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Bacterial community assemblages in
classroom floor dust of 50 public schools in
a large city: characterization using 16S
rRNA sequences and associations with
environmental factors
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Abstract

Characterizing indoor microbial communities using molecular methods provides insight into bacterial assemblages
present in environments that can influence occupants’ health. We conducted an environmental assessment as part
of an epidemiologic study of 50 elementary schools in a large city in the northeastern USA. We vacuumed dust
from the edges of the floor in 500 classrooms accounting for 499 processed dust aliquots for 16S Illumina MiSeq
sequencing to characterize bacterial assemblages. DNA sequences were organized into operational taxonomic units
(OTUs) and identified using a database derived from the National Center for Biotechnology Information. Bacterial
diversity and ecological analyses were performed at the genus level. We identified 29 phyla, 57 classes, 148 orders,
320 families, 1193 genera, and 2045 species in 3073 OTUs. The number of genera per school ranged from 470 to
705. The phylum Proteobacteria was richest of all while Firmicutes was most abundant. The most abundant order
included Lactobacillales, Spirulinales, and Clostridiales. Halospirulina was the most abundant genus, which has never
been reported from any school studies before. Gram-negative bacteria were more abundant and richer (relative
abundance = 0.53; 1632 OTUs) than gram-positive bacteria (0.47; 1441). Outdoor environment-associated genera
were identified in greater abundance in the classrooms, in contrast to homes where human-associated bacteria are
typically more abundant. Effects of school location, degree of water damage, building condition, number of
students, air temperature and humidity, floor material, and classroom’s floor level on the bacterial richness or
community composition were statistically significant but subtle, indicating relative stability of classroom
microbiome from environmental stress. Our study indicates that classroom floor dust had a characteristic bacterial
community that is different from typical house dust represented by more gram-positive and human-associated
bacteria. Health implications of exposure to the microbiomes in classroom floor dust may be different from those in
homes for school staff and students.

Keywords: School, Classroom, Bacteria, Microbiome, Moisture damage

© The Author(s). 2021, corrected publication February 2021. Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in
the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a
credit line to the data.

* Correspondence: gzp8@cdc.gov
1Respiratory Health Division, National Institute for Occupational Safety and
Health, Morgantown, WV, USA
Full list of author information is available at the end of the article

Park et al. Microbiome            (2021) 9:15 
https://doi.org/10.1186/s40168-020-00954-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-020-00954-2&domain=pdf
http://orcid.org/0000-0003-4419-9341
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:gzp8@cdc.gov


Background
Microbes are ubiquitous in the environment and there
are at least the same order of bacteria as the number of
cells (3.0 × 1013) in the human body [1]. The human
microbiome constantly interacts with the microbiomes
of the surrounding environments. Studies on the human
microbiome have shown that most microbes native to
our bodies are not pathogens but essential for functional
human homeostasis [2, 3]. Still, the scientific community
incompletely understands how environmental micro-
biomes interact with the human microbiome or affect
human health. To understand this relationship, microbes
in the environment and in the human body need to be
fully characterized. The recent development of high-
throughput sequencing technology has provided a
powerful tool to analyze all genetic material in samples,
and has led to the discovery of microbial taxa that had
never been identified before using the traditional culture
methods [4, 5].
Over the past decade, there has been much interest in

how microbiomes in the built environments affect re-
spiratory illnesses such as asthma. A few environmental
microbiome studies involving children suggested that ex-
posure to a richer bacterial microbiome in house dust
might have a protective effect on the development of
asthma, atopy, or wheezing [6–9]. These studies also
documented certain bacterial taxa associated with the
protective effects such as the order Actinomycetales; the
families Prevotellaceae, Lachnospiraceae, and Rukinococ-
caceae; the genera Clostridium, Facklamia, Acinetobac-
ter, Lactobacillus, Jeotgalicoccus, Corynebacterium, and
Neisseria; and the species Staphylococcus sciuri. In con-
trast, a pilot randomized controlled trial of 25 children
reported that an inverse Simpson index used to measure
classroom bacterial diversity was significantly associated
with increased odds of asthma symptoms, whereas home
bacterial diversity was not [10]. Another study reported
an adverse effect of home bacterial richness (the number
of different bacterial taxa) on severity of asthma in chil-
dren [11]. Altogether, available peer-reviewed studies
suggest that the effects of environmental bacteria on hu-
man health are complex; not only in bacterial richness
but community composition, and presence and abun-
dance of specific taxa may also play important roles.
The environmental microbiome is one of the core

components in human exposures in the built environ-
ments that significantly contribute to occupants’ health,
and thus better understanding of its role in health and
environments is crucial [12]. The committee of the 2017
National Academies’ report on “Microbiomes of the
Built Environment” emphasized the need for fundamen-
tal research on surface microbiome sources in indoor
environments [2]. In the USA, on average, school
teachers spend more than 1950 h per year in schools

whereas elementary school students spend approxi-
mately 1195 h per year [13, 14]. This demonstrates that
school indoor environments contribute to environmental
exposures more than any other locations for teachers
and students except their home. Recently, the European
SINPHONIE study reported that increased exposures to
particulate matter and volatile organic compounds in
school classrooms were associated with upper and lower
airways, eye, and systemic disorders in school children
[15]. However, health effects of exposures to classroom
microbiomes in students and school staff are not well
understood. Although there are a number of studies
published about indoor microbiomes, most of them fo-
cused on residential environments or university lecture
rooms [16–18]. Only a limited number of studies using
high-throughput molecular methods have characterized
classroom microbiomes in primary schools [10, 19]. In
our study, we characterized the bacterial microbiome in
floor dust of classrooms in 50 elementary schools in a
large US city. We also examined how school and class-
room environmental factors influenced bacterial diver-
sity and community composition in floor dust collected
from 500 classrooms.

Methods
Environmental study
An environmental assessment was conducted in June
2015 as part of a cross-sectional epidemiologic study to
examine associations of microbial exposures with health
in school staff. We selected 50 elementary schools in
Philadelphia, PA, to collect floor dust samples from ten
selected classrooms in each school, for a total of 500
samples. The samples were collected from the floor near
the edges of the room, at the junction of the floor and
walls, where dust accumulation was observed. We mea-
sured and marked areas at the floor-wall junction
around the full perimeter of each room (a total of 12 ft2).
We vacuumed for 8-min the area with a precleaned
crevice tool on a L’il Hummer backpack vacuum sam-
pler (100 ft3/min, 1.5 horsepower, ProTeam Inc., Boise,
ID, USA) equipped with a polyethylene filter sock (Mid-
west Filtration Company, Fairfield, OH, USA). After the
collected dust was sieved with a mesh (pore size:
250 μm), it was homogenized by rotating on a 360-
degree rotary arm shaker at 65 r.p.m for 2 h and then
partitioned into aliquots. After the sampling was com-
pleted, the relative humidity (RH) and temperature in
classroom air were measured and recorded. Information
on the average number of students for each sampled
classroom was obtained from classroom teachers.
We collected dampness and mold information from all

accessible rooms in the schools by visual assessment and
evaluated mold odor using the Dampness and Mold As-
sessment Tool developed by the National Institute for
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Occupational Safety and Health (https://www.cdc.gov/
niosh/docs/2019-114/). The average dampness and mold
score was calculated using scores on water damage-
related factors for all room components in each class-
room. Information on the facility condition index [FCI =
(cost of assessed deficiencies)/(replacement value)] for
each school was obtained from a publicly available facil-
ity condition assessment report at https://www.philasd.
org/capitalprograms/wp-content/uploads/sites/18/2017/
06/2015-FCA-Final-Report-1.pdf.

Genomic DNA extraction
Genomic DNA (gDNA) was extracted from 499 of 500
floor dust samples (one sample had no dust collected)
and reagent blanks (n = 30) as negative controls using
the Roche High Pure PCR Template Preparation Kit
(Roche Applied Sciences, Penzberg, Germany) as previ-
ously described [4, 20]. Five milligrams of dust was sus-
pended in 250 μL of the kit’s tissue lysis buffer and
added to a 2-mL reinforced tube containing 300 mg of
212–300 μm glass beads (Sigma-Aldrich, St. Louis, MO).
The tubes were then processed in a bead mill
homogenizer at a rate of 4.5 m/s for 30 s. After two cy-
cles of centrifugation at 20,000×g for 1 min, the lysis
supernatant was placed in a sterile 1.5-mL microcentri-
fuge tube with 20 μL CelLytic B Cell Lysis reagent
(Sigma) and incubated at 37 °C for 15 min. Roche bind-
ing buffer (200 μL) and proteinase K solution (40 μL)
were then added followed by a 10-min incubation at
70 °C. The samples were then washed and eluted as rec-
ommended by the manufacturer (Roche). Aliquots
(20 μL) were stored at − 80 °C until shipment to the
vendor for analysis.

Bacterial 16S amplification, sequencing, and taxonomic
identification
Extracted gDNA samples were submitted to RTL Genom-
ics (Lubbuck, TX) for Illumina Mi-Seq sequencing of the
bacterial 16S rRNA genes. The samples were amplified
using the 357wF (CCTACGGGNGGCWGCAG) and
806R (GGACTACHVGGGTWTCTAAT) primer pair
and sequenced as previously described [21]. The resulting
sequences were quality checked to remove sequences with
failed reads and low-quality tags and sequences that were
less than half the expected amplicon length. Paired se-
quences were merged using the PEAR Illumina paired-
end read merger, trimmed using a RTL internal trimming
algorithm, and clustered into operational taxonomic units
(OTUs) using a 96% similarity threshold using a
USEARCH clustering algorithm [22, 23]. OTUs were se-
lected using the UPARSE OTU selection algorithm [24]
and chimeras were checked using the UCHIME chimera
detection software [25]. For taxonomic identification, rep-
resentative OTU sequences were compared to a database

maintained by RTL Genomics of high-quality sequences
derived from the National Center for Biotechnology Infor-
mation database using a USEARCH global search algo-
rithm [26].

Statistical analysis
Taxonomy data from the sequencing results were ana-
lyzed with R using statistical packages vegan, tidyverse,
gridExtra, Hmisc, ggplot2, Mass, and broom [27]. School
and classroom-based Shannon-Weaver diversity (zero or
positive number; the higher is the more diverse) and
Bray-Curtis dissimilarity (constrained between 0 and 1;
the higher is the more dissimilar) indices were calculated
at the genus level due to 690 unidentifiable OTUs at the
species level. The Bray-Curtis dissimilarity index is a
taxonomy-based metric that allows the detection of
small changes in community composition among the
levels within a variable [28]. The Pielou’s evenness index
(constrained between 0 and 1; the higher is the more
even) was also calculated. Hierarchical cluster analysis
using Ward minimum variance method (minimizing
within-cluster variance) with the Bray-Curtis index was
performed to categorize 50 schools into four clusters (A
through D) [29]. To compare the water damage scores
among the clusters, we performed multiple comparisons
using the Tukey honestly significant difference (HSD)
test [30]. Because the diversity indicated by the
Shannon-Weaver index or number of OTUs is influ-
enced by sample size (i.e., groups with more samples
show a higher diversity), rarefied genus accumulation
curves normalized by the same number of DNA se-
quences were examined to compare richness among the
levels within each environmental factor [31]. Pearson
correlation coefficients were calculated among Shannon-
Weaver index and other environmental variables.
We used analysis of similarity (ANOSIM) to compare

the mean ranks of between- and within-group (level)
Bray-Curtis indices of the environmental variable (lower
index has a lower rank value) [32]. R statistic was calcu-
lated by [4 (B − W)/N (N − 1)], where B and W are the
averages of the between-group and within-group ranks,
respectively, and N is the number of samples. Permuta-
tional multivariate analysis of variance (PERMANOVA)
modeling was performed to examine the adjusted rela-
tionships between community dissimilarity and environ-
mental variables in full space without ordination [27].
The environmental variables included area of school,
floor level, floor material, and quartiles of FCI scores,
average water damage scores, number of students, air
temperature, and air RH. Because ANOSIM and PERM
ANOVA are sensitive to unequal dispersion among the
groups for unbalanced design, we examined homogen-
eity of dispersion among the levels in each environmen-
tal variable. The homogeneity of dispersion test
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indicated that the groups had similar dispersion for the
categorical variables tested in the study (P values > 0.05),
except for RH (P value = 0.04) [32].
We used nonmetric multidimensional scaling (NMDS)

to graphically present high dimensional data into a low
dimensional space (k = 3 in our analysis) in a way that
the dissimilarity information between groups is reserved
[33]. Ellipses were constructed to show a 95% confidence
intervals (CI) fitted into the spatial ordination, using
standard error in chi-square distribution with two de-
grees of freedom. The NMDS is the most robust method
that can handle any non-linear responses such as genus
abundance [34]. Stress value (S, a statistic of goodness of
fit) for the model was calculated [the smaller S value is
the more favorable (< 0.2 as a rule of thumb)] [35]. We
also fitted a distance-decay model to Bray-Curtis dis-
similarities using the power-law function with 1000 per-
mutations to examine if dissimilarity increases with
distance between the pairwise schools [36]. We consid-
ered P ≤ 0.05 as statistically significant and P ≤ 0.10 as
marginally significant.

Results
Bacterial richness, abundance, and diversity
We identified 3073 unique OTUs from a total of 7.63
million sequences in the floor dust samples from the
499 classrooms, including 29 phyla, 57 classes, 148 or-
ders, 320 families, 1193 genera, and 2045 species. Of the
total 3073 OTUs, 1028 were not identifiable to the class
or lower level. Among the 29 phyla, the Proteobacteria
had the largest number of OTUs (922 identified OTUs
at the class level), followed by Firmicutes (770), Actino-
bacteria (669), Bacteroidetes (414), and Cyanobacteria
(66) (Fig. 1a). At the class level, Actinobacteria (the
phylum Actinobacteria, 605 identified OTUs at the order
level) was richest of all. However, the rank order of the
top five richest phyla was not concordant with that of
the top five most abundant phyla of which the phylum
Firmicutes was most abundant (relative abundance: 0.29)
(Supplemental Figure 1). The order Lactobacillales was
most abundant (relative abundance: 0.14 in the phylum
Firmicutes), followed by Spirulinales (0.11; Cyanobac-
teria), Clostridiales (0.07; Firmicutes), and Bacteroidales
(0.07; Bacteroidetes). Of 1193 genera, Halospirulina was
most abundant (the only genus within the order Spiruli-
nales), followed by Lactobacillus (0.07) (Fig. 1b and Sup-
plemental Figure 2). Of the most abundant top ten
genera, only three [Lactobacillus (57 species identified),
Corynebacterium (45), Pseudomonas (24)] were also in-
cluded in the richest top ten genera. We identified 15
Staphylococcus species with 0.018 in relative abundance
including unidentified species and five Propionibacter-
ium species with small relative abundance (< 0.001).
Gram-negative bacteria were more abundant (relative

abundance = 0.54) and richer (1632 OTUs, 53%) than
gram-positive bacteria [0.46; 1441 OTUs (47%), respect-
ively] in the bacterial community of these schools.
The median number of bacterial genera identified in the

50 schools was 577 (range, 470-–705) (Fig. 2). The
Shannon-Weaver diversity index ranged from 3.61 to 4.72
(median, 4.14) and the Pielou’s evenness index from 0.57
to 0.72 (0.65). The median of the Bray-Curtis dissimilarity
index (1225 unique pairs of schools) was 0.41 (range, 0.23
to 0.63), indicating that one-half of paired schools were at
least 40% dissimilar in their genus composition. For the
499 classrooms, the Bray-Curtis index (more than 124,000
pairs) ranged from 0.08 to 0.99 (median, 0.66).

Relative abundance of dominant genera and hierarchical
clustering of schools
We examined relative abundance of the top ten most
abundant genera within each school (Fig. 3) and the top
30 genera for all 50 schools (Supplemental Figure 2). In
32 of 50 schools (64%), cumulative relative abundance of
the top ten genera was 0.4 or higher (Fig. 3). The cumu-
lative relative abundance of the genera Halospirulina
and Lactobacillus was higher than any other genus for
all schools, except for school number 34 where Entero-
coccus was more abundant than the summation of the
two. The genus Pseudomonas was most abundant as a
single genus in schools 46 and 49. Figure 3 also presents
four clusters created by hierarchical clustering of 50
schools and Supplemental Figure 3 shows that each of
the clusters had characteristic genus composition. The
cluster A included schools with Halospirulina at a
medium level in relative abundance (~ 0.1 within the
cluster) and Bacillus (0.075) along with low abundance
of Lactobacillus (< 0.02) (Supplemental Figure 3). The
cluster B included schools with the highest within-
school relative abundance of Halospirulina (~ 0.2). The
cluster C was composed of schools with lower relative
abundance (0.06) of Halospirulina along with medium
abundance of Lactobacillus (~ 0.07) and higher relative
abundances of Sphingomonas and Pseudomonas than
other clusters. The cluster D consisted of schools with
higher relative abundance of Lactobacillus (0.12) than
those in other clusters. In the clusters A and C, the cu-
mulative relative abundance of the top 10 genera was
generally lower than the clusters B and D. When average
water damage scores were compared among the clusters,
cluster A had a significantly lower score than cluster D.
Cluster D had the highest mean score of all the clusters
(score of the cluster D > C > B > A). Multiple compari-
sons adjusted with Tukey’s HSD showed that all pairwise
comparisons were significantly different, except two
pairs of clusters (A and B, and C and D) that were not
different and the clusters A and C that were marginally
different (Supplemental Figure 4).
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Association of richness and community composition with
school/classroom characteristics
Distributions of continuous environmental variables and
their correlation coefficients with the Shannon-Weaver
index are presented in Fig. 4. Shannon-Weaver index
was not associated with the average water damage score
and the FCI score; however, it was positively but weakly

correlated with the number of students in the classroom
(correlation coefficient = 0.09, P value = 0.06). It was also
negatively but weakly associated with air RH (− 0.12, 0.01)
and temperature (− 0.12, < 0.01). The FCI scores were
negatively correlated with air RH (− 0.35, P < 0.001) and
positively with air temperature (0.45, P < 0.001). In the
rarefied genus accumulation curves (Supplemental Figure

Fig. 1 a Number of operational taxonomic units for each class of bacteria within the top 10 phyla. The bars are displayed by the descending
order of the total number of OTUs in phylum and then in the class within each phylum. b Relative abundance of species within the top 10 most
abundant genera. Because of too many OTUs, species that were smaller than 0.0005 in relative abundance are not presented. For Halospirulina,
no species were identifiable; and for Sphingomonas, relative abundances of all four identified species were smaller than 0.0005 (thus, not in the
figure). The bars are displayed by the descending order of relative abundance in genus and then in identified species within each genus
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5), the steepest slope of the initial accumulation curve and
the highest plateau for the schools in the southwestern
area within the city indicated the highest proportion of
relatively abundant genera and the highest richness, re-
spectively. The number of students in the classroom did
not influence bacterial richness in classroom floor dust.
School groups by quartile (Q1 through Q4) of classroom
average water damage score showed slight differences in
richness (height of plateau), and the most water-damaged
schools (Q4) had a higher proportion of relatively abun-
dant genera compared to other quartiles. The continuous
increase of rarefaction curves for clusters B and D indi-
cated the presence of many rare genera in these clusters
(Supplemental Figure 6).
ANOSIM (Fig. 5) results indicated that the effects of

the categorical variables on community composition
were small (R values < 0.03) but significant, except for
the type of floor materials. The classrooms in schools in
need of least repair (Q1 of FCI score) were more dis-
similar in composition than those in need of more repair
(the group needing most repair was least dissimilar).
The physical condition of the building (FCI score) af-
fected dissimilarity the most among the environmental
variables. Genus dissimilarity did not differ by classroom
floor material type; however, it differed by floor levels of
the classrooms (R = 0.02, P value < 0.01), with the first
floors generally being the most dissimilar. There was a
tendency that dissimilarity increased as water damage
score or RH increased; whereas those with the highest

temperature in air were least dissimilar. The number of
students had a marginal effect with classrooms with
most students (Q4) being least dissimilar. All of the full
and reduced multivariate models (PERMANOVA) ad-
justed for other environmental variables indicated that
all of the environmental factors significantly affected dis-
similarity in genus composition of paired classrooms al-
though the effect was small (Table 1), which was
consistent with the results of the univariate ANOSIM
analyses. Mean water damage scores of school class-
rooms in the southwestern or northern region of the city
were significantly higher than those in the northeastern
or southeastern region (Supplemental Figure 7). Because
of this correlation, we constructed reduced PERM
ANOVA models without school area or water damage,
but they yielded results similar to those of the full
model. The PERMANOVA models also indicated that
the effects of the physical condition of the building, area
of the school, and classroom air temperature were
greater than other environmental variables.
The first two of the three dimensions in unconstrained

NMDS is presented in Fig. 6. Stress values (0.1) indicate
three-dimensional ordination is fair. Schools in the
northeastern area (furthest away from the center city in
south) of the city had a distinct community composition
compared to those in other areas, especially the south-
western and northern areas (i.e., the 95% CI ellipse of
spatial ordination for schools in the northeastern area
did not overlap with those of the southwestern and

Fig. 2 Bacterial richness, diversity, evenness, and dissimilarity indices in 50 schools
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northern areas as shown in Fig. 6). Distance-decay
model also indicated that dissimilarity in the pairwise
schools slightly increased (P value < 0.05) with distance
between the schools. The 95% CI ellipse for schools in
need of the least repair (Q1) did not overlap with those
for schools in Q2 and Q3 in FCI scores, which showed a
different genus composition for schools in Q1. The 95%
CI ellipse for schools with the least water damage (Q1)
overlapped only slightly with those for schools in Q2
and Q3, indicating a different community composition
for schools in Q1. However, quartile groups of RH,
temperature, and the number of students did not show
characteristic community composition in NMDS.

Discussion
Bacterial community in the school classrooms
In floor dust from 499 classrooms in 50 elementary
schools in a large US city, we found that the Proteobac-
teria was the richest of all 29 phyla although the Firmi-
cutes was most abundant. Our top three most abundant

phyla (Firmicutes, Proteobacteria, and Actinobacteria) in
the classrooms were consistent with those of a longitu-
dinal study of outdoor microbiomes in the atmosphere
near surface in two Colorado cities [37]. In our school
classrooms, human skin-associated (Lactobacillus,
Streptococcus, Corynebacterium, and Acinetobacter) and
human and animal feces-associated genera (Enterococci)
[28, 38, 39] had rich species (155 in total) but were not
predominant in relative abundance. In contrast, we found
Halospirulina and Pseudomonas in great abundance, pos-
sibly carried on occupants’ shoes into the classrooms as a
soil component, and Sphingomonas and some Acinetobac-
ter spp., possibly introduced from outdoor air after being
released from plant leaf surfaces [37, 40]. These outdoor
bacteria were not rich in species but relatively abundant in
our classroom floor dust. The genus Clostridium, the 5th
most abundant genus in our study, is ubiquitous in envi-
ronments such as soils, sediments of a body of water and
rivers, sewage, and human and animal intestinal tracks
[41]. Methylobacterium, the 10th most abundant genus in

Fig. 3 Relative abundance of the top ten bacterial genera within each school and four clusters of schools by hierarchical clustering. Numbers
(school IDs) were highlighted with green color for the cluster A, red for the cluster B, yellow for the cluster C, and orange for the cluster D
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our study, is also ubiquitous in nature and one of the
common outdoor airborne bacteria, but generally found
as part of a transient flora or as accidental contaminants
[42]. In summary, human-associated bacterial genera in
the top ten were more diverse (155 species) but less abun-
dant (relative abundance = 0.16) than outdoor
environment-associated genera that were much less di-
verse (54 species) but more abundant (0.23) in our class-
room dust. This finding may indicate that classroom
environments had more proliferation of non-human-
associated bacteria than those originated from humans, al-
though human occupants were one of the main sources
for classroom microbiome.
Grice et al. reported that 99% of the human skin

microbiome was represented by four phyla: Actinobac-
teria, Firmicutes, Proteobacteria, and Bacteroidetes [43].
Of these, 62% were placed in three genera: Corynebac-
teria (the phylum Actinobacteria), Propionibacteria
(Actinobacteria), and Staphylococci (Firmicutes). A
Finnish study of four urban homes estimated that 16 to

41% of sequences (relative abundance) identified in
house floor dust might have originated from occupant’s
skin and another 6 to 40% likely from non-skin body
parts of humans [18]. Our finding that human-
associated bacteria in classroom dust were diverse but
not relatively abundant was a contrast to the findings of
studies on house dust. We also found that gram-
negative bacteria were more abundant and richer than
gram-positive bacteria. A literature search indicated that
there was one study reporting abundant gram-negative
bacteria in the air of university classrooms [44] while
numerous studies reported abundant gram-positive bac-
teria in homes and other indoor environments. A study
of four homes in Finland [18] reported a predominance
of gram-positive bacteria (59% of species-level OTUs
and 79% in relative abundance) in house dust while we
found a lower proportion (47% of genus-level OTUs and
46% in relative abundance) in classroom dust. A study of
two nursing homes in Finland also reported dominantly
abundant gram-positive bacteria in dust samples [45]. A

Fig. 4 Correlations among bacterial diversity index and environmental parameters. The values on the upper diagonal of the correlation matrix are
Pearson correlation coefficients with the significance level for the bivariate scatter plots on the lower diagonal. The distribution of each variable is
shown on the diagonal. FCI, facility condition assessment index; P values: **P value ≤ 0.05, *0.05 < P value ≤ 0.1
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Fig. 5 Analysis of similarity using rank of Bray-Curtis dissimilarity index over 499 samples by the group or level of categorical
environmental variables
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literature review also summarized that the bacterial
community in house dust is dominated by gram-positive
bacteria [46] However, we are not aware of any study
reporting predominance of gram-negative bacteria in
floor dust of elementary school classrooms. Gram-
negative bacteria generally require higher water activity
for growth than gram-positive bacteria and fungi, and
outdoor air is a rich source for gram-negative bacteria
such as the phyla Proteobacteria and Bacteroidetes [46,
47]. Our findings indicated that the classroom environ-
ments in our study might have been frequently damp,
and that outdoor sources might have played a more im-
portant role in shaping the microbiome in classroom
floor dust than human sources. These also imply that
there might be a characteristic difference in bacterial
community and abundance between surface dust in resi-
dential buildings and floor dust in school classrooms.
In our study, we unexpectedly found that Halospiru-

lina spp. were the most abundant in many schools, espe-
cially in the 18 schools categorized into the cluster B by
hierarchical clustering. Cyanobacteria are photosynthetic
prokaryotes that comprise approximately 165 genera and
1500 species and produce cyanotoxins in some species
[48]. Their habitats cover a wide range of environments
including water with low or high salt concentration,
terrestrial, and subaerial. Moreover, they have remark-
able survivability in extreme temperatures (hot springs,
Arctic and Antarctic lakes, snow, and ice), and in dried
ponds with high saline concentrations [49–51]. An office
building study in Kuala Lumpur, Malaysia, identified
Cyanobacteria in indoor air using the culture method
that were likely tracked in from outdoor soils by humans
or aerosolized from the soil of the indoor potted plants
[40]. However, Halospirulina species were not cultured

from their study. There are few published studies on the
genus Halospirulina, but we are not aware of any litera-
ture that documents the presence of this particular
genus in classroom environments. Overall, Cyanobac-
teria are usually abundant in outdoor air of hot and
humid tropical regions, favor high water content for
growth, and have exceptional survivability in extreme
conditions [49, 52]. We postulate that after introduction
from outdoors into the buildings, Halospirulina might
have proliferated in damp conditions of their microenvi-
ronments during the wet/dry cycles from recurring
water damage. In addition, their extraordinary surviv-
ability in any extreme conditions of the microenviron-
ments might have resulted in their abundance in these
schools.

Effect of environments on richness, abundance, and
community composition
In the rarefied genus accumulation curves, the class-
rooms in schools in the southwestern area of the city
where there was a higher degree of water damage, or in
the school buildings requiring the least repair (lower FCI
score) had a high proportion of relatively abundant gen-
era and an increased bacterial richness within the group
[53]. Our finding of the highest richness in bacterial gen-
era in the classrooms with the most water damage com-
pared with other quartile groups was similar to the
finding from a study of 198 homes in the southern New
England region of the USA. They reported an associ-
ation between water leaks and increased bacterial rich-
ness in living room surface dust [16]. Classrooms with
low air RH (Q1) had the fewest abundant genera and
many rare genera compared to others with higher air
RH. Low RH in indoor air may decrease the available

Table 1 Effect of environmental factors on dissimilarity in genus composition of paired classrooms using permutational multivariate
analysis of variance (PERMANOVA) models

Environmental
variable

Mean
(SD)*

Full model (all categorical)** Reduced model 1 (all categorical)** Reduced model 2 (all categorical)**

R2 P value R2 P value R2 P value

Water damage score 0.17 (0.13) 0.01 < 0.001 0.01 < 0.001

Relative humidity 50.4 (9.9) 0.01 0.04 0.01 0.03 0.01 0.02

Temperature 81.1 (5.8) 0.01 < 0.001 0.01 < 0.001 0.02 < 0.001

Number of students 21.1 (9.3) 0.01 0.02 0.01 0.01 0.01 0.01

FCI score† 38.8 (17.9) 0.02 < 0.001 0.02 < 0.001 0.02 < 0.001

Area 0.02 < 0.001 0.02 < 0.001

Floor material type 0.01 < 0.01 0.01 < 0.01 0.01 <0.01

Story in a building 0.01 < 0.001 0.01 < 0.001 0.01 < 0.001

Model residuals 0.89 0.90 0.91

*Mean and standard deviation (SD) for the numerical variables
**All environmental variables in these models were categorical. Area: north (n = 159), northeast (90), southeast (90), southwest (160); type of floor material: carpet
(13), tile (208), wood (223), others (55); story in a building: 1st (165), 2nd (171), 3rd, or higher (143), ground or lower (20). Continuous variable was categorized into
four levels based on quartile to create a categorical variable
†FCI facility condition assessment index
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water for bacterial growth on the substrates or in micro-
environments, which might have prevented the prolifera-
tion of microbes and resulted in the fewest abundant
genera [46]. The classrooms in schools requiring less

repair or relatively lower temperature tended to have
higher RH in our study. Taken together, our study may
indicate that the location of school affects bacterial rich-
ness and that a high degree of water damage and high

Fig. 6 Unconstrained nonmetric multidimensional scaling (NMDS) for 50 schools (denoted by filled diamonds) grouped into quartiles (by
different colors) in each environmental variable. Ellipses were constructed with a 95% confidence interval using standard error in chi-square
distribution with two degrees of freedom
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humidity also increases the bacterial richness in floor
dust in school classrooms.
Bacterial composition and abundance in built environ-

ments might depend on environmental factors such as
ventilation type, local climate, type of indoor fomites,
season, and geographical area [45, 54, 55]. A study of liv-
ing room floor dust from 286 homes in Germany [56]
found that the only significant environmental factor af-
fecting bacterial community composition was natural
ventilation in winter (but not in summer). We found
that the effects of most environmental factors on the
bacterial community composition in classroom dust
were small but statistically significant. A New England
home study in the USA also found subtle (R ≤ 0.06 in
ANOSIM) but significant effects of home type (single vs.
multifamily), home location (urban vs. suburban), and
presence of pets on community composition [16]. Our
finding of the effect of water damage on community
composition in classroom dust is comparable to that in
a Finnish microbiome study of water-damaged homes
with and without renovation [57]. We also observed a
higher similarity in community composition among the
classrooms with a higher number of students. Dannemil-
ler et al. also found that higher occupancy was associ-
ated with lower compositional variation in living room
surface dust [16]. Additionally, we found that classrooms
on the first floor showed higher dissimilarity within the
group compared to those on other floors, possibly indi-
cating a greater effect of rich outdoor bacteria tracked
into first-floor classrooms than onto other floors. Our
multivariate models adjusted for other environmental
factors indicated a significant effect of floor material on
composition. Perhaps, the classrooms with carpeted
floors might have a more dissimilar composition com-
pared to those with smooth floors (Fig. 5). In aggregate,
these findings implicate that individual environmental
factors might marginally influence bacterial community
composition in classroom floor dust without a dominant
single factor. This could indicate resilience of the indoor
microbiome once it is established, unless there is a dra-
matic change in the environment such as water
intrusion.
A strength of our unique school study is that we had a

large sample size (from 499 classrooms, 7.6 million se-
quences) from 50 schools, which allowed us to reliably
examine bacterial diversity and community composition
of classroom floor dust and determine the effect of en-
vironmental factors within the study area. Yet, our
cross-sectional study was conducted in summertime
only, a limitation that may influence generalizing the re-
sults. The indoor microbiome is influenced by various
outdoor sources that can vary by season [37, 45, 56].
However, because we collected cumulative dust that was
likely to be settled or tracked in over extended periods

of time (perhaps multiple seasons), the microbiomes in
our dust might not be substantially affected by seasonal
changes. Primer biases and factors such as gene copy
number could result in differential amplification and
identification of certain taxa [58]. We also recognize that
extraction bias might have potentially influenced our
identification [20].

Conclusions
From our cross-sectional study of 50 elementary schools,
we found that outdoor bacterial sources and numerous
indoor environmental conditions might have collectively
played important roles in shaping classroom microbiome
in floor dust, while human occupants remained as one
of the important sources. In addition, school or class-
room environmental factors significantly affected bacter-
ial richness and community composition although their
effects were subtle, indicating the relative stability of in-
door microbiomes to environmental stress once estab-
lished. Our findings demonstrate that microbiomes in
school classrooms might be different from those in
homes, which suggests that the health implication of ex-
posure to microbiomes in schools could be different
from that in residential environments. Thus, epidemio-
logic and clinical studies are warranted to better under-
stand the effect of school or classroom microbiomes on
health in school staff and students. The characteristics of
bacterial microbiomes we found in this study will guide
our future epidemiologic analysis of schoolteachers’
health related to microbial exposures.
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