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Abstract

Background: Widespread bioinformatic resource development generates a constantly evolving and abundant
landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic
classification of the microorganisms that are present in a given environment. Additional investigation is then
required to uncover the functionality of the microbial community, in order to characterize its currently or
potentially active biological processes. Such functional analysis of metagenomic data can be computationally
demanding for high-throughput sequencing experiments. Instead, we can directly compare sequencing reads to a
functionally annotated database. However, since reads frequently match multiple sequences equally well, analyses
benefit from a hierarchical annotation tree, e.g. for taxonomic classification where reads are assigned to the lowest
taxonomic unit.

Results: To facilitate functional microbiome analysis, we re-purpose well-known taxonomic classification tools to
allow us to perform direct functional sequencing read classification with the added benefit of a functional
hierarchy. To enable this, we develop and present a tree-shaped functional hierarchy representing the molecular
function subset of the Gene Ontology annotation structure. We use this functional hierarchy to replace the standard
phylogenetic taxonomy used by the classification tools and assign query sequences accurately to the lowest
possible molecular function in the tree. We demonstrate this with simulated and experimental datasets, where we
reveal new biological insights.

Conclusions: We demonstrate that improved functional classification of metagenomic sequencing reads is possible
by re-purposing a range of taxonomic classification tools that are already well-established, in conjunction with
either protein or nucleotide reference databases. We leverage the advances in speed, accuracy and efficiency that
have been made for taxonomic classification and translate these benefits for the rapid functional classification of
microbiomes. While we focus on a specific set of commonly used methods, the functional annotation approach has
broad applicability across other sequence classification tools. We hope that re-purposing becomes a routine
consideration during bioinformatic resource development.
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Background

Analysis of the microbiome involves determining the mi-
croorganisms that are present in a given environment,
and their respective functions [1]. Such analysis reveals
what organisms are there, what they are doing, and how
(by what molecular mechanisms) they are doing it. To
date, a large variety of microbiome analyses have been
conducted considering both sample context and investi-
gative purpose. Such analyses range from microbiome
analysis for fields such as animal health, agriculture and
environmental studies [2, 3], to those focusing on hu-
man samples such as skin, saliva, stool or blood, since
variation in the human microbiome has been linked to
health conditions and diseases [4]. Typically, both 16S
rRNA gene and whole metagenome shotgun sequencing
can be used to identify the microorganisms that are
present in a sample, i.e. the community structure, while
further investigation is required to derive the functional
potential of the microbial community from the sequence
data [5, 6]. Additionally, metatranscriptome sequencing
can be used to examine active functions [7]. The current
standard approach is to first taxonomically and then to
functionally classify sequencing reads derived from or-
ganisms that are present within a microbiome [8]. This
approach for functional analysis of the microbiome can
be laborious and computationally demanding.

Software such as Kaiju, Kraken 2, MEGAN, DIA-
MOND and HUMAnn? firstly classify or align sequen-
cing reads using a database of protein sequences, often
with default databases such as the NCBI RefSeq or the
microbial subset of the NCBI BLAST non-redundant
protein database (nr) [9-14]. Some of the tools addition-
ally utilize a reference taxonomy in this initial alignment
or classification; however, they were largely designed for
taxonomic profiling, where functional classification
could follow, rather than direct functional profiling of
the microbiome. Bahram et al. [15] reported the direct
alignment of metagenomic reads to functional databases
such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [16] using DIAMOND and the subsequent cal-
culation of SEED functional module abundances [17].
KEGG terms for a gene or sequence directly indicate the
function, process or component that the gene is involved
in. Similarly, mi-faser [18] aligns microbiome sequencing
reads using DIAMOND, to a reference database of mi-
crobial proteins with experimentally annotated molecu-
lar functions from KEGG. However, these methods do
not directly associate reads with a functional hierarchical
level or sub-level such as those implemented for taxo-
nomic assignment of reads to their lowest common an-
cestor (LCA). Huson et al. took a step towards this goal
with MEGAN using read alignment, e.g. DIAMOND,
followed by an additional step to perform Gene
Ontology-based (GO) functional Cclassification. Their
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functional classification used a hierarchy with two sub-
levels of GO terms below the domain root, e.g. molecu-
lar function. The first sub-level, with 84 nodes to refine
GO-based classification and the second representing all
GO-assigned InterPro families [19]. In contrast, we re-
cently introduced PRROMenade [20, 21] for direct or
one-step functional characterization of microbiomes,
using a protein reference database and a four-level anno-
tation tree derived from KEGG, supporting rapid func-
tional rather than phylogenetic -classification. With
PRROMenade we proposed a novel labelling step that
assigns query sequences directly to the lowest possible
molecular function in the functional annotation hier-
archy or tree. In this report, we propose that by generat-
ing a functional hierarchical structure, direct functional
sequencing read classification is also possible by re-
purposing current widely used tools. We use a deeper
(10 level) GO-based hierarchy that allows more inform-
ative lowest common function binning of reads. Further-
more, we demonstrate that it is possible to utilize not
only variable size sequence matching tools like PRRO-
Menade and Kaiju, but also k-mer based methods (e.g.
Kraken, Kraken 2) for rapid microbiome functional pro-
filing. These methods avoid the computationally expen-
sive full sequence alignment approach that has been the
backbone of previous methods (e.g. MEGAN, mi-faser,
HUMAnNnN2). We present our case with simulated as well
as experimental datasets to demonstrate the feasibility of
re-purposing commonly used taxonomic sequence clas-
sification tools for microbiome functional annotation.
Accurate functional classification requires a large-scale
reference database of proteins annotated with functional
labels, e.g. GO or KEGG terms. Therefore, software to
perform such a task needs to be able to efficiently search
this database while retaining sensitivity and specificity in
matching sequence to the reference. Kraken and Kaiju
are two well-known tools in the metagenomics commu-
nity for taxonomic analysis. Kraken [11] is known for its
robustness and speed [22], which is reflected in its high
access rate (> 55,000 accesses) and citation rate (> 850
citations) since its introduction in 2014. Kraken classifies
DNA sequencing reads using a DNA reference database.
It assigns taxonomic labels to short DNA sequencing
reads by examining the k-mers within each read and
querying a database for those k-mers, for a fixed value of
k. The Kraken reference database contains a mapping of
every k-mer in the user reference genomic library to the
LCA in a taxonomic tree of all genomes that contain
that k-mer. The set of LCA taxa that correspond to the
k-mers in a read are then analysed to create a best
matching taxonomic label for the read [11]. The recently
released Kraken 2 now allows classification of DNA
reads using a protein reference and uses a compact hash
table for its reference database allowing faster queries
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and lower memory requirements than its predecessor
Kraken [13]. By comparison, Kaiju classifies DNA reads
using a protein reference database allowing searching for
variable length exact matches in amino acid databases
with comparable speed and accuracy than methods
using fixed size k-mers [9]. Kaiju also allows assignment
of reads to an LCA and is fast becoming a popular tool
in the metagenomic community. In this study, we dem-
onstrate the applicability of these widely used tools for a
new task, the task of functional classification with a
functional labelling hierarchy.

PRROMenade was previously applied with a bacterial
functional protein database from the IBM Functional
Genomics Platform (IFGP) (formerly known as OMX-
Ware) [23] and a functional labelling hierarchy based on
KEGG to classify DNA sequencing reads. However, here
we demonstrate that the same direct functional sequen-
cing read classification is possible firstly, by re-purposing
other widely used rapid read classification tools and sec-
ondly, by directly comparing DNA sequencing reads to a
DNA reference rather than a protein database. This
opens the door to allow a large range of popular existing
taxonomic classification tools to be re-purposed for
functional annotation. To extend previous work utilizing
the KEGG functional labelling hierarchy, we derive a
functional hierarchy based on the widely used Gene
Ontology (GO) term molecular function database [24].
The IFGP database contains 40.1 million bacterial pro-
tein domains associated with 1740 GO molecular func-
tion codes and is therefore more than three times larger
than the previously utilized subset of 11.9 million do-
mains associated with KEGG Enzyme Nomenclature
codes (EC). The GO term hierarchy is organized as a di-
rected acyclic graph and therefore not directly amenable
to conversion into a rooted functional hierarchy tree.
We perform the necessary transformation of the graph
into a rooted tree and adapt the resulting functional
hierarchy to replace the phylogenetic taxonomy used by
Kraken, Kraken 2 and Kaiju. We thus assign query se-
quences to the lowest possible node or molecular func-
tion in the functional annotation tree, i.e. the lowest
common function that we denote here as LCF. This is in
contrast to a standard phylogenetic taxonomic classifica-
tion where sequences are assigned to their lowest com-
mon ancestor (LCA). We re-purpose a specific set of
taxonomic classification tools based on their efficiency
and wide-spread use, providing the necessary resources
(reference database and taxonomy) to ensure that min-
imal effort on the behalf of the user is needed to apply
their existing software’s to perform a new task. However,
the proposed re-purposing approach has wide-ranging
applicability for other metagenomic sequence classifica-
tion tools and could pave the way for a new class of de-
fault reference databases and taxonomies for functional
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sequence classification. In the broader context, we dem-
onstrate the feasibility of re-purposing rather than build-
ing from scratch during bioinformatic resource
development.

Results and discussion

Transforming the GO hierarchy into a functional hierarchy
tree

The Gene Ontology (GO) hierarchy contains 11,684
terms in full. Although it has a pre-defined root, it is not
a tree structure and therefore not directly amenable to
conversion into a functional hierarchy. However, we
were able to derive a rooted tree structure that includes
nodes representing the GO molecular function terms in
a depth-first search (DES) order using the top-level term
(GO:0003674) as the root LCF (see the “Methods” sec-
tion). Such an approach could effectively maintain and
maximize the representation of the topological order of
the GO terms. We included all 11,684 terms and ob-
served 10 levels in our GO-term-based functional anno-
tation tree, with the majority of GO terms having a
distance of 3-5 levels from the root node highlighting
the resolution of the tree (Fig. la). The previous GO-
term-based tree, developed by Huson et al. [19], encom-
passed a distance of only 2 levels from the same root
node. This deep hierarchy allows a higher likelihood of
more informative LCF (lowest common function) bin-
ning of reads. The vast majority of GO terms (that we
treat as nodes in the hierarchy) were directly associated
with a single parental GO term; however, we did note
occurrences where GO terms had multiple parent terms
(Fig. 1b, ¢). The second most common scenario was for
a GO term to be directly associated with two parental
GO terms or nodes (~ 1820 cases). These were resolved
by connecting the child GO term to the single parent of
the two parents, when possible. Figure 1d, e illustrates
this situation and the resolution. In the few cases with
more than two parents, one was randomly selected. We
chose the depth-first search (DFS) approach for the tree
structure derivation (see the “Methods” section) as it
maximized the average distance of nodes from the root
compared to breadth-first search (BFS) or random ap-
proach (RND), thus enabling more specific annotation of
sequences (Fig. 1f).

Functional classification of simulated reads using the GO
hierarchy

The read simulation methodology (see the “Methods”
section) was followed for sequences from the Bordetella
genus of the phylum Proteobacteria, the Salmonella
genus and the complete IFGP GO database. We used a
range of substitution rates denoted as low (5%), medium
(10%) and high (20%) substitution rates compared to the
reference database, repeating our sequencing read
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Fig. 1 Transformation of GO hierarchy into a reference functional hierarchy tree structure. Here, GO terms are represented as nodes. a Histogram
to show the frequency of the distance of each node from the root LCF of the entire molecular function ontology domain. b Histogram to show
the frequency of the number of parents for each node also known as in-degree. ¢ Histogram to show the frequency of the number of children
or child terms directly associated with each node also known as out-degree if this number is > 1. Most nodes have only one parent. In cases
where a node has 2 parent terms (second most common scenario), we show the most frequently encountered situation and our resolution
strategy for this using a pictorial representation (d) and an actual example (e). f Showing the distance from each node to the root from our
exploration of different tree building methods including DFS (depth-first search), BFS (breadth-first search) and in the cases where we have more
than two parents and random single parents are selected (we repeated this 10 times, RND_1-RND_10)

simulation to represent organisms with a progressively
less related (more divergent) sequence to the reference.
Our aim was to mimic the natural variation that will be
observed when comparing experimental sequencing
datasets to these reference databases (see the “Methods”
section).

We used Bordetella, Salmonella, and the complete
IFGP database of sequences to assess the impact of dif-
ferent sized sets of GO terms in the reference database
on the ability to discriminate between them, using reads
with low substitution rates (5% divergent from the refer-
ence sequences). Using Kraken [11] with the three cus-
tom databases to classify the corresponding three sets of
simulated DNA sequencing reads, we could classify
84.07% of the reads for Bordetella, 84.63% of the reads
for Salmonella and 85.2% of the reads for the full IFGP
database (Supplementary Table S1). Furthermore,
77.59% of the reads for Bordetella, 34.64% of the reads

for Salmonella and 18.9% of the reads for IFGP database
were classified to the exact same GO term that the read
originated from. Otherwise, 92.46%, 61.45% and 84.10%
of Bordetella, Salmonella and IFGP full database se-
quences, respectively, were classified as either the exact
same GO term that the read originated from or as a
term that was functionally related to it in the hierarchy
that was not the root LCF (see the “Methods” section).
Increasing the size of the GO-term-based database may
reduce the number of sequences assigned to the exact
GO term of origin but it does not affect the ability to as-
sign the sequences to a suitable functionally related term
further up in the hierarchy. Assessing those reads that
were associated with an incorrect or un-related GO term
gives us an error rate of <0.01% for Bordetella, 0.95%
for Salmonella and 1.7% for the full IFGP database.

We noted (Supplementary Table S1) that 7.53%,
37.60% and 14.20% of the Bordetella, Salmonella and full
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IFGP database reads that were classified as a specific GO
term were assigned to GO:0003674, which although a
specific term, represents the entire ontology domain of
molecular function and is in effect the root or LCF of
this GO domain. Salmonella appears to be particularly
problematic with regard to assigning reads to the root
rather than a more specific functionally related term.
We hypothesized that the result for Salmonella poten-
tially reflects the public interest in sequencing Salmon-
ella enterica isolates; hence, the database includes
several closely related strains leading to increased ambi-
guity for reads from non-variable parts of the genome.
In support of this hypothesis, collapsing identical se-
quences from the Salmonella reference database (leaving
the longest representative) dramatically improved root
classification with only 7.46% of reads aligning to the
root LCF which is more comparable to the 7.53% ob-
served for Bordetella. Notably, the root bias for read
classification is not observed as predominantly for the
complete IFGP database that has undergone large scale
redundancy removal to effectively incorporate many
genera including Salmonella. In fact, aligning the simu-
lated Salmonella derived reads to the full IFGP database,
the problem also largely resolves, where we observe
12.5% of reads aligning to the root LCF.

The results that were obtained using Kraken for classi-
fication of simulated reads (low substitution rate) to the
complete IFGP database were compared to those derived
from Kaiju, Kraken 2 and PRROMenade classification
(Table 1). We consider Kaiju with the MEM (maximal
exact matching) option and PRROMenade together since
they have the same method of classification and there-
fore produce the same summary statistics, only the run-
ning time varies, where PRROMenade performs
classification in less than half the time of Kaiju [20].
Therefore, we refer to Kaiju and PRROMenade collect-
ively as “MEM approaches” in the text. Comparing Kra-
ken, Kraken 2 and the MEM approaches, we also
ascertain the impact of using DNA-DNA compared to
using a DNA-protein comparison for functional classifi-
cation. MEM approaches are able to classify a similar
proportion of the simulated (low substitution rate) se-
quencing reads to a protein database (85.1%) compared
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to the 85.2% classified by Kraken using a DNA database.
This is perhaps surprising since proteins are more con-
served than the underlying DNA. Therefore, protein se-
quence comparison can be more tolerant to sequencing
errors and distant evolutionary matches due to the de-
generacy of the genetic code. As such, protein databases
are implemented typically for functional sequence ana-
lysis in metagenomics and are expected to allow more
divergent sequencing reads to be classified. The compar-
able proportion of reads classified using a DNA-based
database may reflect our use of sequencing reads that
are not highly divergent from the reference database.
Kraken 2 showed improved performance compared to
both the MEM approaches and to Kraken, classifying
93.91% of the reads. If one focuses on the classified reads
and the ability of the software to classify them correctly
to a (non-root) LCF, Kraken, Kraken 2 and the MEM
approaches are highly comparable, classifying 84.1%,
86.3% and 84.7% of reads, respectively. Kraken, Kraken 2
and the MEM approaches also show a consistently low
error rate in general at 1.7%, 1.12% and 0.68%. Finally,
we noted that ~48% of reads matched GO terms at a
distance of 5 or more levels from the root highlighting
the utility of the resolution of our hierarchy.

Above, we compared the results of Kraken to those de-
rived from Kraken 2 and MEM approaches for simulated
sequencing reads with high similarity (low substitution
rate) to the reference database, classified using the
complete IFGP database. Next, we investigate the effect
on the classification of using sequencing reads that di-
verge more strongly from the reference database. Firstly,
we do this using simulated reads since we know which
functional groups the sequencing reads were derived
from enabling determination of the accuracy of the clas-
sifications. We use simulated reads that have medium
(10%) and high (20%) substitution rates compared to
their derived reference. Secondly, we apply the methods
on soil metagenome samples for comparison of classifi-
cation rates on experimental data.

It is clear from Supplementary Table S2 and Fig. 2 that
across all the tested software, increasing substitution rate
in our simulated reads decreases the number of classified
reads while also increasing the number of reads that are

Table 1 Functional classification of 474,930,848 simulated (low substitution rate) sequencing reads by Kraken, Kraken 2 and MEM
approaches (Kaiju and PRROMenade) using the full IFGP sequence database

Software Database % % % Classified reads % Classified reads assigned to correct % Classified reads assigned
format Unclassified Classified assigned to the root GO term or related non-root LCF to an incorrect GO term
reads Reads
Kraken DNA 14.80 85.20 14.20 84.10 1.70
Kraken 2 Amino 6.09 9391 13.71 86.29 1.12
Acid
MEM Amino 14.86 85.14 14.61 84.71 0.68

Acid
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Fig. 2 Analysis of the classified reads by Kraken, Kraken 2 and MEM approaches (Kaiju and PRROMenade). a Stacked bar chart to show the
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assigned to an incorrect GO term (Fig. 2a). The propor-
tion of classified reads assigned to the root is largely
conserved across the tools and read substitution rates.
With a 5% substitution rate in the simulated reads, all
tools perform comparably. However, when this substitu-
tion rate increases to 10% there is more variation be-
tween the tools with the MEM approaches classifying
the most reads (68.8%), Kraken 2 slightly lower at 56.3%
and Kraken falling behind classifying only 38.8% as its
DNA reference matching potentially hinders the ability
to assign more divergent sequences compared to the
protein reference matching methods. Finally, using a
20% substitution rate in the simulated reads all methods
perform relatively poorly with the percentage of classi-
fied reads ranging from 2.5 to 10.2%.

Functional classification of the soil microbiome using the
GO hierarchy

We used experimental metagenomic samples for func-
tional classification. We selected four soil metagenomic

samples from the study by Bahram et al. [15] since soil
represents one of the most diverse microbiomes on earth
and as such one of the most difficult to characterize.
The four samples represented habitats ranging from
Boreal forests to Moist tropical forests. The MEM ap-
proaches were able to classify 35.93% of the sequencing
reads on average, comparable to 36.17% by Kraken 2,
but Kraken only classified 1.65% (Fig. 2b, Supplementary
Table S3). This, alongside our previous analysis, fits our
hypothesis that protein databases will allow more diver-
gent sequencing reads to be classified where a DNA to
DNA classification may fail. From a performance per-
spective, compared to our simulated read analysis and
using Kraken 2 and the MEM approaches as a guideline,
the soil metagenomic reads reflect the classification sta-
tistics that we may expect from simulated reads with a
~15% substitution rate (Supplementary Figure S1).
When we focus on those reads that can be informatively
assigned to a GO term below the root, this represents
88.81%, 93.16% and 93.28% or the vast majority of
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classified reads for Kraken, Kraken 2 and the MEM ap-
proaches respectively (Fig. 2c).

We compared our best LCF classification approach for the
soil datasets (Kraken 2) with the sequence-similarity search
approach (alignment) that was taken in the original study
[15] (DIAMOND [10], percentage identity 50% and e <1 x
107®), applying both with the IFGP database. Here, we com-
pare using our best LCF classification as an example, al-
though results with Kraken 2 and the MEM approaches
were largely indistinguishable. The results showed that our
best LCF classification approach, which classified 36.17% of
reads on average, classifies a higher proportion of reads than
the average of 23.0% aligned reads that we observe using
DIAMOND. Furthermore, this is a more than 4-fold increase
upon the 7.8% of reads aligned using the same software and
parameters from the original study combined with the
KEGG database [16] that was reportedly used. To highlight
the insight that our functional annotation method could pro-
vide, using Kraken 2 and the IFGP database, we analysed the
189 soil metagenomic samples from the study by Bahram
et al. [15] to enable comparison (see the “Methods” section).
Our approach provides additional insights to those that were
presented in the original study allowing us to highlight the
enrichment in specific functional groups across different lati-
tudes compared to other functional groups. We noted that
the functional group GO:0016209 related to antioxidant ac-
tivity (Supplementary Figure S2a) showed a correlation with
latitude (R* = 0.2186). GO:0016209 showed a significant de-
crease in the proportion of reads associated with antioxidant
activity in equatorial samples (latitude between — 20 and 20)
compared to polar samples were antioxidant activity was
enriched (latitude less than — 40 or greater than 40) (P <
0.001, ¢t = 5.6774, df = 127). This is supported by observa-
tions that soil antioxidant capacity positively correlates with
soil carbon [25] and that soil carbon is depleted in equatorial
regions compared to higher latitudes due to metabolic activ-
ity and species richness of soil organisms generally increasing
toward equatorial regions [26]. Furthermore, we noted that
the functional group GO:0045735 related to nutrient reser-
voir activity (Supplementary Figure S2b) showed weak cor-
relation with latitude (R*> = 0.1235) where this functional
profile shows no difference between the equator and the
poles, however, becomes significantly depleted in mid-
latitudes (latitude from - 40 to — 20 or 20 to 40) compared
to both the equatorial (P = 0.0026, t = 3.0727, df = 117) and
the polar regions (P = 0.0035, ¢ = 2.9837, df = 114).

Comparison with commonly used functional annotation
approaches

Several methods exist for functional profiling of meta-
genomes [19, 27-30]. These methods typically involve
sequence-similarity searching (or alignment) rather than
classification. Many of these methods benefit from the
recent methodological advances in translated search and
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they typically interpret the translated taxonomic search
of sequencing reads to assign metabolic functions to
them downstream [10, 31]. This means that such
methods are often less straight-forward and slower com-
pared to our direct functional classification; however,
they can profile functional content at a high-level reso-
lution to understand the roles of specific genes in a
given context, whereas our method provides a
community-level profile of functional content. Focusing
on some of the most highly cited methods, we compare
functional annotation alignment approaches to our use
of sequence classification software to assign the LCF to a
read. Firstly, MEGAN uses read alignment to a protein
database e.g. using sensitive BLAST [32] alignment or
employing a faster but less sensitive heuristic method,
DIAMOND [10], to achieve acceptable performance.
Followed by an additional step to perform functional
classification [19]. Similarly, mi-faser [18] aligns metage-
nomic sequencing reads to bacterial protein sequences
with annotated molecular functions from KEGG using
DIAMOND [10]. The third functional annotation ap-
proach, HUMAnN2 (HUMAnN'’s successor) [12], is an-
other  alignment-based method for functional
characterization. It first attempts to identify the most
abundant species in the sample and maps the reads with
Bowtie 2 [33] against their pangenome. In subsequent
steps, a DIAMOND [10] search can also be performed
on unaligned reads and alignments are interpreted to as-
sign functional information.

Although we develop a functional hierarchy and re-
purpose taxonomic sequence classification software for
functional annotation, our GO term reference database
can still be used with other alignment software for func-
tional annotation. Therefore, we compared mapping of
our simulated (low substitution rate) reads to the
complete IFGP database using Bowtie 2 and DIAMOND
(“alignment tools”) to mapping with Kraken, Kraken 2
and our MEM approaches (“classification tools”). The
classification tools give a significant speed advantage
with some also having significantly lower memory re-
quirements (Table 2). Our fastest classification (Kraken
2) provides an 80-fold speed increase to the fastest align-
ment tool. Unlike our classification tools, the alignment
tools do not integrate a taxonomic or functional hier-
archy to assign reads to their LCA or LCF. As such,
when we focus on those reads assigned to multiple loca-
tions with equal likelihood, where the LCA/LCF ap-
proach makes an informed decision on the read’s “best”
location, approaches such as Bowtie 2 typically report a
random best location which is less informative. This was
a common problem with 87.1% of aligned reads assigned
to multiple reference locations with the same quality
score by Bowtie 2. Therefore, although there is a small
decrease on average in classified/aligned reads from the
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Table 2 Classification of 474,930,848 simulated sequencing reads (low substitution rate) by Kraken, Kraken2, the MEM approaches
Kaiju and PRROMenade compared to alignment using Bowtie2 and DIAMOND. Analysis conducted using the full IFGP GO term

sequence database and functional annotation

Software Speed (user time + system time in Peak memory % Classified/aligned Parameters
seconds) (GB) reads

Diamond (MEGAN/mi-faser/ 9,791,017 2161 98.82 k1

HUMANN2)

Bowtie2 (HUMANN2) 758,766 58.26 9295 -S (output SAM file)

Kaiju 456,225 16.44 85.14 -a mem

PRROMenade 219,483 140.38 85.14 taxonomic-

classifierMem
Kraken 23,220 352 85.20 Defaults
Kraken 2 9466 1.95 9391 Defaults

classification tools compared to alignment tools (except
for Kraken 2 which outperforms Bowtie 2), these reads
may not be as informatively annotated from a functional
perspective.

Conclusions

We report direct functional microbiome read classifica-
tion by re-purposing commonly used taxonomic classifi-
cation tools and demonstrate this using both protein
and DNA sequence databases. Moreover, we do this by
developing and using a functional hierarchy that over-
comes problems encountered by reads matching mul-
tiple sequences equally well (evidenced by our analysis
using Bowtie 2), by assigning reads to their LCF. For less
divergent sequence sets, such as our simulated read set
with a substitution rate of 5%, we can assign the majority
of sequencing reads to an informative (non-root) and
correct LCF using any of the methods (demonstrated
using popular k-mer based tools Kraken, Kraken 2 and
MEM approaches including PRROMenade and Kaiju).
We observe a similar overall read classification rate and
accuracy for both protein and DNA reference databases.
The error rate for sequence classification is also low at
0.68-1.7% in the simulated setting. Protein sequence da-
tabases are frequently utilized for functional sequence
analysis in metagenomics since they allow diverse se-
quencing reads to be classified, when the respective
amino acids match. We also test classification using sim-
ulated reads with a high substitution rate and using ex-
perimental soil metagenomic samples where we reveal
new biological insights. We observe a characteristic in-
crease in the number of classified reads using the protein
database compared to a DNA database when these di-
verse samples are analysed. However, all methods assign
similar proportions of their classified reads informatively
to a GO term or an ancestral/related (non-root) LCF
GO term. Interestingly, when the substitution rate of
our simulated reads is low (5%), Kraken 2 marginally
classifies the most reads; however, when the substitution

rate increases to 10%, the MEM approaches significantly
outperform it classifying the most reads (68.8% com-
pared to 56.3%).

We focus on functional read classification by re-
purposing Kraken, Kraken 2 and Kaiju due to their
prevalent usage in the community; however, this meth-
odology has broad applicability across microbiome se-
quence classification tools. While we focus here on GO
terms relating to molecular function, this analysis could
be extended to include additional GO terms for bio-
logical processes and cellular components, or any other
coding system that can be represented or adapted to a
tree of hierarchical annotations. Furthermore, our bac-
terial focused functional reference database could be ex-
tended to include other microbes or exchanged to
primarily focus on other microbes. Ultimately, we hope
that re-purposing becomes a consideration more gener-
ally, where developers support and diversify reference
databases routinely for bioinformatic resources to allow
adaptation of their tools for new purposes. Such soft-
ware diversification could be identified by the developers
themselves incorporating additional searches during rou-
tine updates or led by their user-base if feedback oppor-
tunities or user requests are enabled and encouraged.
We propose that a good candidate software for re-
purposing, would be typically highly used, well-
documented, well-maintained and optimized. As we
highlight here, re-purposing ideas have the potential to
introduce a new biological concept for a software while
also offering an alternative solution to a computationally
inefficient task.

Methods

Transforming the GO hierarchy into a functional hierarchy
tree

Our derived tree structure includes nodes that are repre-
sentative of the GO molecular function subset. To adapt
the GO hierarchy into a tree structure, we first trans-
formed it into a rooted tree by visiting the nodes in
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depth-first search (DFS) order, starting from the top-
level code for molecular function as the root LCF. We
also explored breadth-first search (BFS) order and ran-
dom removal of edges for multi-parent nodes. However,
the DFS approach maximized the average distance of
nodes from the root, thus enabling more specific annota-
tion of sequences (Fig. le). Finally, on occasions where
multiple GO terms were associated with a single protein
sequence in the reference database, we selected a repre-
sentative GO term prioritizing the most specific term
that was available.

Development of reference databases and taxonomy

For this analysis, we used a large-scale database called
the IBM Functional Genomics Platform, IFGP [23]. At
the time of this study, I[FGP contained 138 million bac-
terial protein domains. A subset of 11.9 million domains,
totalling 3.7 billion amino acids, had associated KEGG
Enzyme Nomenclature codes (EC). In addition, the IFGP
database contained Gene Ontology (GO) terms [24] for
40.1 million domains totalling 9.8 billion amino acids
and associated with 1740 GO molecular function codes.
In order to test the functional read classification, we de-
veloped three DNA sequence databases and three associ-
ated functional hierarchies. These three test sets were
derived from the IFGP database with increasing sizes;
the first a relatively small test set of sequences from the
Bordetella genus of the phylum Proteobacteria, the sec-
ond a larger sequence set (50x larger) from the Salmon-
ella genus of the family Enterobacteriaceae, and finally
the complete IFGP GO database of sequences [24]. The
analysis using databases of increasing size allows us to
ascertain if a larger set of GO terms in our reference
database affects the ability to discriminate between them
and therefore affect sequence classification precision and
accuracy.

Firstly, for Bordetella, 40,127 protein sequences were
labelled with 689 GO terms. Each GO term had an aver-
age of 199.4 sequences associated with it (89.3% of GO
terms had > 10 sequences associated with them). Sec-
ondly, for Salmonella, 4,431,494 sequences were labelled
with 1222 GO terms. Finally, the complete IFGP GO
database contained 40,509,561 sequences that were la-
belled with 1740 GO terms. For use with Kraken, all of
these protein sequences were reverse translated to DNA
sequences using EMBOSS backtranseq [34].

A k-mer database was constructed using the software
Kraken (v0.10.5) [11] for the above three databases (de-
fault settings). Kraken assigns taxonomic labels to short
DNA reads based on the LCA most closely matching its
k-mer profile. Here, we applied Kraken in a different
way; we created three custom k-mer databases that con-
tained our GO reference DNA sequence sets and a cus-
tom “taxonomy” (Additional file 2-nodes.dmp and
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Additional file 3-names.dmp) to include nodes and their
relationships that are representative of the GO terms’
functional hierarchical structure. This allows Kraken to
assign GO terms, rather than its typical taxonomic clas-
sification, to short DNA reads. Here, we focused on mo-
lecular function GO terms and as such our root LCF in
the functional hierarchy was the GO term GO:0003674
that corresponds to the term “molecular function”. Note
that reference databases in Kraken (as developed here)
are also compatible for downstream usage with Krake-
nUniq [35].

For comparative analyses with Kraken 2, Kaiju and
PRROMenade, we developed reference databases from
the complete IFGP database. However, for use with Kra-
ken 2, Kaiju and PRROMenade the IFGP protein se-
quences sets could be used directly for database
generation with no need for DNA conversion. The cor-
responding custom GO term functional hierarchy (Add-
itional file 2-nodes.dmp and Additional file 3-
names.dmp) was used. Kraken, Kraken 2, PRROMenade
and Kaiju were run with default settings except for the
choice of the mem scoring function for Kaiju since this
results in a closer comparability of the alignment meth-
odologies used. PRROMenade is theoretically equivalent
to the Kaiju with the “M[EEM” option selected, while be-
ing faster in practice to run [20].

Simulated sequence data

To demonstrate our ability to discriminate between the
GO reference sequences in our custom databases, we
used Kraken, Kraken 2, PRROMenade and Kaiju to as-
sign GO terms to simulated sequencing datasets that
were generated from the databases themselves. Sequen-
cing reads were simulated randomly from sequences in
each of the three reference databases Bordetella, Sal-
monella and the complete IFGP database. The original
protein sequences from the respective databases were re-
verse translated to DNA sequences using EMBOSS
backtranseq [34] and then sequencing reads were simu-
lated from these DNA sequences using SAMtools WGSI
M (v. 0.3.1-r13) [36]. We generated paired-end sequen-
cing reads of 125bp in length. To avoid identical se-
quencing reads to the reference we used a substitution
rate of 0.05 (5%) between the reference and the sequen-
cing reads—these reads represent the most similar reads
to the reference that we use in this study (95% similar)
and we refer to these reads as our “low substitution rate”
reads. We also generated paired-end sequencing reads of
125bp in length with higher substitution rates of 0.10
(10%) and 0.20 (20%) to allow comparison and to repre-
sent less and less related organisms with a more diver-
gent sequence—we refer to these reads as “medium
substitution rate” and “high substitution rate”,
respectively.
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When the read simulation methodology was followed
for sequences from the Bordetella genus of the phylum
Proteobacteria, we generated 665,699 read pairs resulting
in ~ 10x coverage of the reference sequences and inclu-
sion of 96.72% of GO sequences that were of sufficient
length (125bp or longer) to generate sequencing reads
from. Secondly, for sequences from the Salmonella
genus, we generated 175,635,320 read pairs resulting in
~ 10x coverage of the reference sequences and inclusion
of 96.78% of GO sequences. This methodology was
followed for the complete IFGP GO database where we
generated 237,465,424 read pairs resulting in ~ 2x
coverage of the reference sequences and inclusion of
89.2% of GO sequences (9.8% of the sequences were
skipped due to having a length shorter than 125bp,
while 1% were skipped because they contained a high
proportion of ambiguous bases or Ns).

Evaluation criteria for classification of sequencing reads
The definitions used in this analysis identify unclassified
reads as reads having no match to the reference database
(although these reads may be automatically denoted as
root by some methods, we only include classified reads
in our calculations of reads assigned to the root). Classi-
fied reads are those that were matched to a sequence in
the reference database. For reads that we simulated from
sequences, we encode in the read ID the specific GO
term that the sequence of origin was associated with,
this allows us to compare the GO term classification of
the read to its GO term of origin. This comparison can
result in firstly, an exact match between the GO term
that a read is classified to compared to its origin. Sec-
ondly, no exact match but a match between the GO
term that a read is classified to compared to a term that
is higher up in the GO functional hierarchy but on the
same path as the origin GO term. We use the GO func-
tional hierarchy paths to derive such matches and refer
to them as correct matches to non-root, related matches
or ancestral matches (Additional file 4). Thirdly, a classi-
fied read can be assigned to the root LCF GO term. Fi-
nally, if neither of the previous three matching options
are observed, a read is determined to have been assigned
to an incorrect GO term.

Analysis of experimental soil dataset

For 189 soil metagenome paired-end read sequencing
samples from the study by Bahram et al. [15], Kraken 2
was run with default settings for each sample using the
complete IFGP database as a reference database along-
side the corresponding custom GO term functional hier-
archy (Additional file 2-nodes.dmp and Additional file 3-
names.dmp). Each aligned read pair (DIAMOND) was
assigned to a single location and each classified read pair
(Kraken 2) was assigned to a single functional hierarchy
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node. Classified reads (Kraken 2) were summed for each
of the following selection of level 2 GO terms (summed
across those related GO terms that were lower in the
functional tree hierarchy): binding [GO:0005488], struc-
tural molecule activity [GO:0005198], catalytic activity
[GO:0003824], [GO:0004871], cargo receptor activity
[GO:0038024], antioxidant activity [GO:0016209], mo-
lecular carrier activity [GO:0140104], transporter activity
[GO:0005215], translation regulator activity [GO:
0045182], transcription regulator activity [GO:0140110],
molecular function regulator [GO:0098772], hijacked
molecular function [GO:0104005], nutrient reservoir ac-
tivity [GO:0045735], protein tag [GO:0031386] and toxin
activity [GO:0090729]. Read numbers were normalized
to a scale of 0-1 for each sample to allow comparison.
Scatterplots were drawn to show the proportion of
aligned reads to each GO term group for each of the
189 samples after alignment (Supplemental Figure S2).
The respective trendlines of closest fit for the datapoints
are shown in the figure (in red) and were determined ac-
cording to R* scores: for GO:0016209 y = 1E-14x°-2E
~13x°-3E-11x*-6E-10x>+7E-08x"+7E-07x+0.0014 and
R* = 0.2186, for GO:0045735 y = 3E-11x*-4E-10x>-8E
~08x”-3E-07x+0.0004 and R* = 0.1235, for GO:0005488
y = 8E-10x"*-2E-08x>-2E-06x"~6E—-06x+0.2742 and R*
= 0.0175, for GO:0098772 y = 3E-15x°+3E-13x"+2E
~11x*-2E-09x>-3E-08x*+1E-06x+0.0008 and R> =
0.0892, for GO:0003824 y = — 2E-09x*-5E-10x>+4E
~06x>+0.0001x+0.6043 and R* = 0.0532, for GO:0005215
y = 6E-10x*-4E-09x>-1E-06x>-4E-05x+0.085 and R>
= 0.062 and for GO:00140110 y = 5E-06x+0.0194 and
R* = 0.007.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/540168-020-00971-1.

Additional file 1: Figure S1. Estimation of substitution rate of soil
metagenomic samples. Scatterplot to show the classification rate (y-axis)
of Kraken2 (pink datapoints) and the MEM approaches Kaiju and
PRROMenade (blue datapoints) for simulated reads as substitution rate
increases (x-axis). The linear trendline for the datapoints is shown in black
with its respective linear equation. The red line denotes the average
classification rate of the soil metagenomic samples considering both
Kraken2, Kaiju and PRROMenade to estimate the substitution rate of
these samples if we were to attempt to recreate them from simulated
reads. Figure S2. Read alignment of 189 soil metagenomic samples to
GO functional groups. Scatterplots to show the proportion of classified
reads to each GO term for each of the 189 analysed soil samples after
classification to the IFGP GO term sequence database using Kraken2
(read numbers normalized to a scale of 0-1 for each sample to allow
comparison). The respective trendlines of closest fit for the datapoints are
shown in red. Here we show classification summarized for specific GO
functional groups as follows; (a) GO:0016209 for antioxidant activity, (b)
GO:0045735 for nutrient reservoir activity, (€) GO:0005488 for binding, (d)
G0:0098772 for molecular function regulation, (€) GO:0005198 for struc-
tural molecule activity, (f) GO:0003824 for catalytic activity, (g)
GO:0005215 for transporter activity and (h) GO:00140110 for transcription
regulator activity. Table S1. Classification of simulated sequencing reads
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(low substitution rate) by Kraken using three different sized GO term se-
quence databases (DNA based) and functional annotation. Table S2.
Classification of 474,930,848 simulated sequencing reads (low, medium
and high substitution rate) by Kraken, Kraken2 and the MEM approaches
Kaiju and PRROMenade using the full IFGP GO term sequence database
and functional annotation. Table S3. Classification of real soil metagen-
ome sequencing reads by Kraken, Kraken2 and the MEM approaches Kaiju
and PRROMenade using the full IFGP GO term sequence database and
functional annotation.

Additional file 2. nodes.dmp.
Additional file 3. names.dmp.
Additional file 4. GO reference functional hierarchy tree structure.

Additional file 5. A step by step description of how to use our GO
functional hierarchy to build reference databases and perform
classification for Kraken2 and Kaiju.

Additional file 6. Building a reference database using the GO taxonomy
(Kaiju).

Additional file 7. Building a reference database using the GO taxonomy
(Kraken2).

Additional file 8. Sample GO sequence database.
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