was used to compare the pro-
tein sequences obtained from different WWTPs.

Merging of compatible bins and genome refining
The “merge” command of CheckM v 1.0.7 [44] was used
to identify pairs of bins that could be merged according
to the following criteria: (1) the completeness increased
by ≥ 10% and the contamination increased by ≤ 1%
when the bin pairs were merged; (2) the differences
between mean GC of the bins were within 3%; (3) the
mean coverage of the bins had an absolute percentage
difference ≤ 25%; and (4) the bins had identical taxo-
nomic classifications as determined by CheckM.
Genome refining was conducted with RefineM v0.0.24

[20]. Briefly, contigs with a GC or tetranucleotide dis-
tance outside the 98th percentile of the expected distri-
butions were identified and removed. Contigs were also
removed if their mean coverage had an absolute percent-
age difference ≥ 50% when compared with the mean
coverage of the bin. The “taxon_profile” command of
RefineM was used to taxonomically classify the genes
constituting each bin, and contigs with divergent taxo-
nomic classifications were removed with the “taxon_fil-
ter” command of RefineM. In addition, contigs with 16S
rRNA genes that appear incongruent with the taxonomic
identity of each bin were also identified and removed
with RefineM. Only MAGs with an overall quality ≥ 50
(defined as completeness −5 × contamination) were used
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for downstream analysis. After genome refining, the gen-
ome taxonomy was assigned using GTDB-Tk v 0.2.1
(https://github.com/Ecogenomics/GTDBTk). The ANIs
between MAGs were determined using FastANI [48].

Genome phylogenetic tree construction
The phylogenetic analyses were conducted with Phy-
loPhlAn [21] using the “dev” branch of the repository
(https://bitbucket.org/nsegata/phylophlan/overview). The
genome maximum likelihood phylogenetic tree was gener-
ated in Newick format using the 400 universal PhyloPhlAn
markers conserved across the bacterial and archaeal do-
mains with the following options: “--diversity high --accur-
ate --min_num_markers 80.” To avoid the crowd of tree
branches, we used 1000 randomly selected AS MAGs and
1000 randomly selected non-AS MAGs to construct the
tree. The final tree was reconstructed for visualization using
GraPhlAn v1.1.3 [49].

Functional genomic analysis
To identify protein domains in a genome, we annotated
all of the MAGs using Prokka v 1.13.3 [50] with default
parameters, and all protein domains were classified in
different COGs. Then, a COG matrix was derived with
MAGs in rows and the presence/absence of the COGs
in each MAG as columns:

COG1 COG2 … COGj

MAG1 0 1 … 1
MAG2 1 0 … 0
… … … … …

MAGi 0 0 … nij

where the matrix element nij equals 1 if MAGi encodes
a protein ortholog belonging to COGj and equals 0
otherwise.
The COG matrix was used to perform t-SNE analysis

with the Rtsne package (https://cran.r-project.org/web/
packages/Rtsne) and was also used for the construction
of the machine learning model.

Development of the machine learning model
The COG matrix constructed based on the functional
annotation of the MAGs obtained in the present study
and the previous study [20] was used to formulate the
machine learning model to distinguish bacteria from
municipal AS and those from other environments. The
final dataset consists of 9288 MAGs (2024 from AS and
7164 from other environments) and 2580 COGs and
was used to train and test two machine learning models
based on support vector machine and random forest
algorithms. Random forest was chosen because it has
higher accuracy than support vector machine. Moreover,
the random forest algorithm is suitable for datasets with

many features, especially when each of the features con-
tributes little information [31].
The model training and evaluation were performed with

scikit-learn (https://scikit-learn.org/), a Python package
for machine learning. Both the holdout method and k-fold
cross-validation were applied to verify the model. For the
holdout method, the dataset was divided into two parti-
tions as training (80%) and testing (20%) sets. The training
set was used to train the model, and the unseen testing
data were used to test the predictive ability. Overfitting is
a common issue in machine learning that can occur in
most models [51]. In this study, out-of-bag (OOB) esti-
mates were applied to avoid overfitting. In addition, 10-
fold cross-validation was conducted to verify that the
model was not overfitted. The dataset was randomly parti-
tioned into 10 mutually exclusive and approximately equal
subsets, and one set was kept for testing while the others
were used for training. This process was iterated with the
10 subsets. Furthermore, the COGs significantly contrib-
uting to the machine learning-based prediction were ana-
lyzed based on the feature importance provided by the
random forest model.
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