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A mixed community of skin microbiome ®

representatives influences cutaneous
processes more than individual members
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Abstract

Background: Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can
influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions,
wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the
host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these
microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in
the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need
to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this
study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a
precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin
microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses.

Results: The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene
expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix
(among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the
number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident
upon treatment with the mixed community, but either not detected or less pronounced in treatments by
single microorganisms, underscoring the impact that a diverse skin microbiome has on the host.

Conclusions: This work contributes to the understanding of how microbiome constituents individually and
collectively influence human skin processes and properties. The results show that, while it is important to
understand the effect of individual microbes on the host, a full community of microbes has unique and
pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum
of its parts.
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Background

Human skin provides a physical barrier between the
body and the outside world, preventing the entry of irri-
tants and pathogens, informing the development of im-
mune responses, and regulating water loss [1-4].
Populations of microorganisms—the skin microbiome—
reside on and within human skin. Different skin sites
and individuals harbor varying compositions of micro-
organisms [5, 6] with estimated densities ranging from
10* to 10° microorganisms per square cm [6].

Metagenomics sequencing studies have explored the
composition and characteristics of the skin microbiome.
While bacteria dominate the microbiome composition [7],
viruses, fungi, and even mites have also been identified [4].
The bacterial microbiome primarily consists of four
phyla—Actinobacteria, Firmicutes, and Proteobacteria—
and a lower abundance of Bacteroidetes [5]. Yet, the com-
position of particular taxa varies widely across body sites.
Areas such as the antecubital fossa (inner elbow) or the
axillary vault (underarm) are classified as moist regions
and are associated with a high abundance of Staphylococ-
cus and Corynebacterium [4]. Drier areas, such as the fore-
arm and legs, harbor more diverse populations of bacteria.
One study found that over half of the bacterial genera at
dry sites can be attributed to either Cutibacterium (re-
cently renamed from Propionibacterium [8]), Corynebac-
teria, Staphylococcus, Streptococcus, or Acinetobacter
species [4, 9]. Sebaceous areas, such as the forehead or alar
crease (side of the nostril) harbor Cutibacterium, which
primarily resides within sebaceous glands [4]. Culture-
based studies have additionally characterized the skin
microbiome while also providing microbial isolates for
experimental studies [9-12]. Additionally, culture-based
studies recognize bacteria that are viable on the skin as
well as those that may have been underestimated due to
sequencing biases [13, 14]. These studies have shown that
Cutibacterium, Staphylococcus, Micrococcus, Bacillus,
Roseomonas, and Paenibacillus are prevalent and viable
on the skin microbiome [10].

The skin microbiome plays a role in directing cutaneous
processes critical to human health and disease [7, 15-18].
Many previous research efforts have detailed specific mecha-
nisms of communication between commensal skin microor-
ganisms and host tissue. For example, Staphylococcus
epidermidis and Staphylococcus aureus have been found to
induce distinct signaling pathways, leading to specialized
modulation of the innate immune system [19]. Similarly, a
cell wall component common to the Corynebacterium genus
was found to modulate an additional distinct pathway of the
immune system, interleukin-23 (IL-23)-dependent inflamma-
tion [20]. In disease states, abnormal microbiome composi-
tions—often characterized by a reduced diversity of
microorganisms—have also been linked to diabetes, psoriasis
[21-23], and atopic dermatitis [24—28].
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While a wealth of discoveries has been made regarding the
impact of skin microorganisms on the host, the vast majority
of efforts have focused on individual taxa, have concentrated
on specific impacts on the skin, or have drawn conclusions
statistically from human sampling studies. Much remains to
be discovered in terms of the collective host pathways that
skin microbes influence at the gene expression level, as well
as the higher-level skin properties impacted through the
modulation of these pathways.

Towards this end, germ-free mice (those reared without
a microbiome) have offered a powerful tool. Analogous to
studies in the gut, where the microbiome has been shown
to modulate fundamental functions such as intestinal nu-
trient absorption and mucosal barrier fortification [29—
31], studies in the skin have demonstrated microbiome
modulation of wound healing [32] and epidermal differen-
tiation [33]. Of particular relevance, Meisel et al. revealed
that in healthy mice, the skin microbiome influences gene
expression for a range of biological processes including
the cutaneous immune response, cytokine production,
epidermal differentiation, and epidermal development
[33]. Despite these significant findings, additional efforts
are needed to characterize the consummate influence of
individual microbiome members on microbiome-host dia-
logue. In addition, the uniqueness of the human skin
microbiome warrants the characterization of microbe-
host interactions in human tissues [34, 35].

Here, we examine how members of the human skin
microbiota inform cutaneous processes when cultured
both individually and in a mixed community. To accom-
plish this, we use microbial isolates from healthy human
skin and three-dimensional human skin equivalents. The
human skin equivalents, like germ-free mouse models,
allow for carefully controlled studies of skin-
microorganism interactions, [36] but they additionally
support the study of human-specific tissues and micro-
organisms [37-41]. We studied microbiome representa-
tives from species and genera that commonly reside in
the aerobic environments of the skin surface—Staphylo-
coccus epidermidis, Streptococcus luteciae, Bacillus sp.,
Roseomonas mucosa, Paenibacillus sp., Micrococcus
luteus, Corynebacterium sp., and Acinetobacter Iwoffi [5].
We investigate individual microorganism contributions
to a collective community response by co-culturing indi-
vidual microorganisms and a mixed community at the
air-tissue interface.

Using transcriptomics and histological analyses, we find
that the presence of a model microbiome leads to signifi-
cantly altered patterns of gene expression, influencing
genes involved in the regulation of apoptosis, proliferation,
and the extracellular matrix. Moreover, microbiome treat-
ment influences the thickness of the epidermal layer, re-
duces the number of actively proliferating cells, and
increases filaggrin expression. Many of these findings are
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evident upon treatment with the mixed community, but
not detected in treatments by single microorganisms,
underscoring the impact of a diverse microbiome on the
skin-microbiome relationship. This work furthers our un-
derstanding of how microbiome constituents both indi-
vidually and collectively influence skin processes and
extends previous efforts in murine systems [33] to human
tissue and relevant microorganisms.

Methods

Skin microbiome representatives

Bacteria used in this study were isolated from swabs of
healthy human skin at either the forearm, antecubital
fossa, or forehead. Details on the bacterial isolations are
further described by Timm et al. [42]. The V1 to V9 re-
gions of the 16S ribosomal RNA (rRNA) gene were ob-
tained by Sanger sequencing (Genewiz, LLC). Forward
and reverse reads were merged to form a consensus se-
quence, which was then classified using the SINA search
and classify service against the small subunit references
in the Greengenes, RDP, and SILVA databases [43]. The
classification based on the Greengenes database was
used to identify isolates. Table S1 shows isolate IDs, 16S
rRNA consensus sequences, classification results, and
the skin site of isolate collection, as provided by Timm
et al. [42]. For preliminary microscopy studies (shown in
Figures la and S2), fluorescent reporter strains of
Staphylococcus aureus and Pseudomonas aeruginosa
were used. Specifically, Staphylococcus aureus RN4220
was transformed with pAH9, which codes for expression
of the fluorescent protein mCherry [44] and was a gift
from Alexander R. Horswill. Pseudomonas aeruginosa
PAO1 was transformed with pMRP9-1, enabling expres-
sion of green fluorescent protein, and was a gift from
Pete Greenberg.

Bacteria culturing

Bacteria were stored at — 80 °C in tryptic soy broth
(TSB, Sigma Aldrich) supplemented with 10% glycerol.
Bacteria were streaked on tryptic soy agar (TSA, Hardy
Diagnostics) at room temperature until single colonies
were visible. Individual colonies were then picked, inoc-
ulated into 3 ml of TSB, and cultured at 30 °C overnight.
Overnight cultures were then diluted 1:500 and incu-
bated for 4 h to generate starter inoculation cultures.
Corynebacterium sp. and Streptococcus luteciae, which
grow more slowly than other bacteria used in this study,
were cultured on TSA for up to 4 days, in the initial li-
quid culture for 72 h, and then in the subsequent liquid
culture for 18 h.

OD and CFU/ml calibration curves
Starter inoculation cultures were used to generate seven
cultures at dilutions ranging from 1:40 to 1:4 x 10° in
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TSB. Bacterial cultures were allowed to grow from 4 to
18 h, and the optical density at 600 nm (OD) was mea-
sured using the cuvette reading mode on a Nanodrop
2000C spectrophotometer (Thermo Scientific). For cul-
tures where the OD reading was between 0.1 and 1, bac-
teria were serially diluted from 1:100 to 1:10° and plated
in triplicate on TSA plates. The number of colony-
forming units (CFU) was counted for each condition,
and a linear regression was calculated using GraphPad
Prism (version 8.1.1 for windows, GraphPad Software,
La Jolla, CA, USA, www.graphpad.com) to relate CFU/
mL to the culture OD. These relationships are shown in
Figure S1.

EpiDerm and bacteria co-culture

Underdeveloped full-thickness EpiDerm (EFT-400-7A,
MatTek) was equilibrated and cultured in antibiotic-free
culture media (MatTek) at 37 °C with 5% CO, and no
humidification. The tissues were cultured by MatTek for
2 days without antibiotics prior to shipment and then
cultured in the antibiotic-free cell culture medium (pro-
vided with EFT-400-7A by request, MatTek), which was
changed every other day. We assume that due to regular
media changes and buffering of the media (HEPES), pH
changes due to evaporation are negligible. The media
also contains a pH indicator (phenol red), and no prob-
lematic observations were made during the course of the
experiments. Starter inoculation cultures were washed
twice in phosphate buffered saline (PBS, Fisher BioRea-
gents) by centrifugation at 8000xg, removal of the super-
natant, and suspension of the cell pellet in fresh PBS.
The cell concentration was then adjusted to 1 x 10°
CFU/ml based on the established OD vs. CFU/ml rela-
tionships. For the mixed community treatment, equal
volumes of cell suspensions were mixed to generate a
total suspension of 1 x 10° CFU/ml. Once the EpiDerm
tissues were fully developed (after 3 days of culture upon
receipt), bacteria solutions were deposited at the air-
tissue interface (see Fig. 1a and S2) in two spots of 2.5 pl
each and allowed to dry. The axenic control condition
was treated with the PBS vehicle only. For transcripto-
mics analysis, five tissues were used for each condition,
and bacteria were incubated on the tissue for approxi-
mately 18 h. For histological analysis, five to six tissues
were used per condition, and bacteria were incubated on
the tissues for 5 days.

RNA extraction and sequencing

To extract cellular RNA, entire tissues were immersed in
Trizol and lysed by bead beating for five minutes at a 20
s frequency using the Qiagen Tissue Lyzer with the
Navy bead beating kit (Next Advance). Tissues homoge-
nates were further lysed by passing through the Qiash-
redder (Qiagen). Homogenates were then extracted with
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of EpiDerm skin tissue co-cultured with fluorescently labeled bacteria, and (right) all microbiome treatments included in this study. b Hierarchical clustering plot
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chloroform, mixed with an equal volume of ethanol, and
loaded into columns of an RNeasy mini kit (Qiagen), at
which point the manufacturer’s directions were followed,
which included the on-column DNAse (Qiagen) diges-
tion. RNA concentrations were determined using a
Quant-it RNA Assay Kit with a Qubit 3.0 Fluorometer.

Library preparation was performed using the QuantSeq
3" mRNA-Seq kit (Lexogen), which using oligo-dT prim-
ing and does not require the use of poly(A) enrichment
or rRNA depletion [45]. Libraries were sequenced on a
NextSeq using the 500/550 High Output v2 kit (Illu-
mina) in 75 base pair single-read mode.
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Sequence processing and analysis

Raw single-end FASTQ files were trimmed with
Trimmomatic-0.35 and adapters were removed using de-
fault settings [46]. Both leading and trailing minimum
quality scores were set to 20, a sliding window of 4:20 was
used, and the minimum read length was set to 50. Tran-
script expression was quantified with Salmon [47] and
transcript level abundance was summarized by gene-level
analysis using the tximport package in R [48]. The human
genome assembly hg38 (NCBI assembly ID 5800238) was
used as the index and bootstrapping (with replacement)
was set at 50. Differential abundance was calculated using
DESeq?2 [49] with a false discovery rate (FDR) threshold of
0.1 [50]. DESeq2 uses the Benjamin-Hochberg (BH) cor-
rection to calculate adjusted p-values. Quality measures
were examined, such as those pertaining to transcriptome
coverage, and are shown in Table S3. A Pearson correl-
ation was also performed to determine the similarity of
the five biological replicates for each condition (Table S3).
Samples with low Pearson correlations (< 0.875) to repli-
cates were considered outliers [51] and removed (see
Table S3). These outlier samples also exhibited more vari-
able quality control metrics, such as lower coverage of the
transcriptome. The differential expression analysis was
then repeated for each condition. An adjusted p value of
0.05 was used as a significance cutoff to determine differ-
entially expressed genes. To examine bacterial RNA pres-
ence, reads were classified at the genus-level using
Kraken2 with a confidence-value of 0.2 [52]. Analysis of
bacterial reads is shown in Figure S3.

To examine microbial expression from genes encoding
for antimicrobial proteins and peptides (AMPs), a litera-
ture search was conducted to find common AMP-
encoding genes in skin tissue. Euler diagrams were cre-
ated with eulerAPE v3 [53]. Hierarchical clustering was
performed using variance stabilizing transformed (VST)
data for individual samples (as shown in Fig. 1b) [49] or
log2 fold change (log2FC) values (as shown elsewhere
throughout the paper) for aggregated treatment groups
using average linkage in JMP® (Version 13.0.0, SAS Insti-
tute Inc., Cary, NC, 1989-2019) software. To examine
expression levels of individual genes across tissues, VST-
transformed data were plotted for individual tissues in a
given condition.

Gene overrepresentation analysis

To gain insight into the biological processes influenced
by microbiome treatment, genes that were differentially
expressed between the mixed community treatment and
axenic control were analyzed with Protein ANalysis
THrough Evolutionary Relationships (PANTHER) ana-
lysis tools [54]. First, the number of genes differentially
expressed between the mixed community treatment and
the axenic control were functionally classified to the

Page 5 of 17

PANTHER GO-Slim ontologies of Molecular Function,
Biological Function, and Cellular Component. The anno-
tation was repeated using a list of genes that were differ-
entially expressed in both the mixed community and
single microorganism treatment. Next, the PANTHER
classification system [54] was used to conduct an over-
representation analysis (Released 2019-07-11) using the
GO Biological Processes Complete annotation (version
14.1, released 2019-07-03) [55, 56]. The input gene lists
were based on all genes differentially expressed between
the mixed community and the axenic control with a BH-
adjusted p value < 0.05 (Table S4). Genes that were dif-
ferentially expressed in the mixed community treatment
condition but not in any single microorganism treatment
were also examined using a BH-adjusted p value of <
0.05. A background list (included in Table S5) consisted
of all genes detected across all samples in the experi-
ment with a base mean over 1. To determine statistically
overrepresented gene sets, the Fisher’s exact type test
with a FDR correction was used. Reduce and Visualize
Gene Ontology (REVIGO) [57] was used to summarize
the list of gene sets and find representative subsets. For
analyses of the mixed community, the list of gene sets
with a FDR p value< 0.01 were input into REViGO using
the Homo sapiens database, the Resnik (normalized)
similarity measure, and the option to allow for medium
similarity. The resulting treemap was generated using p
values to determine box size and was visualized using
JMP statistical software. The REVIGO treemap for the
gene sets enriched in the mixed community but not
single-microorganism treatments, gene sets with an FDR
p value < 0.05 was used.

Histology and immunofluorescence staining

EpiDerm tissues were removed from transwell inserts
using a sterile scalpel and immediately incubated in 4%
paraformaldehyde diluted in PBS. The Johns Hopkins
University Reference Histology Center then embedded
tissues in paraffin and obtained 5-pm-thick sections. Tis-
sue sections were acquired approximately one-quarter of
the way through the tissue and were collected approxi-
mately 25 pm apart. Tissues were deparaffinized and
rehydrated by treatment in xylene and ethanol and then
stained with hematoxylin and eosin (H&E). For im-
munofluorescence analysis, after deparaffinization, slides
were submerged in citric acid antigen retrieval solution
(BD Biosciences) under steam treatment for 20 min. Tis-
sues were allowed to cool at room temperature for 30
min, were washed three times in PBS for 5 min, and
were then permeabilized by incubating for 15 min in
0.1% triton-X 100 in PBS. Sections were then blocked by
incubation in 5% bovine serum albumin (BSA) in PBS
for 30 min at 37 °C, stained with a primary antibody
overnight at 4 °C in a humidification chamber, washed
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three times in PBS for 2 min each, and then incubated
with 1:200 dilutions of secondary antibody in PBS with
1% BSA. Unbound secondary antibody on the sections
was washed away with PBS twice, and the tissues were
then stained with DAPI for 5 min, and finally mounted
with ProLong Gold (ThermoFisher Scientific). Primary
antibodies were mouse anti-filaggrin (Santa Cruz Biotech
# sc-66192), rabbit anti-loricrin (Biolegend, # 905104),
and rabbit anti-KI67 (Novus, # NB500-170). Secondary
antibodies were goat anti-rabbit Alexa fluor 594
(Thermo Fisher, R37117) and goat anti-mouse Alexa
fluor 488 (Thermo Fisher, A-11001).

Tissue imaging and image analysis

H&E sections were imaged using a Motic EF-N Plan 10x
objective with a 0.25 numerical aperture on a Motic
BA210 microscope equipped with an EOS Rebel SLI
camera controlled by Canon EOS software. Auto bright-
ness and background adjustments were made to the im-
ages. Epidermal thickness was assessed in H and E
sections by measuring the nucleated epidermal region of
10 or more randomly selected regions per section from
2 images, and 1 section per tissue. The average thickness
is plotted from 5 tissues per treatment condition. An or-
dinary one-way ANOVA followed by Dunnett’s multiple
comparisons test was used to compare differences from
the axenic control.

Fluorescently stained tissues were imaged using a 10x
objective on a Leica SPE confocal microscope controlled
by Leica Application Suite X. The Leica Application
Suite X was also used to generate mosaic images from
six fields of view and maximum-intensity projections of
z-stacks. Image J1.52s was used to count the number of
KI67", filaggrin®, and loricrin® cells. In each case,
maximum-intensity projections were smoothened and
then binary images were generated based on a constant
fluorescence intensity threshold. The ‘analyze particles’
tool was used to count the number of cells, limiting for
circularity from 0.5 to 1 and a size cut-off of 30,000 [58].

Results

Microbiome representatives alter skin tissue gene
expression

To examine the impact of individual microorganisms on
the skin tissue processes, model microbiome treatments
were co-cultured at the air-tissue interface of EpiDerm
skin tissue equivalents (see Fig. 1a). The inoculation
density of each treatment condition was standardized to
5 x 10° CFU per tissue. After 18 h of co-culture, entire
tissues were subjected to transcriptomic analysis. We se-
lected this shorter incubation, compared to the 5-day
co-culture for histological analysis, to enable comparison
of EpiDerm tissues with more standard compositions.
As we examined the entire tissue, the transcriptomic
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analysis captured mammalian cell responses from both
dermal fibroblasts and epidermal keratinocytes. To
examine the degree to which individual treatment condi-
tions led to distinct changes in gene expression, we per-
formed a hierarchical clustering analysis on data from
biological replicates of each treatment condition (see
Fig. 1b). While the axenic treatment conditions clustered
together, many tissues treated with individual microor-
ganisms are interspersed and are not organized into
clear and discrete clusters, suggesting that individual mi-
croorganisms elicit some overlapping responses in the
host skin tissue. However, tissues treated with the mixed
community clustered together more closely suggesting
that they elicit a unique response that is distinct from
the individual treatments. Indeed, the volcano plots in
Fig. 1c show that some microbiome treatments elicit
more pronounced alterations in gene expression (e.g.,
Micrococcus luteus) than others (e.g., Streptococcus lute-
ciae). Interestingly, we see that tissues treated with
Staphylococcus epidermidis had a greater bias towards
downregulated, as opposed to upregulated, genes com-
pared to the other conditions. In fact, this is the only
condition where more genes were significantly downreg-
ulated than upregulated. To visualize relationships be-
tween each biological treatment group, a heat map of
altered gene expression for the entire transcriptome is
shown in Fig. 2a. Hierarchical clustering groups the
Streptococcus luteciae and Roseomonas mucosa treat-
ments, which elicited the least pronounced responses.
Notably, the mixed community treatment is distinct
from the remaining single-microorganism treatments.

Microbiome representatives lead to distinct alterations in
tissue gene expression

To examine how similar tissue responses were to each
microorganism treatment, we compared how many dif-
ferentially expressed genes (those with an adjusted p
value < 0.05) were shared across treatment groups (Fig.
2b). Interestingly, we see that each treatment group
elicits distinct changes in gene expression. For example,
the Staphylococcus epidermidis and Roseomonas mucosa
treatments both led to the upregulation of 31 genes, but
the downregulation of 117 and 10 genes, respectively.
They only share two upregulated genes in common
(RNY5 and CPT1A) and do not share a single downreg-
ulated gene. Acinetobacter Iwoffi and Corynebacterium
sp. treatments are also clustered together in the hier-
archical analysis (Fig. 2a), yet the differentially expressed
genes elicited by each treatment have only partial over-
lap. Corynebacterium sp. and Acinetobacter Iwoffi treat-
ments led to the upregulation of 174 common genes,
comprising 60% of those upregulated by Acinetobacter
Iwoffi treatment and 40% by Corynebacterium sp. treat-
ment. They elicited a common 24 downregulated genes,
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41% of the 58 downregulated by Acinetobacter Iwoffi
treatment and approximately 9% of the 270 elicited by
Corynebacterium sp. treatment. Indeed, each micro-
organism leads to distinctive responses from the host
skin tissue.

We next examined how unique the response of each
single-microorganism treatment response was, relative

to all other single-microorganism treatments. Addition-
ally, we compared how much each single-microorganism
treatment informed the response to the mixed commu-
nity. Euler diagrams (shown in Fig. 2c) visualize these
comparisons. Compared to all other conditions, six of
the eight single-microorganism treatments led to the dif-
ferential expression of unique genes. It is also interesting
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to see that a portion of genes up and downregulated by
the mixed community treatment were not altered in any
single-microorganism treatment. The portion of genes
unique to the mixed community treatment underlies the
importance of studying individual taxa in the presence
of their microbiome community.

Bacterial activity may also play a role in differential
skin tissue responses. We examined the RNA sequen-
cing data for the presence of bacterial RNAs as an indi-
cator of bacteria metabolic activity and viability (Figure
S3).This data verifies that nearly all bacteria examined
were transcriptionally active, including Streptococcus
luteciae—a bacteria that elicited minimal responses from
mammalian tissue. We also found that the largest num-
ber of bacterial RNA content in the mixed community
condition, suggesting that the strong mammalian re-
sponse is due, in part to bacterial activity. These reads
were mostly attributed to Streptococcus, Staphylococcus,
Paenibacillus, and Micrococcus.

Mixed community treatment leads to the
overrepresentation of genes involved in a variety of
biological processes

To better understand the alterations in gene expression,
we classified differentially expressed genes were based
on the high-level PANTHER GO-slim gene list (Fig. 3a).
Genes that were altered in the mixed community but
not altered in any single microorganism treatment were
also classified and are shown in Fig. 3a. Differentially
regulated genes have primary molecular functions of
binding and catalytic activity, and many of those genes
were unique to the mixed community treatment. In bio-
logical process gene sets, many genes are involved in
metabolic processes, cellular processes, and localization.
Genes are active inside the cell, organelles, protein-
containing complexes, and the extracellular region.

To more specifically examine the processes influenced by
the model microbiome treatment, we conducted a gene set
overrepresentation analysis. We first examined gene sets that
were overrepresented in the mixed community treatment
compared to the axenic control. Over 200 gene sets were sig-
nificantly enriched by mixed community treatment, and a
full list of these gene sets is shown in Table S5. Many of
these gene sets are redundant or have relational groupings.
Thus, REVIGO [57], a freely available online tool, was used
to summarize and better visualize the analysis. REVIGO uses
a clustering algorithm to find a representative subset of GO
terms and generate clusters of similar terms. This is shown
as a treemap in Fig. 3b. Each colored box in the treemap
shows clustered terms, with gray demarcations indicating
overrepresented gene sets. The box sizing is reflective of the
significance of overrepresented gene sets. A variety of bio-
logical processes were regulated, such as multicellular
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organism development, cell proliferation, regulation of apop-
totic processes, and extracellular structure organization.

Next, to understand how the mixed community elicits
unique responses to single-microorganism treatments, an
additional gene overrepresentation analysis was conducted
for genes differentially expressed in the mixed community
treatment but not in any single-microorganism treatments
(Fig. 3c). Numerous gene sets were identified, and a ma-
jority (10 out of 16) were involved in metabolism.

Microbiome treatment influences epidermal thickness

and cell proliferation in 3D skin tissue

After broadly analyzing gene expression changes in response
to microbe treatments, we then proceeded to characterize
specific functions in more detail. First, to focus on genes in-
volved in the differentiation and cornification of keratino-
cytes, we examined the expression of genes in the epidermal
differentiation complex (see Fig. 4a). Similar alterations in
gene expression are observed across the treatment condi-
tions. Qualitatively, the most prominent alterations are elic-
ited in the mixed community treatment. Next, skin tissues
co-cultured with microbiome treatments for 5 days were
stained with H&E and examined with microscopy. This lon-
ger co-culture incubation was selected to allow for the accu-
mulation of functional changes within the tissue. The
thickness of the nucleated epidermal region was measured
and is plotted in Fig. 4b. Tissues treated with either the
mixed community or Micrococcus luteus exhibit significantly
reduced thickness. Representative images from each treat-
ment condition are shown in Fig. 4c. No other prominent al-
terations in tissue structure were observed.

After examining cell differentiation, we then focused on
cell proliferation. The expression of genes involved in the
regulation of cell proliferation for all treatments is shown in
Fig. 5a. Again, we observe a similar pattern in gene expres-
sion across treatments, with a reduced effect observed in
Roseomonas mucosa and Streptococcus luteciae treatments.
Next, we examined the differential expression of the cell pro-
liferation marker MKI67 (Fig. 5b). Mixed community treat-
ment and four of the single-microorganism treatments
(Corynebacterium, Micrococcus, Paenibacillus, and Staphylo-
coccus) lead to downregulation of MKI67. To expand upon
these findings, we stained tissue sections for Ki-67 expression
and counted the number of Ki-67" cells. Again, tissues
treated with the mixed community as well as Corynebacter-
ium sp., and Micrococcus luteus, had reduced numbers of
proliferating cells (Fig. 5c). Representative images are shown
in Fig. 5d. The proliferating cells are largely restricted to the
basement of the epidermal region.

Microbiome treatment influences the expression of key
epidermal proteins

Our examination of epidermal differentiation complex
genes (Fig. 4a) also showed that filaggrin and loricrin—
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two genes important for skin barrier properties and skin
structure—were impacted by microbiome treatment. Ex-
pression levels for filaggrin and loricrin are shown in
Fig. 6a, b, respectively. Interestingly, only mixed-
community treatment led to significant alterations in

gene expression. However, the trend of loricrin upregu-
lation was observed across many treatment conditions.
To extend this finding to functional changes in skin tis-
sue, we examined filaggrin and loricrin protein content
in tissue sections. The number of cells staining positively
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for filaggrin content was quantified (Fig. 6¢). Only the
mixed community treatment leads to an increased pres-
ence of filaggrin. We also examined the number of filag-
grin cells and their intensity, but did not see significant
alterations. Representative images are shown in Fig. 6d
and changes in filaggrin and loricrin expression are ob-
served qualitatively.

We also observed that the expression of some AMPs
were regulated by microbiome treatments (see Supple-
mental File S6). The AMP peptidoglycan recognition
protein 2 (PGLYRP2) was significantly upregulated by
multiple conditions—Bacillus sp., Micrococcus luteus,
Staphylococcus epidermidis, and the mixed community.
PGLYRP2 has amidase activity against bacterial
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peptidoglycan as well as bactericidal properties. Other
studies have also observed its upregulation in skin tissue
as a response to bacteria or cytokines [59, 60]. Addition-
ally, we observed significant, but less prominent in-
creases in neutrophil gelatinase-associated lipocalin
(LCN2) in the Bacillus sp. treatment condition as well as

beta-defensin 4A (DEFB4A) and protein S100-A7A
(S100A7A) in the Paenibacillus sp. treatment condition.

Discussion
Microbiome systems modulate a range of biological pro-
cesses important in health and disease. Here, we
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investigated how representative members of the human
skin microbiome influence cutaneous processes. In ac-
cord with previous studies in mice [33], we found that
the skin microbiome regulates expression of genes im-
portant for epidermal differentiation and homeostasis.
Using 3D skin tissue cultures, we observed that a model
microbiome led to pronounced changes in epidermal
thickness, epidermal cell proliferation, and filaggrin pro-
duction. We additionally examined how individual
microbiome constituents inform cutaneous responses to
a diverse model microbiome. We found that no single
organism drove host responses to the model microbiome
community. These findings provide a basis for further
investigation into the microbiome-skin dialogue.

Single microorganism treatments elicited similar but
distinct responses in gene expression from skin tissue.
Among the individual microorganism treatments, Micro-
coccus luteus elicited the strongest response. Addition-
ally, Micrococcus luteus was the only individual
microorganism treatment that led to a significant reduc-
tion in epidermal thickness, and one of the few treat-
ments that reduced epidermal cell proliferation. This
relatively robust response suggests that Micrococcus
luteus may play a larger role in host-microbiome dia-
logue than previously anticipated.

In contrast, Streptococcus luteciae led to a nearly im-
perceptible response from skin tissue. Only one gene
was significantly upregulated—Ro60-Associated Y5
(RNY5). This gene is one of several noncoding RNAs
that bind to and regulate Ro60—an RNA binding pro-
tein; although the function of Ro60 and RNY5 are not
well understood [61]. However, RNY5 is known to be
upregulated in response to stress and is enriched in exo-
somes, suggesting it may play a role in cell-to-cell signal-
ing [62, 63]. This gene was also upregulated in many
other examined treatments (all except for Acinetobacter
Iwoffi and Micrococcus luteus), suggesting that it may be
a conserved cellular response to microbiome presence.
While microorganism treatments were standardized by
colony-forming units upon administration, it is possible
that Streptococcus luteciae grew very slowly or had lower
metabolic activity—thus, eliciting a minimal tissue re-
sponse. However, examination of bacterial reads in the
RNA sequencing data identified Streptococcus RNAs, in-
dicating its viability. The minimal skin responses could
be attributed to slower growth rates or a lack of inter-
action with the skin tissue.

Staphylococcus epidermidis also elicited a distinct gene
expression profile. Compared to other conditions, the re-
sponse to S. epidermidis elicited a bias toward the down-
regulation, rather than the upregulation of genes. A
previous microarray-based study of skin equivalent re-
sponses to Staphylococcus epidermidis similarly found a
greater bias towards gene downregulation [64]. As one
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of the most abundant and prevalent species found on
the skin, this suggests that the microorganism may have
more unique interactions with host tissue.

We also examined a mixed community treatment con-
sisting of each of the examined single microorganisms
mixed in equal proportions. We found that this model
microbiome led to significant alterations in cutaneous
biological processes—evident through both transcripto-
mics and histological analyses. Gene expression was al-
tered for a range of biological processes, including the
immune response, epidermal differentiation, cell prolif-
eration, regulation of apoptosis, and metabolism. These
transcriptional profiles manifested in alterations to epi-
dermal thickness, cell proliferation, and filaggrin protein
content. Changes in epidermal thickness and cell prolif-
eration were also only observed in a few of the individual
microorganism treatments. Significant increases in lori-
crin and filaggrin gene transcripts and filaggrin protein
content were only observed for tissues treated with the
mixed community, and not for any individual micro-
organism treatments. We also observed that host re-
sponses to the mixed community were not entirely
driven by any single microorganism, highlighting the
unique properties of a diverse microbiome community
in host-microbiome interactions. Collectively, these re-
sults suggest a community effect in microbiome-host
signaling.

These findings for the mixed community are largely in
accord with research investigating the influence of the
skin microbiome using germ-free mice. Specifically, Mei-
sel et al. used transcriptomics to show that the micro-
biome impacts gene expression involved in epidermal
barrier formation and differentiation [33]. However, gene
set enrichment analysis in this study found that immune
response genes were more significantly altered than in our
study. This could potentially be a result of in vivo-in vitro
differences of cell types present, as Meisel et al. found that
a variety of immune cells had increased production of IL-
la and IL-1p within the skin, and these cells were not in-
cluded in our 3D tissue model. Additionally, the model
microbiome community used in our study was more sim-
plistic than communities found on mammalian skin. Bac-
teria strains that were not included in this study could
lead to stronger immune responses.

This study examined a single seeding density of bacteria
on skin tissue, a control enabled by using an in vitro tissue
culture system. However, it is important to note that bac-
terial strains likely grow at different rates, which could
influence their interactions with host tissue. These varia-
tions in growth rates could influence comparisons be-
tween single-microorganism and mixed-community
treatments. Follow-up studies could examine the impact
of bacterial density, mixed community compositions, and
growth rates on host-microbiome interactions.
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For our investigations of skin-microbiome interactions,
we employed full-thickness human skin tissue models.
These models include dermal fibroblasts and epidermal
keratinocytes, enabling paracrine signaling between the
cell types, which is known to influence processes such as
keratinocyte proliferation and differentiation [65]. It is
important to note that studies indicate heterogeneity can
exist across tissue models arising from the source of
cells and the culturing medium and matrix substrates
used for tissue development [66, 67]. As tissues used in
our study are commercially available, other scientific
groups should be better enabled to expand upon the
presented work. The commercial model that we have
chosen satisfies the majority of parameters recently out-
lined for skin models intended for barrier function re-
search [68]. A general limitation of current skin tissue
models is the lack of sebaceous glands and hair follicles.
This prevents co-culturing Cutibacterium, a highly
prevalent and abundant bacteria of the skin microbiome
that primarily resides within the anaerobic environment
of sebaceous glands. Future development of more so-
phisticated models with sebaceous glands may facilitate
Cutibacterium studies, and we anticipate these develop-
ments will be highly advantageous to skin microbiome
research.

While the use of in vitro tissue culture systems en-
abled controlled studies, the cell types were sourced
from single donors. Future work could focus on the vari-
ability of responses to the skin microbiome that occur
across the human population. For example, age is associ-
ated with changes in microbiome composition [69], skin
properties [70], and transcriptome activity [71, 72]. Add-
itionally, African and Caucasian skin types have been
found to have different protein expression for filaggrin
processing, epidermal morphogenesis, and differentiation
[73]. Future studies could identify cutaneous responses
to the microbiome that are consistent across the variable
human population.

Our findings support that skin microbiome constitu-
ents elicit varied cutaneous biological responses. There
still exist significant gaps in understanding the mecha-
nisms that drive these varied responses, especially
among commensal microorganisms. This study provides
a basis for investigating these mechanisms. For example,
since we examined the transcriptomic responses from
whole tissues—including both epidermal and dermal
cells—the contributions and interactions between fibro-
blasts and keratinocytes remain to be elucidated. Add-
itionally, follow-up studies could examine the extent
that individual species or strains of microorganisms elicit
varied biological responses. For example, if it is common
for Streptococcus bacteria to elicit minimal responses
from skin tissue. An interesting finding was how individ-
ual microorganism treatments did not predict responses

Page 14 of 17

to the mixed community treatment. Therefore, bacterial
transcriptomics or metabolomics could elucidate how
microbial activity may change in the presence of a mixed
community.

Conclusions

Our efforts reveal the effects of several prominent skin mi-
crobial taxa on human skin tissue and point to a pronounced
community-effect on the host skin that cannot be attributed
to any single taxa acting alone. This community-effect entails
not only a distinct signature in the host transcriptional re-
sponse profile, but also on epidermal thickness, cell prolifera-
tion, and filaggrin and loricrin observations. This work and
other studies make it clear that individual microorganisms
can elicit distinct responses from host tissue. However, we
additionally find that host responses to individual bacteria
are not fully predictive of the responses to a mixed commu-
nity. We recommend that future studies examining
microorganism-host relationships characterize the impact of
specific microorganisms in a mixed community so that re-
sponses unique to the community context are captured. We
envision that this work, along with additional efforts to eluci-
date the mechanistic underpinnings of community-induced
host-microbiome interactions, will inform therapeutic appli-
cations of probiotic development, particularly in the realms
of synthetic biology and microbiome engineering.
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