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Abstract

Background: Cell-free DNA (cfDNA) in blood, urine, and other biofluids provides a unique window into human
health. A proportion of cfDNA is derived from bacteria and viruses, creating opportunities for the diagnosis of
infection via metagenomic sequencing. The total biomass of microbial-derived cfDNA in clinical isolates is low,
which makes metagenomic cfDNA sequencing susceptible to contamination and alignment noise.

Results: Here, we report low biomass background correction (LBBC), a bioinformatics noise filtering tool informed
by the uniformity of the coverage of microbial genomes and the batch variation in the absolute abundance of
microbial cfDNA. We demonstrate that LBBC leads to a dramatic reduction in false positive rate while minimally
affecting the true positive rate for a cfDNA test to screen for urinary tract infection. We next performed high-
throughput sequencing of cfDNA in amniotic fluid collected from term uncomplicated pregnancies or those
complicated with clinical chorioamnionitis with and without intra-amniotic infection.

Conclusions: The data provide unique insight into the properties of fetal and maternal cfDNA in amniotic fluid,
demonstrate the utility of cfDNA to screen for intra-amniotic infection, support the view that the amniotic fluid is
sterile during normal pregnancy, and reveal cases of intra-amniotic inflammation without infection at term.
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Background
Metagenomic sequencing of cell-free DNA (cfDNA)
offers a highly sensitive approach to screen for patho-
gens in clinical samples [1–4]. The sensitivity of meta-
genomic sequencing of cfDNA in plasma can be boosted
by the implementation of library preparations optimized
to recover short, degraded microbial cfDNA [5], or by
strategies that selectively enrich microbial DNA or deplete
host DNA [6–8]. A major remaining challenge is the rela-
tively poor specificity of cfDNA metagenomic sequencing,
which is limited by alignment noise, annotation errors in
reference genomes, and environmental contamination [9].
Here, we report low biomass background correction

(LBBC), a tool to filter background contamination and
noise in cfDNA metagenomic sequencing datasets. We have

applied LBBC to two independent datasets. We first re-
analyzed a dataset from a previous study that investigated
the utility of urinary cfDNA as an analyte to monitor urinary
tract infection (UTI) [2]. Next, we generated a new dataset
of cfDNA in amniotic fluid collected from uncomplicated
pregnancies or those complicated with clinical chorioamnio-
nitis at term, a common heterogeneous condition that can
occur in the presence or absence of intra-amniotic infection
[10]. We report a first, detailed study of the properties of
cfDNA in amniotic fluid. For both datasets, detailed micro-
biologic workups, including results from conventional bac-
terial culture and/or PCR, were available to benchmark the
LBBC workflow. We demonstrate that LBBC greatly im-
proves the specificity of cfDNA metagenomic sequencing,
while minimally affecting its sensitivity.

Results
To extract sequence information from cfDNA isolates,
we used a single-stranded DNA library preparation that
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improves the recovery of microbial cfDNA relative to
host cfDNA by up to 70-fold for cfDNA in plasma [5].
We quantified microbial cfDNA by alignment of se-
quences to microbial reference genomes [11, 12] (see the
“Methods” section). We identified two classes of noise,
which we addressed using a bioinformatics workflow
that implements both novel and previously described
filtering approaches [13, 14] (Fig. 1a). The first type of
noise can be classified as “digital crosstalk” and stems
from errors in alignment and contaminant sequences
that are present in microbial reference genomes, includ-
ing human-related sequences or sequences from other
microbes. Digital crosstalk affects distinct segments of a
microbial genome and gives rise to inhomogeneous
coverage of the reference genome. We computed the
coefficient of variation in the per-base genome coverage
for all identified species (CV, computed as the standard
deviation in genome coverage divided by the mean
coverage) and removed taxa for which the CV differed
greatly from the CV determined for a uniformly sampled
genome of the same size (see the “Methods” section),
because this indicated that a significant number of sequences
assigned to the genome are due to digital crosstalk.

A second class of noise is due to physical contamin-
ation of the sample with environmental DNA present at
the time of collection and in reagents used for DNA
isolation and sequencing library preparation [13]. We
reasoned that the total biomass of environmental DNA
would be consistent for samples prepared in the same
batch. LBBC filters environmental contaminants by
performing batch variation analysis on the absolute
abundance of microbial DNA quantified with high
accuracy. The core elements of LBBC can be imple-
mented using any metagenomics abundance estimation
algorithm which makes use of sequence alignment to full
microbial genomes. In our analysis, we estimate the
genomic abundance of each species using a maximum
likelihood model implemented in GRAMMy [12] (see the
“Methods” section). GRAMMy helps ameliorate the
impact of closely related genomes [12]. From the relative
abundance of species, we compute the absolute number of
molecules in a dataset corresponding to a specific species,
considering differences in genome sizes for all identified
microbes. The total biomass of microbial DNA is then
estimated as the proportion of sequencing reads derived
from a species, multiplied by the measured biomass

Fig. 1 Algorithm design and application to metagenomic sequencing of urinary cfDNA. a Diagram of the major components of the LBBC workflow.
b Genus-level bacterial cfDNA (in RGE, see bar) across 44 urinary cfDNA samples from a kidney transplant cohort. Samples (columns) are grouped by
clinical diagnosis (EN, Enterococcus; EC, E. coli; Neg., negative) and sex of subject. Rows are individual genera detected. c Abundance matrix after
application of LBBC
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inputted in the library preparation reaction. Recent ap-
proaches have identified environmental contaminants by
(i) looking for batch-by-batch covariation in the relative
abundance of microbes measured by metagenomic se-
quencing or (ii) examining the (inverse) correlation be-
tween biomass of the sample and the relative abundance
of microbial DNA in the sample [13, 14]. These studies
have shown the dramatic effect of environmental contam-
ination in low biomass settings. LBBC effectively combines
these two prior approaches into one. Using this analysis
applied to the metagenomic cfDNA datasets described
below, we estimate that the total biomass of environmen-
tal, contaminant DNA can exceed 100 pg (range of 0 to
230.4 pg). This is a small amount of DNA (< 1% of se-
quencing reads) that nonetheless can significantly impact
the interpretation of metagenomic sequencing results. We
further incorporated a known-template, negative control
in the library preparation procedures to identify any
remaining contaminant sequences. The use of a negative
control is recommended for metagenomics studies [9] and
was implemented in our previous work [2, 15]. Here, we
compared the microbial abundance detected in samples to
those in controls to set a baseline for environmental con-
tamination. This analysis indicated that, on average, only
46% of physical contaminant species determined by LBBC
are removed using comparison to a negative control alone,
supporting the need for the additional filters implemented
in LBBC.
We evaluated and optimized LBBC using a dataset avail-

able from a recently published study that assessed the utility
of urinary cfDNA for the monitoring of bacterial infection
of the urinary tract [2]. We analyzed 44 cfDNA datasets
from male and female kidney recipients. These included 16
datasets from subjects with E. coli UTI, 11 datasets from
subjects with Enterococcus UTI, and 17 datasets from
subjects without UTI, as determined by conventional urine
culture performed on the same day. Prior to application of
the LBBC algorithm, the ratio of sequences assigned as
non-host vs host (paired host reads relative to sequences
assigned to microbial taxa) was 4.4 × 10−1 ± 1.68 in this
dataset. We detected 616 bacterial genera across all 44
samples (Fig. 1b; RGE > 10−6), many of which were atypical
in the urinary tract, including Herminiimonas and Methylo-
bacterium, albeit at very low abundance.
We defined two parameters for threshold-based

filtering; these are (1) the maximum difference in the
observed CV and that of a uniformly sequenced taxon
for the same sequencing depth and genome size,
ΔCVmax, and (2) the minimum allowable within-batch
variation, σ2min. A third, fixed parameter was used to re-
move species identified in the negative controls (threshold
10-fold the observed representation in the negative
controls). We optimized these parameters based on
following metric:

BCscore ¼ kTP TPð Þ þ kTN TNð Þ þ kFP FPð Þ þ kFN FNð Þ þ kU Uð Þ;

where {TP, TN, FP, FN} is the number of true posi-
tives, true negatives, false positives, and false negatives,
respectively, U is the total number of identified taxa for
which an orthogonal measurement was not performed,
and the coefficients k for these values represent weights
to optimize the filtering parameters. Here, we chose
{kTP, kTN, kFP, kFN, kU} = {4, 2, − 1, − 2, − 0.2} and used
nonlinear minimization by gradient descent on the vari-
able BCscore to determine an optimal set of threshold
parameters: {ΔCVmax, σ

2
min} = {2.00, 3.16 pg2}.

Applying LBBC with these parameters to urinary
cfDNA microbiome profiles led to a diagnostic sensitiv-
ity of 100% and specificity of 91.8%, when analyzed
against results from conventional urine culture. We
computed a confusion matrix (see the “Methods” sec-
tion) and determined the accuracy of the test to be 0.886
(no information rate, NIR = 0.386, p < 10−10). Without
LBBC, the test achieved a sensitivity of 100% but a speci-
ficity of 3.3%, and an accuracy of 0.000 (as most samples
have both E. coli and Enterococcus). Applying a simple
filter that excludes taxa with relative abundance below a
pre-defined threshold (RGE > 0.1) led to an accuracy of
0.864 (sensitivity of 81.5%, specificity of 96.7%); however,
such filtering does not remove sources of physical or
digital noise at high abundance and may remove patho-
gens present at low abundance. After applying LBBC, we
observed far fewer bacterial genera outside of Escherichia
and Enterococcus in samples from patients diagnosed with
UTI (Fig. 1c). LBBC did not remove bacteria that are
known to be commensal in the female genitourinary tract,
including species from the genera Gardnerella and Urea-
plasma [16]. For male subjects without UTI, we detected
a single Lactobacillus species among all subjects, consist-
ent with the view that the male urinary tract is sterile in
the absence of infection. For patients with UTI, the urin-
ary microbiomes were less diverse in males compared with
females, as previously reported [17]. These examples
illustrate that LBBC conserves key relationships between
pathogenic and non-pathogenic bacteria.
We next applied LBBC to the analysis of cfDNA in

amniotic fluid. Circulating cfDNA in maternal plasma
has emerged as a highly valuable analyte for the screen-
ing of aneuploidy in pregnancy [18], but no studies have
examined the properties of cfDNA in amniotic fluid. No
studies have furthermore assessed the utility of amniotic
fluid cfDNA as an analyte to monitor clinical chorioam-
nionitis, the most common diagnosis related to infection
made in labor and delivery units worldwide [19]. Trad-
itionally, it was thought that clinical chorioamnionitis
was due to microbial invasion of the amniotic cavity (i.e.,
intra-amniotic infection), which elicits a maternal in-
flammatory response characterized by maternal fever,
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uterine tenderness, tachycardia, and leukocytosis as well
as fetal tachycardia and a foul-smelling amniotic fluid
[20, 21]. However, recent studies in which amniocentesis
has been used to characterize the microbiologic state of
the amniotic cavity and the inflammatory response [amni-
otic fluid interleukin (IL)-6 > 2.6 ng/ml [22]] show that
only 60% of patients with the diagnosis of clinical chor-
ioamnionitis have proven infection using culture or
molecular microbiologic techniques [10]. The remainder
of the patients has clinical chorioamnionitis in the pres-
ence of intra-amniotic inflammation (i.e., sterile intra-
amniotic inflammation) or without neither intra-amniotic
inflammation nor microorganisms in the amniotic cavity
[10]. Therefore, the emergent picture is that clinical chor-
ioamnionitis at term is a heterogeneous syndrome, which
requires further study to optimize maternal and neonatal
outcomes [23]. We analyzed 40 amniotic cfDNA isolates
collected from the following study groups of women: (1)
with clinical chorioamnionitis and detectable microorgan-
isms (n = 10), (2) with clinical chorioamnionitis without
detectable microorganisms (n = 15), and 93 without clin-
ical chorioamnionitis (i.e., normal full-term pregnancies)
(n = 15). Microorganisms were detected by cultivation and

broad-range PCR coupled with electrospray ionization
mass spectrometry or PCR/ESI-MS (see the “Methods”
section). Data from several independent clinical assays
were available, including levels of interleukin 6 (IL-6),
white and red blood cell counts, and glucose levels (see
the “Methods” section).
We obtained 77.7 ± 31.8 million paired-end reads per

sample, yielding a per-base human genome coverage of
1.90 × ± 0.88 ×. The data provide unique insight into the
properties of amniotic fluid cfDNA. For women carrying
a male fetus, we used the coverage of the Y chromosome
relative to autosomes to estimate the fetal fraction of
cfDNA in amniotic fluid (see the “Methods” section).
The fetal fraction ranged from 6.0 to 100% and was
strongly anticorrelated with inflammatory markers such
as IL-6 [24, 25] (Spearman’s rho of − 0.763, p = 1.34 ×
10−4, n = 20; Fig. 2a). We attribute this observation to
the recruitment of immune cells to the amniotic cavity
during infection [26, 27]. We next used paired-end read
mapping to determine the fragment length profiles of
cfDNA in amniotic fluid (Fig. 2b). We found that amni-
otic fluid cfDNA was highly fragmented (median length
108 bp) and lacked the canonical peak at 167 bp typically

Fig. 2 Properties of fetal, maternal, and microbial cfDNA in amniotic fluid. a Comparison of IL-6 levels to the fraction of reads derived from the
fetus. b Fragment length profile of chromosome 21 derived cfDNA in amniotic fluid (n = 40). c Comparison of clinically measured IL-6 levels to
the difference in the median fragment length for cfDNA originating from the X and Y chromosomes. Colors for a and c correspond to clinical
status. d Bacterial species and viral families detected by cfDNA metagenomic sequencing and LBBC. Crosshairs indicate bacteria identified by 16S
sequencing. Chor./−, chorioamnionitis, no detectable microorganisms; Chor./+, chorioamnionitis, detectable microorganisms
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observed in the fragmentation profile of plasma cfDNA
[18, 28]. To determine size differences between fetal and
maternal cfDNA in amniotic fluid, we computed the me-
dian fragment length for molecules derived from the X
and Y chromosomes in cfDNA from male pregnancy
samples. We hypothesized that if all cfDNA in a sample
originated from the male fetus, the median fragment
lengths for the X- and Y-aligned DNA would be equiva-
lent, and, conversely, in samples with a large fraction of
cfDNA originating from the mother, a length discrep-
ancy may arise. Using this approach, we found that fetal-
derived cfDNA was shorter than maternal-derived
cfDNA (up to 31 bp shorter; Fig. 2c). Previous reports
have similarly noted that fetal cfDNA in urine and
plasma is shorter than maternal cfDNA [29, 30].
We next examined the utility of LBBC for the diagno-

sis of clinical chorioamnionitis. Prior to the application
of the LBBC algorithm, the ratio of sequences assigned
as non-host vs host (paired host reads relative to se-
quences assigned to microbial taxa) was 1.08 × 10−2 ±
4.76 × 10−2 in this dataset. After applying LBBC with a
relaxed batch variation minimum to account for species-
level analysis (σ2min = 1 pg2), no bacteria were detected in
the normal pregnancy group (Fig. 2d), in line with recent
studies that point to a sterile amniotic cavity and pla-
centa in the absence of infection [31, 32]. The cfDNA
sequencing assay detected only 6 of the 14 bacterial gen-
era identified by bacterial culture or PCR/ESI-MS, and
was unable to identify a fungal pathogen, Candida albi-
cans, detected by PCR/ESI-MS (see the “Methods”
section). We asked if these false negatives were due to
LBBC filtering. Relaxation of the filtering thresholds re-
vealed that Ureaplasma was removed in four samples by
the batch variation filter; other false negatives were not
due to LBBC filtering. Interestingly, in all cases of chor-
ioamnionitis without detectable microorganisms, no
bacterium was identified (Fig. 2d), in line with previous
evidence showing that chorioamnionitis and intra-
amniotic inflammation can occur in the absence of mi-
crobial invasion of the amniotic cavity [10]. Last, in two
samples, we identified a high burden of viral DNA, in-
cluding papillomavirus in one sample and bacteriophage
in another (Fig. 2d), demonstrating the utility of cfDNA
paired with LBBC to detect viruses in the amniotic fluid.

Discussion
cfDNA metagenomic sequencing is emerging as a
powerful approach to screen for infection [3]. The tech-
nique has inherent high sensitivity, but lower specificity.
Here, we described LBBC, a simple computational work-
flow to filter background contamination and noise in
cfDNA metagenomic sequencing datasets. LBBC ana-
lyzes batch effects, the uniformity of the genome cover-
age and the relationship between microbial abundance

and total biomass of the sample to identify and filter
noise contributions. Though batch effects can arise at
any step, we found some steps are more prone to
contamination and hence batch effects, in particular the
cfDNA extraction batch, while others had very little
effect, e.g., the sequencing instrument. Other possible
batch effects include the date of processing (influencing
reagent batch) and location where samples were pre-
pared (e.g., in a clean room or in a lab environment with
multiple experiments being performed); the sources of
contamination in metagenomic sequencing and batch
effects have been reviewed recently [9, 33].
The three filtering steps implemented in LLBC are

appropriate for the analysis of any low-biomass sample,
not limited to cfDNA isolates, and can be readily imple-
mented, in a modular fashion, provided that (1) the total
DNA biomass going into the sample preparation is mea-
sured and recorded, (2) batch information is available,
and (3) the microbial abundance is determined by a
sequence-based alignment method [12]. This last point
is of importance, because of the several popular algorithms
for metagenomic sequence classification, including
Metaphlan, which relies on reduced reference genomes
[34]. Such approaches preclude the ability to estimate se-
quencing coverage uniformity across the genome, required
for the CV filter that is part of LBBC [12]. To our know-
ledge, LBBC is the first filtering scheme to analyze sequen-
cing coverage heterogeneity across thousands of microbial
genomes and filter results based on the coefficient of
variation in sequence coverage.

Conclusions
We have described LBBC, a bioinformatics noise filtering
tool informed by the uniformity of the coverage of micro-
bial genomes and the batch variation in the absolute abun-
dance of microbial cfDNA. We applied LBBC to a recently
published urinary cfDNA dataset. Comparison to clinical
testing showed that LBBC greatly improves the specificity
of metagenomic cfDNA sequencing while minimally affect-
ing the sensitivity of the assay (Fig. 1). We next applied
LBBC to a novel dataset of cfDNA from the amniotic fluid
of subjects with and without clinical chorioamnionitis. This
dataset allowed us to characterize the properties of mater-
nal and fetal DNA in the amniotic sac for the first time
(Fig. 2). While LBBC greatly reduces the noise in metage-
nomic sequencing, some technical challenges, inherent to
metagenomic read assignments, remain. For example, some
reads, originating from a source microbe, can incorrectly
align to taxa with a highly similar genome; LBBC reduces
the frequency of erroneous read assignments, but it does
not completely remove these reads.
The application of LBBC to a new dataset of cfDNA in

amniotic fluid revealed a bacteria-free environment in
healthy full-term pregnancies and in a subset of patients
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with clinical chorioamnionitis and intra-amniotic inflam-
mation as well as in the presence of pathogenic bacteria
in many cases of clinical chorioamnionitis with intra-
amniotic infection and inflammation. In addition, few
microbial taxa were identified in cases of chorioamnionitis
with no detectable bacteria via culture or PCR/ESI-MS. In
summary, metagenomic cfDNA sequencing, complemen-
ted with a background reduction workflow, enables identi-
fication of potential pathogens in clinical samples with
both high sensitivity and specificity.

Methods
Sample description—urinary cfDNA
Forty-four sample datasets were selected from a recent
study [2]. Urine samples were collected under an Institu-
tion Review Board protocol that was approved at Weill
Cornell Medicine. All subjects provided written informed
consent. Datasets were selected from the study from one
of two groups: (1) UTI—those corresponding to a same-
day positive urine culture (> 10,000 CFU/mL) indicating
monomicrobial E. coli, Enterococcus faecium, or Entero-
coccus faecalis UTI. A single sample from the original
study [2] (GU14) was excluded due to the high likelihood
that it was R. ornithinolytica infection incorrectly diag-
nosed as an E. coli UTI. (2) No UTI—samples from pa-
tients with same-day negative standard urine culture and
no microorganisms detected at earlier or later dates.
Sample metadata is included in Additional file 1.

Sample description—amniotic fluid cfDNA
Forty samples were collected from a cohort of subjects with
full-term pregnancy, which were uncomplicated (n = 15), or
burdened with clinical chorioamnionitis with detectable
microorganisms (n = 10) or clinical chorioamnionitis with-
out detectable microorganisms (n = 15). Amniotic fluid
samples were obtained by transabdominal amniocentesis
performed for evaluation of the microbial and inflammatory
status of the amniotic cavity in patients with clinical chor-
ioamnionitis, whereas women approaching term underwent
an amniocentesis for assessment of fetal lung maturity.
Twenty of the 40 samples were from mothers pregnant
with male fetus. Clinical chorioamnionitis was diagnosed by
the presence of maternal fever (temperature > 37.8 °C)
accompanied by two or more of the following criteria: (1)
uterine tenderness, (2) foul-smelling amniotic fluid, (3) fetal
tachycardia (heart rate > 160 beats/min), (4) maternal
tachycardia (heart rate > 100 beats/min), and (5) maternal
leukocytosis (leukocyte count > 15,000 cells/mm3) [20, 24].
Amniotic fluid samples were transported to the clinical la-
boratory in a sterile capped syringe and cultured for aerobic
and anaerobic bacteria, including genital Mycoplasmas.
The clinical tests also included the determination of amni-
otic fluid white blood cell (WBC) count [35], glucose
concentration [36], and Gram stain [37]. Microbial invasion

of the amniotic cavity was defined as a positive amniotic
fluid culture and/or polymerase chain reaction with electro-
spray ionization mass spectrometry (PCR/ESI-MS) (Ibis®
Technology—Pathogen, Carlsbad, CA, USA) test result
[38]. Intra-amniotic inflammation was defined as an
amniotic fluid IL-6 concentration > 2.6 ng/mL [22]. Sample
metadata is included in Additional file 1.

cfDNA extraction and library preparation
Amniotic fluid samples were thawed from − 80 °C and
centrifuged at 1500×g for 5 min. The top 175 μL of
supernatant was removed and placed in a 1.5-mL tube
with 825 μL of 1 × PBS and pipette mixed. The amniotic
fluid was diluted to 1 mL in PBS, and cfDNA was
isolated using the “Urine Supernatant 1 mL” protocol of
the QiaAmp circulating nucleic acid extraction kit. Total
cfDNA was eluted into 30 μL of the elution buffer. The
DNA concentration was determined using the Qubit 3.0
Fluorometer (dsDNA HS Qubit). Libraries of extracted
amniotic fluid cfDNA were prepared using a single-
stranded DNA library preparation method. For this
study, sample batches were not continuous between the
cfDNA extraction, library preparation, and sequencing
steps due to sample processing constraints. LBBC can
address batch effects at any stage but will perform best if
samples are maintained in the same batch throughout
sample processing.

cfDNA sequencing
Paired-end DNA sequencing was performed on Illumina
NextSeq 500 (2 × 75 bp) at Cornell University or Illu-
mina HiSeq (2 × 100 bp) at Michigan State University.
Paired-end fastq files were trimmed to 75 bp, and
samples processed on both NextSeq and HiSeq platforms
were concatenated into a single file for each sample.

Fetal fraction determination
Adapter-trimmed reads were aligned to the UCSC hg19
build using bwa mem [39]. Duplicates, low-quality reads,
and reads with secondary sequence alignments were
removed. Aligned bam files were processed in 500 bp
windows using the R package HMMcopy (version 1)
[40]. We determined the coverage exclusively in these
regions with high mappability scores to extrapolate the
coverage of the whole chromosome. The fetal fraction
was determined as 2Y/A for subjects who were known to
be pregnant with male fetuses, where Y and A are the in-
ferred sequencing coverage of the Y chromosome and
autosomes, respectively. To confirm the accuracy of the
measurement, we ran the algorithm on samples from
subjects with female fetuses, which we would expect to
have a zero fetal fraction. We determined very few mis-
alignments to the Y chromosome (median 2.6%, n = 20).
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Microbial abundance determination
Fastq files were trimmed (Trimmomatic-0.32 [41]) and
aligned to the human genome (UCSC hg19 build) using
bowtie2 [42] (in very sensitive mode, version 2.3.5.1).
Human-unaligned reads were retrieved and aligned to an
annotated NCBI microbial database using BLAST [11]
(blastn, NCBI BLAST 2.2.28+). After read alignment, a
maximum likelihood estimator, GRAMMy (version 1),
was used to adjust the BLAST hits [12]. The adjusted hits
to each taxon and respective genome size of each taxon
were used to compute the taxon genome coverage. The
ratio of each taxon’s genomic coverage to that of human
chromosome 21 was used to compute the relative gen-
omic abundance of each taxon in each sample.

Low biomass background correction
The biomass correction method was employed in three
steps: (1) BLAST hits were collected for every taxon with
ten alignments or more. Genomes were aggregated into
1-kbp bins and the number of alignments within each
bin was determined. The coefficient of variation (the
standard deviation in alignments per bin divided by the
mean number of alignments per bin) was calculated for
each taxon in the sample. Given the number of alignments
to a specific taxon and the taxon size, we randomly gener-
ated reads across the genome to simulate uniform sam-
pling. The CV of this simulated taxon was calculated
(CVsim). The difference between the CV and CVsim (ΔCV)
was then determined to look at coverage statistic discrep-
ancy. CV and ΔCV were calculated for every taxon in
every sample in the cohort. Taxa were removed if they
exceeded a maximum allowable ΔCV value.
(2) The mass of each taxon present in a sample was

calculated by calculating the adjusted number of BLAST
hits from GRAMMy, dividing by the total number of
sequencing reads, and multiplying by the mass of DNA
added into library preparation (measured using a Qubit
3.0 Fluorometer). Taxon biomasses were compared
across samples extracted or prepared within batches
using the “cov” command standard in R. The diagonal of
the output matrix reveals the variation within the batch
for a given taxon. Taxa with variation below the mini-
mum filtering parameter (σ2) were removed from every
sample in the batch.
(3) For all of our wet lab procedures, a negative con-

trol (dsDNA synthetic oligos of length 25 bp, 40 bp, 55
bp, and 70 bp; each resuspended 0.20 μM eluted in TE
buffer) was processed alongside samples in batches. Mi-
crobial controls were sequenced alongside samples and
were designed to take up 1–3% of the sequencing lane
(roughly four to 12 million reads). Control samples were
processed through the bioinformatics pipeline, and the
taxa read proportion was calculated (raw BLAST hits to
a taxon divided by total raw sequencing reads). The taxa

read proportion was calculated in samples and compared
with that in the controls. Taxa for which the read propor-
tion did not exceed 10-fold higher than the contaminant
read proportion were removed. Following processing, the
relative genomic abundance (measured in relative gen-
omic equivalents, RGE) was summed for taxa to the spe-
cies, genus, or family level, depending on desired output.

Correction optimization
To facilitate the optimization of filtering parameters
ΔCVmax and σ2min, we created a store based on a linear
combination of values related to the true positive, true
negative, false positive, and false negative rates. We opti-
mized these parameters based on the following metric:

BCscore ¼ kTP TPð Þ þ kTN TNð Þ þ kFP FPð Þ þ kFN FNð Þ þ kU Uð Þ;

where {TP, TN, FP, FN} is the number of true positives,
true negatives, false positives, and false negatives, respect-
ively; U is the total number of identified taxa for which a
secondary method of identification was not performed;
and the coefficients k for these values represent weights to
optimize the filtering parameters based on the specifics of
the application. Here, we chose {kTP, kTN, kFP, kFN, kU} =
{4, 2, − 1, − 2, − 0.25} and used nonlinear minimization by
gradient descent to minimize (1 – BCscore) to determine
an optimal set of threshold parameters.

Other statistical analyses
All statistical analyses were performed in R. Correlation
measurements were performed using Spearman correla-
tions (function cor.test). To compute the confusion
matrix in analysis of the urinary cfDNA datasets, we
constructed four possible observable states for each sam-
ple: Escherichia positive, Enterococcus positive, both
Escherichia and Enterococcus positive, and double nega-
tive. Observation of the state was determined with the
reduced microbial matrix after filtering. Observed state
was compared with standard urine culture as the refer-
ence. A 4 × 4 confusion matrix was constructed, and
statistics, including the accuracy and no information rate,
were determined using the “confusionMatrix” command
from the R caret package.

Versions of software and references
Reads were aligned to human genome build hg19. Non-
human reads were aligned to a NCBI reference database
(downloaded 2015). The following packages (with ver-
sions) were used to build the LBBC package and analyze
the data in R (version 3.6.1): caret (6.0-84), data. table
(1.12.6), devtools (2.2.1), ggplot2 (3.2.1), ggpubr (0.2.3),
ineq (0.2-13), MASS (7.3-51.4), reshape2 (1.4.3), roxy-
gen2 (6.1.1), and taxize (0.9.9).
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