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Abstract

Background: Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host.
Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes
allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome
compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes
in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in
metagenomic datasets.

Results: Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins,
and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957,
0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a
comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all
existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline
regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the
performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual
infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to
play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and
control groups, thereby revealing novel gene associations with the studied diseases.

Conclusion: PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence
factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines
the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides
further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s
modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby
making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.
Icsb.uni.lu.

Keywords: Virulence factors, Bacterial toxins, Antimicrobial resistance, Mobile genetic elements, Metagenomics,
Microbiome, Bioinformatics

* Correspondence: paul.wilmes@uni.lu

'Systems Ecology Research Group, Luxembourg Centre for Systems
Biomedicine, Esch-sur-Alzette, Luxembourg

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-020-00993-9&domain=pdf
http://orcid.org/0000-0002-6478-2924
https://pathofact.lcsb.uni.lu
https://pathofact.lcsb.uni.lu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:paul.wilmes@uni.lu

Nies et al. Microbiome (2021) 9:49

Background

Most of the microorganisms constituting the human
microbiome are commensals [1]. They contribute essen-
tial functions to the human host and contribute to its
physiological development. In contrast, pathogenic mi-
croorganisms including bacteria, viruses, fungi, and
protozoa cause disease by invading, colonizing, and
damaging the host. Virulence factors, including bacterial
toxins among others, contribute to this pathogenicity by
enhancing not only the infectivity of pathogenic bacteria
but also by exacerbating antimicrobial resistance which
in turn restricts treatment options [1].

Virulence factors enable pathogenic microorganisms
to colonize host niches ultimately resulting in tissue
damage as well as local and systemic inflammation.
These factors are important for pathogens to establish
an infection and span a wide range, thus contributing
both directly and indirectly to disease processes [2].
These virulence traits include cell-surface structures, se-
cretion machineries, siderophores, regulators, etc. [3, 4].
However, of all virulence factors employed by pathogens,
bacterial toxins often have a crucial function in the
pathogenesis of infectious diseases [5]. Different types of
bacterial toxins have evolved over time to counteract hu-
man defenses. These bacterial toxins can be coarsely cat-
egorized into two groups: the cell-associated endotoxins
and the extracellular diffusible exotoxins. Exotoxins are
typically polypeptides and proteins that act to stimulate
a variety of host responses either through direct action
with cell receptors or via enzymatic modulation [5, 6].

Partly through the utilization of these virulence fac-
tors, and toxins in particular, pathogenic microorgan-
isms have been a major cause of infectious diseases
including in the context of viral co-infections [1]. The
development and medical use of antibiotics has limited
the development and spread of these pathogens by pro-
viding an effective treatment for bacterial infections.
However, the over- and mis-use of antibiotics has re-
sulted in a global increase in antimicrobial resistance
(AMR) which now threatens human health through the
emergence and spread of multidrug resistant bacteria [1,
7]. As a result, many pathogenic bacteria have now ac-
quired resistance against the main classes of antibiotics
which has led to a dramatic rise in untreatable infec-
tions, resulting in the emergence of so-called “superb-
ugs” [8]. Consequently, AMR is an urgent and growing
threat to public health with an estimated number of
deaths exceeding ten million annually by 2050 [9, 10].

The acquisition of antimicrobial resistance genes
(ARGs) is not restricted to a single strain or species of
bacteria. While commensal bacteria provide a source of
ARGs, antimicrobial resistance can be transferred to
pathogenic species through horizontal gene transfer, e.g.,
conjugation or transduction [11-13]. Therefore, to
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understand the emergence and spread of ARGs, it is ne-
cessary to monitor microbial communities in situ. Meta-
genomic sequencing, in this context, represents a
pertinent technique for in situ studies as it provides less
biased views of the genomic complements of individual
microbial populations compared to amplicon-based
methods [14, 15].

Pathogenic microorganisms have modified and adapted
their virulence to host defense systems over millions of years.
Similarly, AMR is thought to have evolved over extensive pe-
riods of time in bacteria, indicating that it is an ancient
phenomenon [16]. However, with an increase in selective
pressure through the use of antibiotics, an excessive increase
in the spread and evolution of AMR has been observed in
the last 50years. Yet, despite differences in evolutionary
paths, virulence factors and AMR share common character-
istics. Most importantly, virulence factors and AMR are ne-
cessary for pathogenic bacteria to adapt to, and survive in,
competitive microbial environments [7]. Additionally, both
virulence and resistance mechanisms are frequently trans-
ferred between bacteria by horizontal gene transfer [13]. Fur-
thermore, both processes make use of similar systems (ie.,
cell wall alterations, efflux pumps, two-component systems
and porins) that activate or repress the expression of various
genes [17-19]. Therefore, although AMR in itself is not a
virulence factor, in environments with selective antibiotic
pressure, opportunistic pathogens are able to colonize
through acquisition or presence of AMR [1].

Considering the burden of bacterial infections in
which virulence factors and ARGs play crucial roles, it is
important to be able to identify these in microbial com-
munities. The advent of high-throughput DNA sequen-
cing provides a powerful means to profile the full
complement of DNA derived from genomic extracts ob-
tained from a wide range of environments [20]. How-
ever, currently there is a lack of automated pipelines to
simultaneously identify these different factors in metage-
nomic datasets. Various tools exist for the prediction of
ARGs themselves, such as DeepARG [20], RGI [21],
ResFinder [22], and ARGsOAP [23], with a very few pre-
diction tools for virulence factors existing, such as MP3
[24] and VirulentPred [25]. Most of the latter tools are
based on outdated databases of virulence factors which
have since been expanded greatly. Moreover, there is a
lack of recent bioinformatics tools for the prediction of
bacterial toxin genes in particular. Furthermore, al-
though various AMR prediction tools exist, these pri-
marily focus on the prediction of genes without
considering their location, i.e., these tools do not differ-
entiate between localization on mobile genetic elements
(MGEs) or on bacterial genomes. Since MGEs are the
main mechanism by which ARGs are transmitted, it is
crucial to identify the relationship between ARGs and
MGEs. Outside of these prediction tools, it is common
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practice to use standard homology search algorithms
against specific databases. However, such practices re-
quire several intermediate steps which may vary from
lab to lab. Additionally, using these methods is restrict-
ive in the sense that only a single database can be
searched at a time.

Here, we present PathoFact, a pipeline for the simul-
taneous prediction of virulence factors, bacterial toxins
in particular, and ARGs. Our tool furthermore contextu-
alizes these with respect to their localization on MGEs.
Moreover, PathoFact aggregates the information ob-
tained via different prediction tools and databases into a
single output, allowing both novices and experts in bio-
informatics alike to parse information as needed. Patho-
Fact thus provides a unified perspective on pathogenic
mechanisms. We provide evaluation results on our tool’s
sensitivity, specificity, and accuracy, and demonstrate
PathoFact’s versality using both a simulated metage-
nomic dataset and public case-control metagenomic
datasets for Parkinson’s disease, psoriasis, and Clostri-
dioides difficile infection. Using the simulated metage-
nomic dataset, we further perform a comparison of
PathoFact to other metagenomic characterization work-
flows, namely MOCAT2 [26] and HUMANR3 [27].

Implementation

PathoFact architecture

PathoFact is a command-line tool for UNIX-based sys-
tems that integrates three distinct workflows for the pre-
diction of (i) virulence factors, (ii) bacterial toxins, and
(iii) antimicrobial resistance genes from metagenomic
data (Fig. 1a). Each workflow can be applied individually
or in combination with the other workflows. Our tool is
written in Python (version 3.6) and uses the Snakemake
(version 5.5.4) workflow management software [28]. This
implementation offers several advantages, including
workflow assembly, parallelism, and the ability to resume
processing following an interruption. Each step of the
pipeline is implemented as a rule in the Snakemake
framework specifying the input needed and the output
files generated. We use conda (version 4.7) environ-
ments wherever possible thus reducing the need for ex-
plicit installation of software dependencies. Moreover,
the use of conda environments makes it possible to in-
corporate prediction tools dependent on older Python
versions incompatible with version 5.5 of Snakemake. As
such, Python, Snakemake, and (mini)conda (version 4.7)
[29] installations are required. PathoFact is open-source
and freely available at https://pathofact.lcsb.uni.lu.

The input to the PathoFact pipeline consists of an as-
sembly FASTA file containing nucleotide sequences of
the contigs. PathoFact subsequently predicts the ORFs
using Prodigal (version 2.6.3) for the prediction of viru-
lence factors, toxins, and antimicrobial resistance genes.
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The MGEs are predicted from the initial assembly file,
and a mapping file is generated by PathoFact which ag-
gregates all the results. PathoFact aggregates the infor-
mation obtained from the different sub modules into
both module-specific reports as well as a complete final
report. The reports describe all virulence factors, bacterial
toxins, and antimicrobial resistance genes identified from
the input as well as their assigned confidence level (viru-
lence factors/bacterial toxins), their resistance mecha-
nisms (AMR), and their corresponding localization on
MGEs.

Workflow for the prediction of virulence factors

For the prediction of virulence factors, we created a pre-
diction tool consisting of two parts: (i) a database con-
sisting of virulence factor HMM profiles (HMMER3
v3.2.1) [30] and (ii) a random forest model. Hits against
the virulence factor HMM database are then combined
with the classification of the random forest model to re-
sult in the final prediction (Fig. 1b). The development of
the tool was inspired by the MP3 software tool for the
prediction of virulence factors which has not received an
update since 2014 and was thus outdated [24]. In
addition, PathoFact combines these annotations with the
prediction of signal peptides by SignalP (v5.0) [31] to
distinguish between secreted and non-secreted virulence
factors.

Dataset for the prediction of virulence factors

A dataset, consisting of both a positive and negative sub-
set, was constructed for the training of the virulence fac-
tor prediction tool. The positive subset consisted of
known virulence factor sequences retrieved from the
Virulence Factors Database (8945 sequences) (VFDB)
[3]. All sequences were obtained from the VFDB core
dataset containing (translated) gene sequences associated
with experimentally verified virulence factors. The nega-
tive subset of the training set consisted of protein se-
quences that were retrieved from the Database of
Essential Genes (DEG) (7995 sequences) [32] and which
were known not to be virulence factors. For both sub-
sets, all sequences were clustered with CD-HIT [33], and
sequences with a 90% sequence identity were collapsed
to prevent redundancy within the subsets. This 90% cut-
off is routinely used to reduce redundancy in similar
protein datasets, improving efficiency without foregoing
specificity given the large metagenomic database sizes
[34, 35]. The resulting training set was used for (i) the
implementation of the HMM profiles and (ii) the train-
ing of the random forest model.

Construction of the virulence factor HMM database
For the construction of the virulence HMM database,
HMM profiles were annotated for the training set using
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Fig. 1 The PathoFact pipeline. a Framework of the PathoFact pipeline. The pipeline consists of three different modules related to (i) virulence
factors, incl. (i) bacterial toxins, and (iii) antimicrobial resistance genes. SignalP is incorporated for the prediction of secreted toxins and virulence
factors. All modules can either be run independently or jointly. b Classification framework for the prediction of virulence factors. The prediction of
virulence factors depends on two different aspects: (i) a HMM domain database, (i) a random forest classifier. Sequences predicted positive from
both are classified as virulence factors. The incorporation of SignalP in the framework allows integration of information regarding the likely

secretion of the virulence factors

Not a virulence factor

HMMER3 (version 3.2.1) against multiple pre-compiled
and in-house annotation databases [36]: PFAM-A [37],
TIGR [38], KEGG [39], MetaCyc [40], and Swissprot
[41]. The best hit in each HMM set was assigned to each
gene in the training set if the HMM score was higher
than the binary logarithm of the number of target genes,
in accordance with the recommendations in the HMMer
manual. HMM profiles were subsequently retrieved and
the databases were concatenated to form the virulence
HMM database. Binary compressed data files were con-
structed with the hmmpress (HMMER3 v3.2.1) [30]. For
the prediction of virulence factors by the virulence
HMM database, identified HMM profiles are separated
by those matching to the positive or negative subset of

the training set, as well as HMM profiles ambiguous for
both positive and negative subset.

Machine learning model for the prediction of virulence
factors

In addition to the virulence HMM database, we created
a random forest model [42]. A random forest model
operates from decision trees and output classification of
the individual trees while correcting for overfitting of
the training set. While overfitting, in which models per-
form highly on the training set but poorly on the test
set, is a common problem in machine learning, a ran-
dom forest model corrects for overfitting by continu-
ously creating trees on random subsets. This does not
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mean that random forest classifiers are not capable of
overfitting. However, they are less sensitive to variance,
and effects of overfitting are therefore rarely observed
[43]. For training of the random forest model, the fol-
lowing five features of the sequences were selected and
implemented: amino acid composition (AAC), dipeptide
composition (DPC), composition (CTDC), transition
(CTDT), and distribution (CTDD) [44]. A feature matrix
was built with rows corresponding to the sequence com-
position of the features. The random forest model was
implemented using pandas (v 0.25.0) [45], Numpy (v
1.17.0) [46], and scikit-learn (v0.21.3) [47] and consisted
of 1600 trees with a maximum depth of 340.

Workflow for the prediction of toxin genes

For the prediction of toxin genes, a workflow consisting
of a toxin HMM database combined with SignalP ver-
sion 5.0 [31] was developed. The toxin HMM database
consists of bacterial toxin domains to identify toxin-
related domains in the query sequences. Using the
hmmsearch function of the HMMER3 (v3.2.1) program
[30], the input query sequences are searched against the
collection of profiles present in the toxin HMM data-
base. In addition, analyses are combined with SignalP
[31] to differentiate between secreted and non-secreted
toxins.

Construction of the toxin HMM database

For the toxin HMM database, an HMM model based on
a training set of known toxins was developed and imple-
mented. The training set was compiled from the Toxin
and Toxin Target Database (T3DB) [48] and the training
set derived from the DBETH prediction tool [5]. Protein
sequences from within the training set with a similarity
greater than 90% were clustered and collapsed with CD-
HIT-2D to reduce redundancy [33]. The corresponding
toxin HMM profiles were identified from the same five
HMM databases as used for the virulence factors (see
above). The datasets were extended with HMM profiles
already annotated as bacterial toxin domains in the
PFAM, TIGR, KEGG, MetaCyc, and Swissprot databases.
Finally, in order to have a short description of all HMM
profiles present in the toxin HMM database, a toxin
library was created. This lists (i) all HMM profiles, (ii)
their names, (iii) their alternative names, and (iv) the
original database from which the HMM profile was
derived.

Workflow for the prediction of antimicrobial resistance
genes

For the prediction of ARGs, the workflow is separated
into two parts: (i) the prediction of ARGs and (ii) the
prediction of MGEs. For the prediction of ARGs, the
tools DeepARG (v1.0.1) [20] and RGI (v5.1.0) [21] are
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used. DeepARG uses a deep learning approach that im-
proves classification accuracy while at the same time re-
ducing false negatives. It offers a powerful approach for
metagenomic profiling of ARGs as it expands on the
available databases for ARGs by combining the widely
used CARD [49], ARDB [50], and UNIPROT [51] data-
bases. Additionally, RGI [21] is included which is able to
identify mutation-driven AMR within genes, allowing for
a strain-resolved profiling of AMR genes.

MGEs: plasmids and phages

The prediction of MGEs is split into two parts focusing
on the prediction of (i) plasmids and (ii) phages. For the
prediction of plasmids, PlasFlow (v1.1) [52] is used,
while for the prediction of phages VirSorter (v1.0.6) [53]
and DeepVirFinder (v1.0) [54] were incorporated. All
three tools were selected because of their performance
compared to other, similar tools [52-54]. The predic-
tions of these different tools are merged with the predic-
tion of ARGs to provide localization information of the
resistance genes to either MGEs or genomes. Consider-
ing the different predictions of MGEs, the final classifi-
cation includes plasmid, phage, genome, unclassified,
and ambiguous when localization predictions contradict
each other, for example predicted to be both phage and
plasmid.

Evaluation of the PathoFact pipeline

To evaluate the performance of PathoFact, validations
were conducted for the prediction of toxins, for viru-
lence factors, and for ARGs. The prediction quality was
evaluated by sensitivity, specificity, and accuracy criteria
as defined below.

Sensitivity =

p e
Specifici
T p ty

tp
tn

:tn—|-ﬁ9
p+tn

T tptfat+tntfo

Accuracy

where fp represents true positives (i.e., virulence factors
(incl. bacterial toxins) or AMR gene is predicted cor-
rectly), tn (i.e., a gene is correctly predicted not to be a
virulence factor, toxin genes, or AMR gene), fp false
positive (i.e., a gene incorrectly identified as a virulence
factor, toxin genes or AMR gene), and fu false negatives
(i.e, a virulence factor, toxin genes or AMR gene is in-
correctly identified as non-pathogenic). We evaluated
the sequence similarities between the training and valid-
ation (test set) datasets after removing the sequences
from the validation set with 90% identity to the training
set sequences using sourmash [55] (Additional File 1:
Figure S1).
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Validation of virulence factors

A validation dataset was constructed to assess the per-
formance of the prediction of virulence factors. Analo-
gous to the training set, the validation set consisted of a
positive subset of 2639 sequences (VFDB database) and
a negative subset of 2628 (DEG database) sequences. Im-
portantly, the sequences in the validation dataset were
removed from the training set to avoid overfitting. The
test set for virulence predictions was used to run both
the standalone MP3 (v1.0) tool and our newly generated
tool for prediction of virulence factors. For MP3, the
standard advised parameters were used: set on metage-
nomic protein fragments, a minimum length of 90 bases
and a threshold value of 0.2 for the sym module [24].

Validation of toxin genes

For the validation of toxin genes, a validation dataset
containing both positive and negative subsets was con-
structed. The positive subset was constructed from se-
quences in the EMBL-EBI database annotated as bacterial
toxins. The results were limited to protein sequences de-
scribed in the UniProtDB. Further filtering of the protein
sequences removed sequences with uncertain predictions
(i.e., hypothetical, probable). To limit redundancy within
the dataset, sequences were clustered in terms of similarity
by using a 90% sequence identity cutoff. Furthermore, to
limit redundancy between the validation and the training
set, sequences with a similarity of greater than 90% were
discarded. The remaining 202 positive sequences were
combined with 202 random-selected sequences from the
negative dataset, consisting of housekeeping genes repre-
senting the validation dataset.

Validation of AMR prediction

For the prediction of AMR genes, both the DeepARG
and RGI prediction tools were used. DeepARG has
proven to be more accurate than most AMR prediction
tools with a great reduction in false negatives [20], while
RGI is capable to annotate SNPs contributing to AMR.
For further validation, before inclusion in the pipeline,
the prediction tools were tested using the NCBI's resist-
ance gene database (5265 sequences) [56]. This positive
subset was combined with a negative subset (consisting
of sequences retrieved from the Database of Essential
Genes) of equal size. For DeepARG default settings were
applied, while parameters for model were set to LS and
type was set to prot. Similar to DeepARG, default set-
tings of RGI were applied while input-type was set to
protein.

Data analysis and data availability of publicly available
datasets

Metagenomic sequences for the publicly case-control
metagenomic datasets were obtained from the European
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Bioinformatics Institute-Sequence Read Archive data-
base, with accession numbers PRJNA297269 (Milani
et al. [57]), PRJNA281366 (Tett et al. [58]), and
ERP019674 (Bedarf et al. [59]). Information on the ana-
lyzed samples per study can be found in Additional File
1: Table S1. Metagenomic reads were processed and as-
sembled using IMP (v2) [60]. The resulting FASTA files
containing the assembled contigs and genes were used
as input for PathoFact. For analyses of the predictions,
FeatureCounts (v1.6.4) [61] was used to extract the
number of reads per functional category. Thereafter, the
relative abundance of the toxin genes was calculated
using the Rnum_Gi method described by Hu et al [62].
Additionally, the DESeq2 (v1.24) [63] package was used
to analyze the differential abundance of virulence factors,
toxins, and AMR genes.

Data analysis and data availability of a simulated dataset
To evaluate the performance of PathoFact compared to
other metagenome characterization workflows, a high-
complexity stimulated dataset consisting of 5 time series
samples with 596 genomes and 478 circular elements
was obtained from CAMI [64]. As with the case-control
metagenomic dataset reads were processed and assem-
bled using IMP (v2), after which the dataset was run
through PathoFact. In addition, both MOCAT2 and
HUMAnNN3 were run on the stimulated metagenomic
dataset using default settings of both workflows. Further
data analysis was performed as described for the case-
control datasets.

Results and discussion

Benchmarking

The PathoFact pipeline has an in-built multi-threading
option to improve computational efficiency. In fact, cer-
tain tools, e.g., DeepVirFinder, are memory intensive
and may require additional resources. Table 1 corre-
sponds to the runtime of a metagenomic dataset (363,
933 metagenomic sequences) with differing numbers of
threads. A minimum usage of 8 threads, in this case cor-
responding to 28 GB/thread, is advised for running the
pipeline. Additionally, for the installation of PathoFact,
an initial storage of 6.3 GB is required.

Validation of the PathoFact pipeline
For the prediction of virulence factors, the prediction
tool consists of two parts: a virulence factor HMM

Table 1 PathoFact runtimes with different threads/
computational resources

Threads Memory Running time
8 224 GB 25h 19 min
16 448 GB 15h 58 min
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database and a random forest classifier. The random for-
est classifier’s out-of-bag (OOB) error value reported an
accuracy of 0.822. To improve performance for virulence
prediction, the random forest model was combined with
the HMM database which resulted in an overall sensitiv-
ity of 0.886, specificity of 0.957, and an accuracy of 0.921
(Table 2). Additionally, we compared our tool to the
MP3 tool for the prediction of virulence factors (Add-
itional File 1: Table S2). PathoFact scored overall higher
than MP3 which scored 0.125, 0.992, and 0.558, respect-
ively. In addition to the prediction of virulence factors,
for the prediction of bacterial toxins, an overall sensitiv-
ity of 0.777, specificity of 0.989, and accuracy of 0.832
were obtained. Finally, for the prediction of ARGs, the
sensitivity, specificity, and accuracy of both DeepARG
and RGI were determined at 0.720, 0.996, 0.858 and
0.920, 0.997, 0.958, respectively. A combined approach
merging the use of both tools resulted in the highest
scores with an overall sensitivity of 0.963, specificity of
0.994, and accuracy of 0.979 for the prediction of AMR
genes.

Performance evaluation using a simulated dataset

To further evaluate the performance of PathoFact and
compare it to other existing tools, the PathoFact pipeline
was run on a simulated metagenome comprised of high-
quality annotated genomes, ie., the CAMI high com-
plexity toy test dataset. Both MOCAT2 [26] and
HUMAnNNS3 [27] were run on the original reads of the
simulated CAMI datasets, while the same read datasets
were processed and assembled with IMP followed by
execution of PathoFact. Subsequently, annotations
resulting from the different workflows were compared to
evaluate the performance of PathoFact (Fig. 2a). Patho-
Fact demonstrated increased numbers of predictions
compared to both MOCAT2 and HUMAnNNS3 regarding
virulence and toxin predictions (< 0.05, ANOVA) while
performing similarly regarding AMR prediction com-
pared to MOCAT2. Furthermore, and importantly, no
additional curation or data-wrangling is needed for
PathoFact compared to the other workflows tested
above.

Additionally, we aimed to further characterize the per-
formance of the metagenomic workflows against annota-
tions of the CAMI high complexity toy test dataset. To
achieve this, we annotated the underlying genomic data
using the NCBI database of resistance genes [56], as well

Table 2 Validation of the PathoFact pipeline
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as a BLAST search of the original 450 genomes against
known virulence factors and toxin genes [3, 5]. The
resulting annotations were compared to the prediction
reports of PathoFact, MOCAT2, and HUMAnN3. Patho-
Fact identifies a similar number of virulence factors and
toxin genes in the annotated genomes compared to the
original annotations, while MOCAT2 and HUMAnNNS3
identified a significantly lower number (Fig. 2b). Regard-
ing antimicrobial resistance, PathoFact was able to iden-
tify many more gene variants compared to MOCAT2
and HUMAnNNS3 (Fig. 2c¢).

Performance of PathoFact on metagenomic datasets
Virulence factors and toxins may contribute to dysbiosis
of the microbiome and favor a pro-inflammatory envir-
onment [65]. In addition, particular pathogenic bacteria
may adapt to, and survive in, the presence of antimicro-
bials through acquisition or expression of AMR.
Thereby, virulence factors, toxins, and AMR may all
contribute to the pathogenic potential of the micro-
biome, which in turn may have an effect on the onset
and development of disease and infection. The perform-
ance of PathoFact was demonstrated using three publicly
available case-control metagenomic datasets which were
chosen considering the following criteria: representing
an actual infection or a chronic disease in which either
pathogenic potential or toxins are believed to play a role.
The Milani et al.’s [57] study represents actual infections
with Clostridioides difficile (CDI) in the human gut
microbiome of five patients along with five healthy con-
trols. Furthermore, skin metagenomes of five psoriasis
patients along with five healthy controls from Tett et al.
[58] were chosen to represent a chronic disease in which
a pathogenic potential is believed to have a function.
Additionally, from Bedarf et al. [59], the metagenomes
of fecal microbiomes derived from 10 early stage Parkin-
son’s disease (PD) patients, as well as 10 age-matched
controls, was obtained to represent a chronic disease in
which bacterial toxins are believed to be involved [59].

Prediction of virulence factors and bacterial toxins

The predictions from PathoFact resulted in the identifi-
cation of virulence factors in all three case-control meta-
genomic datasets. Furthermore, predicted virulence
factors were characterized as secreted and non-secreted
through the incorporation of SignalP in the pipeline. No
statistically significantly (P value <0.05, Wilcoxon rank

Toxin prediction

Virulence factor prediction AMR prediction

Sensitivity 0.777
Specificity 0.989
Accuracy 0.832

0.886 0.963
0.957 0.994
0.921 0979
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\

sum test) different relative abundance of the different In addition to the general prediction of virulence fac-
virulence factors was found in any of the three studies tors using PathoFact, we identified bacterial toxins, as
when comparing diseased state and control (Fig. 3). well as their corresponding HMM domain by which they
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were identified. Furthermore, both secreted and non-
secreted toxins were identified in both diseased and con-
trol groups in all datasets (Fig. 4a), and we identified sev-
eral differentially abundant bacterial toxins (Additional
File 1: Table S3-S5). Within the CDI dataset, three dis-
tinct toxin domains, PF13953, PF13954, and PF06609,
were identified to be differentially abundant in CDI over
control (Fig. 4b). Interestingly, none of these toxin do-
mains have yet been reported to be linked to CDI and
therefore are of interest for further research. Four dis-
tinct toxin domains (K12340, PF13935, PF14449, and
K11052) were found to be significantly abundant in
psoriasis over controls (Fig. 4c). Of these toxin domains,
only K12340 was previously linked to psoriasis [66]. Fi-
nally, regarding the PD study we found several differen-
tially abundant bacterial toxins when comparing PD and
control samples (Fig. 4d). Of these bacterial toxins, one
containing the PF09599 domains was more abundant in
PD and is among others found in invasin proteins in Sal-
monella typhimurium which has been hypothesized to
be involved in Parkinson’s disease [67]. Interestingly, in
all three datasets additional “unknown” toxin domains
were identified to be linked to the diseases, therefore
representing interesting candidates for further research.

Prediction of antimicrobial resistance

Using the PathoFact pipeline, we predicted the presence
of antimicrobial resistance genes in all three case-control
metagenomic datasets. Within the CDI datasets, 23 ARG

categories were identified (Additional File 1: Figure S2a)
of which six, i.e, diaminopyrimidine, elfamycin, fluoro-
quinolone, nucleoside, peptide, and multidrug, were sig-
nificantly higher abundant in individuals with CDI over
control (Fig. 5a). Antimicrobial resistance has previously
been found to be associated with CDI infections [68]. In
the metagenomic data of the skin microbiome, 22 cat-
egories of ARGs were identified (Additional File 1: Fig-
ure S2b). Interestingly, none of these resistance
categories were found to be significantly different, nei-
ther with the diseased nor the control group. Within the
PD study, 33 ARG categories were identified (Add-
itional File 1: Figure S2c) with glycopeptide resistance
significantly abundant in PD over controls, while
tetracycline resistance was found to be enriched in
the control group (Fig. 5c¢). The link between anti-
microbial resistance and Parkinson’s disease has been
mostly unexplored thus far. However, a recently pub-
lished study by Mertsalmi et al. [69] suggests a role
for antibiotics in PD through the influence on the gut
microbiome.

Although we propose the primary usage of Patho-
Fact for metagenomic analyses, as seen with these
three case-control metagenomic datasets, it can also
be applied to single genome assemblies. Using the
Klebsiella pneumoniae subsp. Pneumoniae HS11286
reference genome, we identified 86 resistance genes of
which 6 contained SNPs contributing to resistance
(Additional File 1: Table S6).
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Prediction of mobile genetic elements linked to virulence
factors

Using the predictions generated by PathoFact, we re-
solved the genomic contexts and identified MGEs in all
three case-control metagenomic datasets (Fig. 6a) (Add-
itional File 1: Figure S3). Within all three datasets, the
presence of both phage- and plasmid-derived sequences
was detected, although no significant difference was ob-
served between diseased and control. We found that in
all datasets the majority of MGEs were found to be both
linked to virulence factors as well as AMR (~50%),
closely followed by MGEs linked solely to virulence fac-
tors, including bacterial toxins, with AMR contributing
to the remaining MGEs (Fig. 6b). Furthermore, a num-
ber of MGEs were found to be both linked to virulence
factors as well as AMR.

Of the ARGs linked to MGEs, the prevalence of the
different resistance categories were identified using our
tool. Within the CDI dataset, the majority of the MGEs
were linked to phenicol and beta-resistance in both

diseased and control groups (Additional File 1: Figure
S4a). Additionally, plasmids linked to diaminopyrimidine
and sulfonamide resistance were identified within the
disease group while found to be absent in the control.
Within the skin metagenomes, the majority of the pre-
dicted resistance genes linked to MGEs included beta-
lactam, tetracycline, and multidrug resistance in both
diseased and control groups (Additional File 1: Figure
S4b). However, MGEs linked to beta-lactam resistance
were found to be enriched in the diseased group. Finally,
of the resistance genes within the PD study, both peptide
and tetracycline resistances were found to be linked to
phage and plasmids. Peptide resistance was abundant in
controls whereas tetracycline was identified primarily in
diseased (Additional File 1: Figure S4c).

Conclusions

The identification of virulence factors, toxins, and anti-
microbial resistance genes are of immediate importance
for understanding the pathogenic state of microbiomes.
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Using our newly developed tool, PathoFact, we were able
to identify virulence factors and bacterial toxins within
three publicly available case-control metagenomic data-
sets. Furthermore, we were able to identify differentially
abundant bacterial toxins when comparing diseased and
control groups in all datasets. Additionally, antimicrobial
resistance genes were identified in two of the datasets
with a significant difference of certain resistance categories
between diseased and control individuals. The inclusion of
MGEs is of particular importance in understanding the

possible transmission of MGE-born virulence factors.
With PathoFact, we identified MGEs in all three datasets
and were able to link these simultaneously to the corre-
sponding virulence factors, toxins, and antimicrobial re-
sistance genes.

Until now, no single tool has existed which has com-
bined these distinct aspects. Although several prediction
tools exist for AMR, DeepARG and RGI have been chosen
for their accuracy and ability to identify mutation contri-
bution to resistance, and were included in our pipeline.
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Limited or no tools were available on the other hand for
the prediction of toxins and virulence factors. PathoFact
utilizes the wealth of currently available software (e.g.,
AMR and MGE predictions) as well as newly generated
tools (e.g., virulence factors and toxins). Furthermore,
PathoFact can conveniently integrate updates and newly
developed prediction tools. In conclusion, our tool com-
bines the strength of AMR predictions linked to MGE
predictions and integrates this with the prediction of
toxins and virulence factors. PathoFact is a versatile and
reproducible pipeline by its ability to run either the
complete workflow or each module on its own, giving the
investigator flexibility in their analysis.

Availability and requirements

Project name: PathoFact
Project home page: https://pathofact.lcsb.uni.lu
Operating system(s): Platform independent
Programming language: python

Other requirements: snakemake (version > = 5.5),
conda (version > = 4.7)

License: GNU GPLv3.

Restrictions to use by non-academics: see License
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The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-020-00993-9.

[ Additional file 1. PathoFact supplementary materials. ]

Abbreviations
AMR: Antimicrobial resistance; ARG: Antimicrobial resistance gene;
CDI: Clostridioides difficile infection; PD: Parkinson'’s disease

Acknowledgements

We are grateful for the feedback and beta-testing by Susana Martinez Arbas.
The experiments presented in this paper were carried out using the HPC fa-
cilities of the University of Luxembourg.


https://pathofact.lcsb.uni.lu
https://doi.org/10.1186/s40168-020-00993-9
https://doi.org/10.1186/s40168-020-00993-9

Nies et al. Microbiome (2021) 9:49

Authors’ contributions

LdN, SL, AHB, and PW designed this study. LdN with support of SL, CCL, PM,
and AHB created the application. PathoFact was beta-tested by SB and VG.
LdN and PW wrote the manuscript; CCL, PM, and AHB contributed to the
review of the manuscript before submission. All authors read and approved
the manuscript.

Funding

This work was supported by the Luxembourg National Research Fund (FNR)

under grant CORE/BM/11333923, the Michael J. Fox Foundation under grant
No. 14701, and the European Research Council (ERC-CoG 863664) to PW, and
PRIDE/11823097 to LdN, CCL, PM, and PW.

Availability of data and materials
PathoFact, its models, and databases are available at https://pathofact.csb.
unilu.

Competing interests
The authors declare that they have no competing interests.

Author details

'Systems Ecology Research Group, Luxembourg Centre for Systems
Biomedicine, Esch-sur-Alzette, Luxembourg. Metagenomics Support Unit,
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,
Leipzig, Germany. *Department of Soil Ecology, Helmholtz Centre for
Environmental Research GmbH-UFZ, Halle (Saale), Germany. “Bioinformatics
Core, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette,
Luxembourg.

Received: 21 September 2020 Accepted: 29 December 2020
Published online: 17 February 2021

References

1. Beceiro A, Tomas M, Bou G. Antimicrobial resistance and virulence: a
successful or deleterious association in the bacterial world? Clin Microbiol
Rev. 2013,26:185-230.

2. Wu H-J. Wang AH-J, Jennings MP. Discovery of virulence factors of
pathogenic bacteria. Curr Opin Chem Biol. 2008;12:93-101.

3. ChenL, Yang J, Yu J, Yao Z Sun L, Shen Y, et al. VFDB: a reference database
for bacterial virulence factors. Nucleic Acids Res. 2005;33:D325-8.

4. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited.
Microbiol Mol Biol Rev. 1997,61:136-69.

5. Chakraborty A, Ghosh S, Chowdhary G, Maulik U, Chakrabarti S. DBETH. a
Database of Bacterial Exotoxins for Human. Nucleic Acids Res. 2012;40:
D615-20.

6. Schiavo G, van der Goot FG. The bacterial toxin toolkit. Nat Rev Mol Cell
Biol. 2001,2:530-7.

7. Martinez JL, Baquero F. Interactions among strategies associated with
bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin
Microbiol Rev. 2002;15:647-79.

8. Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B, Vinnard C, et al.
Colistin- and Carbapenem-Resistant Escherichia coli Harboring mcr-1 and
blaNDM-5, Causing a Complicated Urinary Tract Infection in a Patient from
the United States. MBio. 2016;7. Available from: https://doi.org/10.1128/
mBio.01191-16

9. ONeill J. Antimicrobial resistance: tackling a crisis for the health and wealth
of nations. Review on antimicrobial resistance. 2014;

10.  Brogan DM. Mossialos E. A critical analysis of the review on antimicrobial
resistance report and the infectious disease financing facility. Global Health.
2016;12:8.

11. MacLean RC, San Millan A. The evolution of antibiotic resistance. Science.
2019;365:1082-3.

12. Sommer MOA, Dantas G, Church GM. Functional characterization of the
antibiotic resistance reservoir in the human microflora. Science. 2009;325:
1128-31.

13. Burrus V, Waldor MK: Shaping bacterial genomes with integrative and
conjugative elements. Res Microbiol. 2004;155:376-86.

14. Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC. Metagenomics
uncovers gaps in amplicon-based detection of microbial diversity. Nat
Microbiol. 2016;1:15032.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Page 13 of 14

Alteio LV, Schulz F, Seshadri R, Varghese N, Rodriguez-Reillo W, Ryan E, et al.
Complementary Metagenomic approaches Improve Reconstruction of
Microbial Diversity in a Forest Soil. mSystems. 2020;5. Available from: https://
doi.org/10.1128/mSystems.00768-19

D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al.
Antibiotic resistance is ancient. Nature. 2011;477:457-61.

Tsai Y-K, Fung C-P, Lin J-C, Chen J-H, Chang F-Y, Chen T-L, et al. Klebsiella
pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in
both antimicrobial resistance and virulence. Antimicrob Agents Chemother.
2011;55:1485-93.

Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes
in Escherichia coli by constitutive expression of MarA. J Bacteriol. 2000;182:
3467-74.

Cabot G, Zamorano L, Moya B, Juan C, Navas A, Bldzquez J, et al. Evolution
of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under
Low and High Mutation Rates. Antimicrob Agents Chemother. 2016;60:
1767-78.

Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L.
DeepARG: a deep learning approach for predicting antibiotic resistance
genes from metagenomic data. Microbiome. 2018,6:23.

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand
A, et al. CARD 2020: antibiotic resistome surveillance with the
comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;
48:D517-25.

Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and
VirulenceFinder web-services for easy identification of acquired antibiotic
resistance and E. coli virulence genes in bacteriophage and prophage
nucleotide sequences. Bacteriophage. 2014;4:227943.

Yin X, Jiang X-T, Chai B, Li L, Yang Y, Cole JR, et al. ARGs-OAP v2.0 with an
expanded SARG database and Hidden Markov Models for enhancement
characterization and quantification of antibiotic resistance genes in
environmental metagenomes. Bioinformatics. 2018;34:2263-70.

Gupta A, Kapil R, Dhakan DB, Sharma VK. MP3: a software tool for the
prediction of pathogenic proteins in genomic and metagenomic data. PLoS
One. 2014,9:€93907.

Garg A, Gupta D. VirulentPred: a SYM based prediction method for virulent
proteins in bacterial pathogens. BMC Bioinformatics. 2008,9:62.

Kultima JR, Coelho LP, Forslund K, Huerta-Cepas J, Li SS, Driessen M, et al.
MOCAT2: a metagenomic assembly, annotation and profiling framework.
Bioinformatics. 2016;32:2520-3.

Franzosa EA, Mclver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart
G, et al. Species-level functional profiling of metagenomes and
metatranscriptomes. Nat Methods. 2018;15:962-8.

Koster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine.
Bioinformatics. 2018;34:3600.

Anaconda INC. Conda. [cited 2018]. Available from: https://anaconda.com
Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology
search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic
Acids Res. 2013:41:e121.

Almagro Armenteros JJ, Tsirigos KD, Senderby CK, Petersen TN, Winther O,
Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep
neural networks. Nat Biotechnol. 2019;37:420-3.

Zhang R, Ou H-Y, Zhang C-TDEG. a database of essential genes. Nucleic
Acids Res. 2004;32:D271-2.

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658-9.
Rowe WPM, Winn MD. Indexed variation graphs for efficient and accurate
resistome profiling. Bioinformatics. 2018;34:3601-8.

Li W, Wooley JC, Godzik A. Probing metagenomics by rapid cluster analysis
of very large datasets. PLoS One. 2008;3:e3375.

Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, et al.
Integrated multi-omics of the human gut microbiome in a case study of
familial type 1 diabetes. Nat Microbiol. 2016;2:16180.

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The
Pfam protein families database: towards a more sustainable future. Nucleic
Acids Res. 2016;44:D279-85.

Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R, et al. The TIGR
Gene Indices: clustering and assembling EST and known genes and
integration with eukaryotic genomes. Nucleic Acids Res. 2005;33:D71-4.
Kanehisa M, Goto S. KEGG. kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28:27-30.


https://pathofact.lcsb.uni.lu
https://pathofact.lcsb.uni.lu
https://doi.org/10.1128/mBio.01191-16
https://doi.org/10.1128/mBio.01191-16
https://doi.org/10.1128/mSystems.00768-19
https://doi.org/10.1128/mSystems.00768-19
https://anaconda.com

Nies et al. Microbiome

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

(2021) 9:49

Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, et al. MetaCyc:
a multiorganism database of metabolic pathways and enzymes. Nucleic
Acids Res. 2004,32:D438-42.

Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucleic Acids Res. 2000,28:45-8.

Breiman L. Random Fforests. Mach Learn. 2001;45:5-32.

Hastie T, Tibshirani R, Friedman J. Random Forests. Springer: The Elements
of Statistical Learning; 2009. p. 567-603.

Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT, Wang Y, et al. iFeature: a
Python package and web server for features extraction and selection from
protein and peptide sequences. Bioinformatics. 2018;34:2499-502.

Mc Kinney W. Data Structures for Statistical Computing in Python.
Proceedings of the 9th Python in Science Conference. From: https://
conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf. Accessed
30 Sept 2019.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020;17:261-72.

Pedregosa F. Scikit-learn: Machine Learning in Python. J Mach Learn Res.
2011;12:2825-30.

Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, et al. T3DB: the
toxic exposome database. Nucleic Acids Res. 2015;43:0928-34.

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The
comprehensive antibiotic resistance database. Antimicrob Agents
Chemother. 2013;57:3348-57.

Liu B, Pop M. ARDB--Antibiotic Resistance Genes Database. Nucleic Acids
Res. 2009,37:D443-7.

UniProt Consortium. UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019;47:D506-15.

Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid
sequences in metagenomic data using genome signatures. Nucleic Acids
Res. 2018;46:35.

Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from
microbial genomic data. Peer). 2015;3:€985.

Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, et al. Identifying
viruses from metagenomic data by deep learning. arXiv [q-bio.GN]. 2018.
from: http://arxiv.org/abs/1806.07810. Accessed 30 Sept 2019.

Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence
comparisons with sourmash. F1000Res. 2019;8:1006.

Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy |, et al.
Validating the AMRFinder Tool and Resistance Gene Database by Using
Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection
of Isolates. Antimicrob Agents Chemother. 2019,63. from: https://doi.org/1
0.1128/AAC.00483-19. Accessed 25 Oct 2020.

Milani C, Ticinesi A, Gerritsen J, Nouvenne A, Lugli GA, Mancabelli L, et al.
Gut microbiota composition and Clostridium difficile infection in

hospitalized elderly individuals: a metagenomic study. Sci Rep. 2016;6:25945.

Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, et al. Unexplored
diversity and strain-level structure of the skin microbiome associated with
psoriasis. NPJ Biofilms Microbiomes. 2017;3:14.

Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, et al.
Functional implications of microbial and viral gut metagenome changes in

early stage L-DOPA-naive Parkinson’s disease patients. Genome Med. 2017;9:

39.

Narayanasamy S, Jarosz Y, Muller EEL, Heintz-Buschart A, Herold M, Kaysen
A, et al. IMP: a pipeline for reproducible reference-independent integrated
metagenomic and metatranscriptomic analyses. Genome Biol. 2016;17:260.
Liao Y, Smyth GK, Shi W. featureCounts: An efficient general-purpose
program for assigning sequence reads to genomic features. arXiv [g-bio.
GNJ. 2013. from: http://arxiv.org/abs/1305.3347. Accessed 20 Oct 2019.

Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome-wide analysis
of antibiotic resistance genes in a large cohort of human gut microbiota.
Nat Commun. 2013;4:2151.

Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, et al.
Critical Assessment of Metagenome Interpretation-a benchmark of
metagenomics software. Nat Methods. 2017;14:1063-71.

Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, et al.
Increased intestinal permeability correlates with sigmoid mucosa alpha-

66.

67.

68.

69.

Page 14 of 14

synuclein staining and endotoxin exposure markers in early Parkinson’s
disease. PLoS One. 2011,228032:6.

Trepod CM, Mott JE. Identification of the Haemophilus influenzae tolC gene
by susceptibility profiles of insertionally inactivated efflux pump mutants.
Antimicrob Agents Chemother. 2004;48:1416-8.

Chaudhuri D, Roy Chowdhury A, Biswas B, Chakravortty D. Salmonella
Typhimurium Infection Leads to Colonization of the Mouse Brain and Is Not
Completely Cured With Antibiotics. Front Microbiol. 2018,9:1632.

Shah D, Dang M-D, Hasbun R, Koo HL, Jiang Z-D, DuPont HL, et al.
Clostridium difficile infection: update on emerging antibiotic treatment
options and antibiotic resistance. Expert Rev Anti Infect Ther. 2010,8:555-64.
Mertsalmi TH, Pekkonen E, Scheperjans F. Antibiotic exposure and risk of
Parkinson’s disease in Finland: A nationwide case-control study. Mov Disord.
2020;35:431-42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
http://arxiv.org/abs/1806.07810
https://doi.org/10.1128/AAC.00483-19
https://doi.org/10.1128/AAC.00483-19
http://arxiv.org/abs/1305.3347

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	PathoFact architecture
	Workflow for the prediction of virulence factors
	Dataset for the prediction of virulence factors
	Construction of the virulence factor HMM database
	Machine learning model for the prediction of virulence factors
	Workflow for the prediction of toxin genes
	Construction of the toxin HMM database
	Workflow for the prediction of antimicrobial resistance genes
	MGEs: plasmids and phages
	Evaluation of the PathoFact pipeline
	Validation of virulence factors
	Validation of toxin genes
	Validation of AMR prediction
	Data analysis and data availability of publicly available datasets
	Data analysis and data availability of a simulated dataset

	Results and discussion
	Benchmarking
	Validation of the PathoFact pipeline
	Performance evaluation using a simulated dataset
	Performance of PathoFact on metagenomic datasets
	Prediction of virulence factors and bacterial toxins
	Prediction of antimicrobial resistance
	Prediction of mobile genetic elements linked to virulence factors

	Conclusions
	Availability and requirements
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

