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Abstract

Background: Female genital tract (FGT) inflammation is an important risk factor for HIV acquisition. The FGT
microbiome is closely associated with inflammatory profile; however, the relative importance of microbial activities
has not been established. Since proteins are key elements representing actual microbial functions, this study utilized
metaproteomics to evaluate the relationship between FGT microbial function and inflammation in 113 young and
adolescent South African women at high risk of HIV infection. Women were grouped as having low, medium, or
high FGT inflammation by K-means clustering according to pro-inflammatory cytokine concentrations.

Results: A total of 3186 microbial and human proteins were identified in lateral vaginal wall swabs using liquid
chromatography-tandem mass spectrometry, while 94 microbial taxa were included in the taxonomic analysis. Both
metaproteomics and 16S rRNA gene sequencing analyses showed increased non-optimal bacteria and decreased
lactobadilli in women with FGT inflammatory profiles. However, differences in the predicted relative abundance of
most bacteria were observed between 16S rRNA gene sequencing and metaproteomics analyses. Bacterial protein
functional annotations (gene ontology) predicted inflammatory cytokine profiles more accurately than bacterial
relative abundance determined by 16S rRNA gene sequence analysis, as well as functional predictions based on 16S
rRNA gene sequence data (p < 0.0001). The majority of microbial biological processes were underrepresented in
women with high inflammation compared to those with low inflammation, including a Lactobacillus-associated
signature of reduced cell wall organization and peptidoglycan biosynthesis. This signature remained associated with
high FGT inflammation in a subset of 74 women 9 weeks later, was upheld after adjusting for Lactobacillus relative
abundance, and was associated with in vitro inflammatory cytokine responses to Lactobacillus isolates from the
same women. Reduced cell wall organization and peptidoglycan biosynthesis were also associated with high FGT
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inflammation in an independent sample of ten women.

application that is available at http://fgtdb.org/.

Conclusions: Both the presence of specific microbial taxa in the FGT and their properties and activities are critical
determinants of FGT inflammation. Our findings support those of previous studies suggesting that peptidoglycan is
directly immunosuppressive, and identify a possible avenue for biotherapeutic development to reduce
inflammation in the FGT. To facilitate further investigations of microbial activities, we have developed the FGT-DB
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Background

Despite the large reduction in AIDS-related deaths as a
result of the expansion of HIV antiretroviral programs,
global HIV incidence has declined by only 16% since
2010 [1]. Of particular concern are the extremely high
rates of HIV infection in young South African women
[1]. The behavioral and biological factors underlying this
increased risk are not fully understood; however, a key
predisposing factor that has been identified in this popu-
lation is genital inflammation [2—4]. We have previously
shown that women with elevated concentrations of pro-
inflammatory cytokines and chemokines in their genital
tracts were at higher risk of becoming infected with HIV
[2]. Furthermore, the protection offered by a topical
antiretroviral tenofovir microbicide was compromised in
women with evidence of genital inflammation [3].

The mechanisms by which female genital tract (FGT)
inflammation increases HIV risk are likely multifactorial,
and increased genital inflammatory cytokine concentra-
tions may facilitate the establishment of a productive
HIV infection by recruiting and activating HIV target
cells, directly promoting HIV transcription and reducing
epithelial barrier integrity [5-7]. Utilizing proteomics,
Arnold et al. showed that proteins associated with tissue
remodeling processes were upregulated in the FGT,
while protein biomarkers of mucosal barrier integrity
were downregulated in individuals with an inflammatory
profile [7]. This suggests that inflammation increases tis-
sue remodeling at the expense of mucosal barrier integ-
rity, which may in turn increase HIV acquisition risk [7].
Furthermore, neutrophil-associated proteins, especially
certain proteases, were positively associated with inflam-
mation and may be involved in disrupting the mucosal
barrier [7]. This theory was further validated by the find-
ing that antiproteases were associated with HIV resistance
in a cohort of sex workers from Kenya [8].

Bacterial vaginosis (BV), non-optimal cervicovaginal
bacteria, and sexually transmitted infections (STIs),
which are highly prevalent in South African women, are
likely important drivers of genital inflammation in this
population [9, 10]. BV and non-optimal bacteria have
been consistently associated with a marked increase in
pro-inflammatory  cytokine concentrations [9-12].

Conversely, women who have “optimal” vaginal micro-
biota, primarily consisting of Lactobacillus species, have
low levels of genital inflammation and a reduced risk of
acquiring HIV [13]. Lactobacilli and the lactic acid that
they produce may actively suppress inflammatory re-
sponses and thus may play a significant role in modulat-
ing immune profiles in the FGT [14-16]. However,
partly due to the complexity and diversity of the micro-
biome, the immunomodulatory mechanisms of specific
vaginal bacterial species are not fully understood [17].
Further adding to this complexity is the fact that sub-
stantial differences in the cervicovaginal microbiota exist
by geographical location and ethnicity and that the prop-
erties of different strains within particular microbial spe-
cies are also highly variable [15, 18].

In addition to providing insight into host mucosal bar-
rier function, metaproteomic studies of the FGT can
evaluate microbial activities and functions that may in-
fluence inflammatory profiles [19]. A recent study
highlighted the importance of vaginal microbial function
by demonstrating that FGT bacteria, such as Gardner-
ella vaginalis, modulate the efficacy of the tenofovir mi-
crobicide by active metabolism of the drug [20].
Additionally, Zevin et al. found that bacterial functional
profiles were associated with epithelial barrier integrity
and wound healing in the FGT [21], suggesting that mi-
crobial function may also be closely linked to genital in-
flammation. The aim of the present study was to utilize
both metaproteomics and 16S rRNA gene sequencing to
improve our understanding of the relationship between
microbial function and inflammatory profiles in the
FGTs of South African women.

Results

This study included 113 young and adolescent HIV-
uninfected women (aged 16-22 years) residing in Cape
Town, South Africa [22]. Seventy-four of these women
had samples and metadata available for analysis at a sec-
ond time point 9 weeks later. Ten women had samples
available at the second time point, but not the first, and
were included to validate the functional signature identi-
fied in the primary analysis of this study. STI and BV
prevalence were high in this cohort, with 48/113 (42%)
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of the women having at least one STI and 56/111 (50%)
of the women being BV positive by Nugent scoring
(Additional file 1: Table S1). The use of injectable con-
traceptives, BV, and chlamydia were associated with in-
creased genital inflammatory cytokines, as previously
described [10, 23].

FGT metaproteome associates with BV and inflammatory
cytokine profiles

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) analysis was conducted on the total protein ac-
quired from lateral vaginal wall swabs for all partici-
pants. Using principal component analysis (PCA), it was
found that women with BV clustered separately from
women who were BV negative according to the relative
abundance of all host and microbial proteins identified
(Additional file 1: Fig. Sla). Women who were consid-
ered to have high levels of genital inflammation based
on pro-inflammatory cytokine concentrations
(Additional file 1: Fig. S2) tended to cluster separately
from women with low inflammation, while no clear
grouping was observed by STI status or chemokine pro-
files (Additional file 1: Fig. S1b-d). After adjusting for
potentially confounding variables including age, contra-
ceptives, prostate-specific antigen (PSA), and co-
infections, BV was associated with the largest number of
differentially abundant proteins, followed by inflamma-
tory cytokine profiles, while fewer associations were ob-
served between chemokine profiles and protein relative
abundance and none between STI status and protein
relative abundance (Additional file 1: Fig. Sle). Individ-
ual STIs were also not associated with marked changes
in the metaproteome, with Chlamydia trachomatis,
Neisseria gonorrhoeae, Trichomonas vaginalis, and Myco-
plasma genitalium associated with significant changes in
zero, five, seven, and eleven proteins, respectively (after
adjustment for potential confounders and multiple com-
parisons). However, this stratified analysis is limited by
the small number of STI cases for some infections and
the prevalence of co-infections.

Differences in taxonomic assignment using
metaproteomics and 16S rRNA gene sequencing

Of the proteins identified in lateral vaginal wall swab
samples, 38.8% were human, 55.8% were bacterial, 2.7%
fungal, 0.4% archaeal, 0.09% of viral origin, and 2%
grouped as “other” (not shown). However, as the major-
ity of taxa identified had < 2 proteins detected, a more
stringent cutoff was applied to include only taxa with >
3 detected proteins, or 2 proteins detected in multiple
samples. The final curated dataset included 44% human,
55% bacterial (n = 81 taxa), and 1% fungal proteins (1 =
13 taxa) (Fig. la—d; Additional file 2: Table S2). When
the relative abundance of the most abundant bacterial
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taxa identified using metaproteomics was compared to
the relative abundance of the most abundant bacteria
identified using 16S rRNA gene sequencing, a large de-
gree of similarity was found at the genus level. A total of
6/9 of the genera identified using 16S rRNA gene se-
quence analysis were also identified using metaproteo-
mics (Fig. 1e, f; Additional file 1: Fig. S3). As expected,
both approaches showed that multiple Lactobacillus spe-
cies were less abundant in women with high versus low
inflammation, while BV-associated bacteria (including G.
vaginalis, Prevotella species, Megasphaera species,
Sneathia amnii, and Atopobium vaginae) were more
abundant in women with high inflammation compared to
those with low inflammation (Additional file 2: Table S3).
However, species-level annotation differed between the
16S rRNA gene sequencing and metaproteomics analyses,
with metaproteomics identifying more lactobacilli at the
species level, while Candidatus Lachnocurva vaginae (pre-
viously known as BVAB1) was not identified using meta-
proteomics. Additionally, the relative abundance of the
taxa differed between 16S rRNA gene sequencing and
metaproteomics analyses.

Protein profiles differ between women defined as having
high, medium, or low FGT inflammation

A total of 449, 165, and 39 host and microbial proteins
were differentially abundant between women with high
versus low inflammation, medium versus high inflamma-
tion, and medium versus low inflammation, respectively
(Additional file 2: Table S4). Microbial proteins that
were more abundant in women with high or medium in-
flammation versus low inflammation were mostly
assigned to non-optimal bacterial taxa (including G.
vaginalis, Prevotella species, Megasphaera species, S.
amnii, and A. vaginae). Less abundant microbial pro-
teins in women with high inflammation were primarily
of Lactobacillus origin (Additional file 1: Fig. S4). Of the
human proteins that were differentially abundant ac-
cording to inflammation status, 93 were less abundant
and 132 were more abundant in women with high com-
pared to those with low inflammation. Human biological
process gene ontologies (GOs) that were significantly
underrepresented in women with high versus low in-
flammation included positive regulation of apoptotic sig-
naling, establishment of endothelial intestinal barrier,
ectoderm development, and cornification [false discovery
rate (FDR) adj. p < 0.0001 for all; Additional file 1: Fig.
S5]. Significantly overrepresented pathways in women
with high versus low inflammation included multiple in-
flammatory processes—such as chronic response to anti-
genic stimulus, positive regulation of IL-6 production,
and inflammatory response (FDR adj. p < 0.0001 for all;
Additional file 1: Fig. S5).
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ligand (TRAIL), interferon (IFN)-y]. OTU operational taxonomic unit

Fig. 1 Bacterial relative abundance determined using metaproteomics versus 16S rRNA gene sequencing by inflammation cytokine profile. Liquid
chromatography-tandem mass spectrometry was used to evaluate the metaproteome in lateral vaginal wall swabs from 113 women from Cape
Town, South Africa. Proteins were identified using MaxQuant and a custom database generated using de novo sequencing to filter the UniProt
database. Taxonomy was assigned using UniProt, and relative abundance of each taxon was determined by aggregating the intensity-based
absolute quantification (iBAQ) values of all proteins identified for each taxon. a Proteins identified were assigned to the Eukaryota and Bacteria
domains. Eukaryota proteins included those assigned to the fungi kingdom and metazoan subkingdom, while the bacteria domain included
actinobacteria, firmicutes, fusobacteria, bacteriodetes, and gammaproteobacter phyla. b Distribution of taxa identified is shown as a pie chart. c
Number of proteins detected for taxa for which the greatest number of proteins were identified. d Protein relative abundance per taxon for taxa
with the highest relative abundance. The relative abundance of the top 20 most abundant bacterial taxa identified using e 165 rRNA gene
sequencing and f metaproteomics is shown for all participants for whom both 16S rRNA gene sequence data and metaproteomics data were
generated (n = 74). For 165 rRNA gene sequence analysis, the V4 region was amplified and libraries sequenced on an Illumina MiSeq platform.
Inflammation groups were defined based on hierarchical followed by K-means clustering of all women according to the concentrations of nine
pro-inflammatory cytokines [interleukin (IL)-1q, IL-1B3, IL-6, IL-12p40, IL-12p70, tumor necrosis factor (TNF)-a, TNF-B3, TNF-related apoptosis-inducing

Weighted correlation network analysis of microbial
and host proteins identified five modules (clusters)
representing co-correlations between microbial and host
proteins (Fig. 2a, b). The yellow module included pri-
marily L. iners proteins, while the turquoise module pri-
marily consisted of L. crispatus and host proteins. The
gray and brown modules consisted entirely of host pro-
teins, and the blue module included non-optimal bac-
teria and host proteins. Pro-inflammatory cytokines
correlated inversely with the Lactobacillus modules (yel-
low and turquoise) and positively with the gray, brown,
and blue modules. Chemokines were significantly posi-
tively correlated with the brown and gray modules and
inversely with the turquoise module (Fig. 2c). Blue, yel-
low, turquoise, and gray modules correlated with BV
Nugent score, while BV showed no significant correl-
ation with the brown module (Fig. 2d). The finding that
the brown module did not include any microbial pro-
teins and was not associated with BV or STIs suggests
the presence of inflammatory processes independent of
the microbiota. For STIs, no significant correlations (p
value < 0.05) with any of the five modules were detected
(Fig. 2d). To determine whether the co-correlations of
microbial proteins with host proteins had functional
meaning, we profiled the top biological processes of pro-
teins as shown in the row sidebar in Fig. 2a. Host pro-
teins that correlated negatively with the blue module
(consisting of non-optimal bacteria) were mostly in-
volved in cell adhesion, cell-cell adhesion, cell-cell junc-
tion assembly, and regulation of cell-adhesion pathways.
This suggests reduced epithelial barrier function associ-
ated with G. vaginalis, Prevotella species, Megasphaera,
and A. vaginae. Host proteins involved in immune sys-
tem and inflammatory response pathways were positively
correlated with brown and gray modules and inversely
associated with the turquoise module including L. cris-
patus. Despite variability in the microbial proteins and
taxa, redundant microbial functional pathways were
identified across different modules, indicating that

microbiota share a set of common metabolic functions
(e.g., glucose metabolism, protein translation, and syn-
thesis), as expected. Although most lactobacilli proteins
were negatively associated with BV and pro-
inflammatory cytokines (see turquoise and yellow mod-
ules in Fig. 2a), almost all L. iners proteins were clus-
tered in the yellow module with slightly different
functional pathways from lactobacilli proteins in the tur-
quoise module.

Microbial function predicts genital inflammation with
greater accuracy than taxa relative abundance

The accuracies of (i) microbial relative abundance (de-
termined using 16S rRNA gene sequencing), (ii) func-
tional prediction based on 16S rRNA gene sequence
data, (iii) microbial protein relative abundance (deter-
mined using metaproteomics), and (iv) microbial mo-
lecular function (determined by aggregation of GOs of
proteins identified using metaproteomics) for prediction
of genital inflammation status (low, medium, and high
groups) were evaluated using random forest analysis.
The three most important species predicting genital in-
flammation grouping by 16S rRNA gene sequence data
were Sneathia sanguinegens, A. vaginae, and L. iners
(Fig. 3a). The top functional pathways based on 16S
rRNA gene sequence data for the identification of
women with inflammation were prolactin signaling, bio-
film formation, and tyrosine metabolism (Fig. 3b). Simi-
larly, the most important proteins predicting
inflammation grouping by metaproteomics included two
L. iners proteins (chaperone protein DnaK and pyro-
phosphate phospho-hydrolase), two A. vaginae proteins
(glyceraldehyde-3-phosphate dehydrogenase and phos-
phoglycerate kinase), Megasphaera genomosp. type 1
cold-shock DNA-binding domain protein, and L. crispa-
tus ATP synthase subunit alpha (Fig. 3c). The top mo-
lecular functions associated with genital inflammation
included oxidoreductase activity (of multiple proteins
expressed primarily by lactobacilli, but also Prevotella
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a categorical variable

Fig. 2 Weighted co-correlation network analysis of microbial and human proteins. The weighted correlation network analysis (WGCNA) R package
was used to build a microbial-host functional weighted co-correlation network using intensity-based absolute quantification (iBAQ) values. a
Correlations between proteins and modules are shown by the heatmap, with positive correlations shown in red and negative correlations shown
in blue. Row sidebars represent the top taxa and biological processes assigned to each of the proteins (no separate correlation coefficients were
calculated for taxa and biological processes). b The protein dendrogram and module assignment are displayed, with five modules identified

using dynamic tree cut. ¢ Spearman'’s rank correlation was used to determine correlation coefficients between individual cytokines/chemokines
and module eigengenes (the first principal component of the expression matrix of the corresponding module) for all samples. Finally, we
reported the average Spearman’s correlation coefficients for all pro-inflammatory cytokines and chemokines. d Similarly, Spearman’s correlation
coefficients were calculated between module eigengenes and Nugent scores [bacterial vaginosis (BV)] and sexually transmitted infections (STIs) as

and Atopobium species), beta-phosphoglucomutase ac-
tivity (expressed by lactobacilli), and GTPase activity (of
multiple proteins produced by mainly Prevotella, G.
vaginalis, and some lactobacilli) as illustrated in Fig. 3d.
These findings suggest that the functions of key BV-
associated bacteria and lactobacilli are critical for deter-
mining the level of genital inflammation. It was also
found that the out-of-bag (OOB) error rate distribution
was significantly lower for molecular function, followed
by protein relative abundance, functional prediction
based on 16S rRNA gene sequence data, and then taxa
relative abundance (Fig. 3e). This suggests that the activ-
ities of the bacteria present in the FGT play a critical
role in driving genital inflammation, in addition to the
presence and relative abundance of particular taxa.

Differences in microbial stress response, lactate
dehydrogenase, and metabolic pathways between
women with high versus low FGT inflammation

Microbial functional profiles were further investigated
by comparing molecular functions, biological processes,
and cellular component GO enrichment for detected
proteins between women with low versus high inflam-
mation using differential expression analysis, adjusting
for potentially confounding variables including age, con-
traceptives, PSA, and STIs (Fig. 4; Additional file 2:
Table S5). The majority of microbial molecular functions
(90/107), biological processes (57/83), and cellular com-
ponents (14/23) were underrepresented in women with
high compared to low genital inflammation, with most
of the differentially abundant metabolic processes, in-
cluding peptide, nucleoside, glutamine, and glyceropho-
spholipid metabolic processes, decreased in women with
inflammation. The phosphoenolpyruvate-dependent
sugar phosphotransferase system (a major microbial
carbohydrate uptake system including proteins assigned
to Lactobacillus species, S. amniii, A. vaginae, and G.
vaginalis) was also underrepresented in women with evi-
dence of genital inflammation compared to women with
low inflammation (FDR adj. p < 0.0001; Fig. 4a).
Additionally, L-lactate dehydrogenase activity was in-
versely associated with inflammation (Additional file 2:
Table S5) and both large and small ribosomal subunit

cellular components were underrepresented in those
with high FGT inflammation (Fig. 4b). The only meta-
bolic processes that were overabundant in women with
high versus low inflammation were malate and ATP
metabolic processes. Overrepresented microbial bio-
logical processes in women with genital inflammation
also included response to oxidative stress and cellular
components associated with cell division (e.g., mitotic
spindle midzone) and ubiquitination (e.g., DoalOp ubi-
quitin ligase complex, Hrd1lp ubiquitin ligase ERAD-L
complex, RQC complex; Fig. 4).

Underrepresented Lactobacillus peptidoglycan, cell wall,
and membrane pathways in women with high versus low
FGT inflammation

Among the top biological processes inversely associated
with inflammation were cell wall organization, regulation
of cell shape, and peptidoglycan biosynthetic process (all
adj. p < 0.0001; Fig. 4a). The GO terms, regulation of cell
shape, and peptidoglycan biosynthetic process included
identical proteins (e.g., D-alanylalanine synthetase, D-
alanyl-D-alanine-adding enzyme and Bifunctional pro-
tein GlmU), while cell wall organization included the
same proteins plus D-alanyl carrier protein. Although
proteins involved in these processes were only detected
for Lactobacillus species and may thus be biomarkers of
the increased relative abundance of lactobacilli, each
remained significantly associated with inflammation after
adjusting for the relative abundance of L. iners and non-
L. iners species (determined using 16S rRNA gene se-
quencing), as well as STI status, PSA detection, and hor-
monal contraceptive use [beta coefficient - 1.68; 95%
confidence interval (CI) —2.84 to —0.52; p = 0.004 for
cell wall organization; beta coefficient — 1.71; 95% CI -
2.91 to — 0.53; p = 0.005 for both regulation of cell shape
and peptidoglycan biosynthetic process]. This suggests
that the relationship between these processes and in-
flammation is independent of the relative abundance of
Lactobacillus species and that the cell wall and mem-
brane properties of lactobacilli may play a role in modu-
lating FGT inflammation. Furthermore, we found that
multiple cell wall and membrane cellular components,
including the S-layer, peptidoglycan-based cell wall, cell
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tests. OTU operational taxonomic unit

Fig. 3 Comparison of bacterial, bacterial protein, and bacterial function relative abundance for prediction of genital inflammation. Random forest
analysis was used to evaluate the accuracy of a bacterial relative abundance (determined using 16S rRNA gene sequencing; n = 74), b bacterial
functional predictions based on 16 rRNA data (n = 74), ¢ bacterial protein relative abundance (determined using metaproteomics; n = 74), and d
bacterial protein molecular function relative abundance (determined by metaproteomics and aggregation of protein values assigned to the same
gene ontology term; n = 74) for determining the presence of genital inflammation (low, medium, and high groups). Inflammation groups were
defined based on hierarchical followed by K-means clustering of women according to the concentrations of nine pro-inflammatory cytokines
[interleukin (IL)-1q, IL-1B3, IL-6, IL-12p40, IL-12p70, tumor necrosis factor (TNF)-a, TNF-@, TNF-related apoptosis-inducing ligand (TRAIL), interferon
(IFN)-y]. The bars and numbers within the bars indicate the relative importance of each taxon, protein, or function based on the Mean Decrease
in Gini Value. The sizes of bars in each panel differ based on the length of the labels. e Each random forest model was iterated 100 times for
each of the input datasets separately, and the distribution of the out-of-bag (OOB) error rates for the 100 models was then compared using t

wall, and membrane, were similarly underrepresented in
women with high versus low FGT inflammation (Fig. 4b).
Using metaproteomic data from an independent group
of 10 women, we similarly found that peptidoglycan bio-
synthetic process, cell wall organization, and regulation
of cell shape GOs were underrepresented in women with
high inflammation (Fig. 5a).

To further investigate whether the associations be-
tween FGT inflammation and Lactobacillus biological
processes and cellular components were independent of
Lactobacillus relative abundance, we compared these
GOs in BV-negative women with Lactobacillus-domin-
ant communities who were grouped (median splitting of
samples based on the first principal component of nine
pro-inflammatory cytokine concentrations) as having
low (n = 20) versus high (# = 20) inflammation (Fig. S6).
Interestingly, it was found that, even though only non-
significant trends towards decreased relative abundance
of lactobacilli determined by 16S rRNA gene sequencing
(p = 0.73) and metaproteomics (p = 0.14) were observed,
several  previously  identified GOs, including
peptidoglycan-based cell wall (p = 0.01), cell wall
organization (p = 0.03), and S-layer (p = 0.01), remained
associated with the level of inflammation (Fig. S6). This
suggests an association between these biological pro-
cesses and cellular components that is not fully ex-
plained by the relative abundance of the lactobacilli
themselves.

In vitro confirmation of the role of Lactobacillus cell wall
and membrane pathways in regulating genital
inflammation

As previous studies have suggested that the cell wall, as well
as the cell membrane, may influence the immunomodula-
tory properties of Lactobacillus species and that peptidogly-
can may be directly immunosuppressive [14, 24], we
further investigated the relationships between Lactobacillus
cell wall and membrane properties and inflammation using
64 Lactobacillus species that were isolated from the same
women [25]. From these lactobacilli, the 22 isolates that in-
duced the lowest levels of pro-inflammatory cytokine pro-
duction by vaginal epithelial cells and the 22 isolates that

induced the greatest cytokine responses were selected and
their protein profiles evaluated using LC-MS/MS. Cell wall
organization, regulation of cell shape, and peptidoglycan
biosynthetic process that were associated with genital in-
flammation in the FGT metaproteomic analysis of vaginal
swab samples were also significantly overrepresented in iso-
lates that induced low compared to high levels of inflam-
matory cytokines in vitro (Fig. 5b—d). Furthermore, plasma
membrane, cell wall, and membrane cellular components
were similarly overrepresented in isolates that induced low
versus high levels of inflammation (Fig. 5e—i). The cell wall
cellular component included multiple proteins involved in
adhesion (adhesion exoprotein, LPXTG-motif cell wall an-
chor domain protein, collagen-binding protein, mannose-
specific adhesin, putative mucin binding protein, sortase-
anchored surface protein, and surface anchor protein). The
relative abundance of this cell wall cellular component cor-
related positively with the level of adhesion of the isolates
to vaginal epithelial cells in vitro (rho = 0.30, p = 0.0476),
which in turn correlated inversely with in vitro inflamma-
tory cytokine production by these cells in response to the
isolates [25]. Importantly, the cell wall organization bio-
logical process included multiple proteins involved in pep-
tidoglycan biosynthesis, which has the potential to dampen
immune responses in a strain-dependent manner [14, 26].

Changes in FGT metaproteomic profiles over time

To evaluate variations in FGT metaproteomic profiles
associated with inflammatory profiles over time, we
compared proteins, taxa, and biological process and cel-
lular component GOs between two time points 9 weeks
apart (n = 74). The grouping according to inflammatory
cytokine profile was consistent at both visits for 41/74
(55%) participants, including 7/12 (58%) women who re-
ceived antibiotic treatment between visits (Fig. 6a). The
findings based on the second visit also confirmed the
role of inflammation as one of the drivers of variation in
complex metaproteome data, and similar patterns of
data distribution according to inflammation status were
observed at both visits (Fig. 6b). When the proteins, taxa,
and functions that were most closely associated with in-
flammation grouping (high vs. low) at the first visit were
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Fig. 4 Microbial biological process and cellular component gene ontologies associated with genital inflammatory cytokine profiles. Unsupervised
hierarchical clustering of aggregated intensity-based absolute quantification (iBAQ) values for microbial protein a biological process (BP) or b
cellular component (CC) gene ontology (GO) relative abundance (n = 113). GO relative abundance was determined by metaproteomics and
aggregation of microbial protein iBAQ values assigned to the same GO term. The heatmaps show aggregated microbial GO relative abundance,
and the bar graphs show fold changes in aggregated log,-transformed iBAQ values (LOGFC) for each microbial protein with the same a BP or b
CC GO in women with high versus low inflammation. Inflammation groups were defined based on hierarchical followed by K-means clustering of
women according to the concentrations of nine pro-inflammatory cytokines [interleukin (IL)-1q, IL-13, IL-6, IL-12p40, IL-12p70, tumor necrosis
factor (TNF)-a, TNF-B3, TNF-related apoptosis-inducing ligand (TRAIL), interferon (IFN)-y]. Red bars indicate positive and blue bars indicate negative
fold changes in women with high versus low inflammation. False discovery rate-adjusted p values are shown by dots, with red dots indicating

pro-inflammatory cytokine

low p values. Red arrows indicate cell wall and membrane processes and components. BV bacterial vaginosis, Proinflam cyt

evaluated at the second visit, overall profiles remained
similar between visits (Fig. 6c—e). Significantly lower
relative abundance of Lactobacillus species and in-
creased non-optimal bacteria were observed in women
with inflammation at the second visit (Fig. 6d). Similarly,
cell wall organization, regulation of cell shape, and pep-
tidoglycan biosynthetic process were among the top bio-
logical processes associated with low versus high
inflammation at both visits (for other top GO terms, see
Fig. 6e). Among women assigned to the same inflamma-
tory profile group at both visits, the relative abundance
of cell wall-related GO terms, malate metabolic process,
and response to oxidative stress were highly consistent
(Additional file 1: Fig. S7a-c). However, decreased levels
of inflammation between visits were associated with an
increase in the relative abundance of cell wall GOs and
decreased response to oxidative stress and malate meta-
bolic process GOs (Additional file 1: Fig. S7d-f). On the
other hand, increased levels of inflammation were asso-
ciated with decreased relative abundance of cell wall
GOs and increased response to oxidative stress and mal-
ate metabolic process GOs (Additional file 1: Fig. S7g-i).

Discussion

Understanding biological risk factors for HIV acquisition
is critical for the development of effective HIV preven-
tion strategies. FGT inflammation, defined by elevated
inflammatory cytokine levels, has been identified as a
key factor associated with HIV infection risk. However,
the causes and underlying mechanisms are not fully
understood. In this study, we demonstrate that, while
the presence of particular microorganisms, including
non-optimal bacteria and Lactobacillus species, is im-
portant for modulating FGT inflammation, their activ-
ities and functions are likely of greater importance. We
showed that the molecular functions of bacterial pro-
teins predicted FGT inflammation status more accur-
ately than taxa relative abundance determined using 16S
rRNA gene sequencing, as well as functional predictions
based on 16S rRNA gene sequencing analysis. The ma-
jority of microbial biological processes were underrepre-
sented in women with high compared to low

inflammation (57/83), including metabolic pathways and
a strong signature of reduced Lactobacillus-associated
cell wall organization and peptidoglycan biosynthesis.
This signature remained associated with FGT inflamma-
tion after adjusting for the relative abundance of lactoba-
cilli, as well as other potential confounders (such as
hormone contraceptive use, semen exposure, STIs), and
was also associated with inflammatory cytokine induc-
tion in vaginal epithelial cells in response to Lactobacil-
lus isolates in vitro. We observed a high level of
consistency between FGT metaproteomic profiles of the
same women at two time points 9 weeks apart, particu-
larly among those with the same level of inflammation
at both visits. However, cell wall organization and pep-
tidoglycan biosynthesis increased between visits in
women who moved from a higher to a lower inflamma-
tion grouping and decreased in women who moved from
a lower to a higher inflammation grouping.

While we found a large degree of similarity between
metaproteomics and 16S rRNA gene sequence taxo-
nomic assignment determined for the same women [27],
important differences in the predicted relative abun-
dance of most bacteria were observed. Differences in the
relative abundance of certain taxa observed using meta-
proteomics and 16S rRNA gene sequence data are not
surprising as taxonomic assignment from metaproteo-
mic approaches also indicates functional activity (mea-
sured by the amount of expressed protein), rather than
simply the abundance of a particular bacterial taxon.
Additionally, others have noted that 16S rRNA gene se-
quencing does not have the ability to distinguish be-
tween live bacteria and transient DNA [28]. We also
observed differences that are likely due to database limi-
tations. For example, Candidatus Lachnocurva vaginae
(previously known as BVAB1) was not identified in the
metaproteomics analysis. This is due to the fact that this
species was not present in the UniProt or NCBI data-
bases [29]. However, the Clostridium and Ruminococcus
species which were identified are likely to be Candi-
datus Lachnocurva vaginae since these taxa fall into
the same Clostridiales order. Additionally, Clostridium
and Ruminococcus species were more abundant in
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Fig. 5 Relative abundance of gene ontologies in independent samples and in inflammatory versus non-inflammatory Lactobacillus isolates. a The
top 14 microbial biological process (BP) and cellular component (CC) gene ontology (GO) terms that distinguished women with low versus high
inflammation in the full cohort (n = 113) were validated in an independent sample of ten women from Cape Town, South Africa. Liquid
chromatography-tandem mass spectrometry was used to evaluate the metaproteome in lateral vaginal wall swabs from these women.
Inflammation groups were defined based on hierarchical followed by K-means clustering of these ten women according to the concentrations of
nine pro-inflammatory cytokines [interleukin (IL)-1a, IL-1(3, IL-6, IL-12p40, IL-12p70, tumor necrosis factor (TNF)-a, TNF-B3, TNF-related apoptosis-
inducing ligand (TRAIL), interferon (IFN)-yl. GO relative abundance was determined by aggregation of microbial protein intensity-based absolute
quantification (iBAQ) values assigned to a same GO term. The relative abundance of the top BPs and CCs (except ATP-binding cassette
transporter complex which was not detected in these samples) is shown as bar graphs, with blue indicating women with low inflammation (n =
5) and red indicating women with high inflammation (n = 5). Welch’s t test was used for comparisons. *p < 0.05. b—i Twenty-two Lactobacillus
isolates that induced relatively high inflammatory responses and 22 isolates that induced lower inflammatory responses were adjusted to 4.18 X
10° CFU/ml in bacterial culture medium and incubated for 24 h under anaerobic conditions. Following incubation, protein was extracted and
digested and liquid chromatography-tandem mass spectrometry was conducted. Raw files were processed with MaxQuant against a database
including the Lactobacillus genus and common contaminants. The iBAQ values for proteins with the same gene ontologies were aggregated,
logyo-transformed, and compared using the Mann-Whitney U test. Box-and-whisker plots show log;q-transformed iBAQ values, with lines
indicating medians and whiskers extending to 1.5 times the interquartile range from the box. A false discovery rate step-down procedure was
used to adjust for multiple comparisons, and adjusted p values < 0.05 were considered statistically significant

women with high compared to low inflammation, as
expected for Candidatus Lachnocurva vaginae [10].
Metaproteomic analysis was able to identify lactoba-
cilli to species level, while sequencing of the V4 re-
gion of the 16S rRNA gene had more limited
resolution for this genus, as expected.

The finding that fungal protein relative abundance was
substantially lower than bacterial protein relative abun-
dance is not surprising as it has been estimated that the
total number of fungal cells is orders of magnitude lower
than the number of bacterial cells in the human body
[30]. Although Candida proteins were detected, the cu-
rated dataset (following removal of taxa that had only 1
protein detected or 2 proteins detected in only a single
sample) did not include any Candida species. This may
be due to the relative rarity of fungal cells in these sam-
ples, and it would be interesting to evaluate alternative
methodology for sample processing to better resolve this
population in the future [31]. A limitation of microbial
functional analysis using metaproteomics is that, at
present, there is generally sparse population of func-
tional information in the databases for the majority of
the microbiome. Thus, the findings of this study will be
biased toward the microbes that are better annotated.
Nonetheless, microbial function was closely associated
with genital inflammatory profiles and it is possible that
this relationship may be even stronger should better an-
notation exist. Another limitation of this study is that
the in vitro Lactobacillus analysis was conducted using a
transformed cell line system that is a greatly simplified
model and cannot recapitulate the complexity of the
FGT and the microbiome. It is however significant to
note that similar proteomic signatures were noted both
in vitro and in vivo, regardless of this limitation. To en-
able researchers to further study associations between
microbial composition and function with BV, STIs, and
FGT inflammation by conducting detailed analysis of

specific proteins, taxa, and GO terms of interest, we
have developed the “FGT-DB” online application. The
application is available at http://fgtdb.org/ and allows
users to repeat the analyses presented here, as well as
obtain additional information by analyzing individual
proteins, species, and pathways.

A significant functional signature associated with FGT
inflammation grouping included Lactobacillus-associated
cell wall, peptidoglycan, and cell membrane biological
processes and cellular components. Although these
functions were linked exclusively to Lactobacillus spe-
cies, the associations with FGT inflammation were up-
held after adjusting for Lactobacillus relative abundance
determined by 16S rRNA gene sequencing and were also
evident in an analysis including only women with Lacto-
bacillus-dominant microbiota. This profile was con-
firmed when these GOs were compared between
Lactobacillus isolates that induced high versus low levels
of cytokine production in vitro. Previous studies have
suggested that the peptidoglycan structure, the proteins
present in the cell wall, as well as the cell membrane,
may influence the immunomodulatory properties of
Lactobacillus species [14, 24]. In a murine model, the
administration of peptidoglycan extracted from gut
lactobacilli was able to rescue the mice from colitis [26].
This activity was dependent on the NOD2 pathway and
correlated with an upregulation of the indoleamine 2,3-
dioxygenase immunosuppressive pathway. The immuno-
modulatory properties of peptidoglycan were further-
more dependent on the strain of lactobacilli from which
the peptidoglycan was isolated [26]. The increase in cell
wall organization and peptidoglycan biosynthesis that ac-
companied a reduction in local inflammation suggests
an increase in Lactobacillus strains producing relatively
large amounts of proteins involved in these processes. In
a previous study, we showed that adhesion of lactobacilli
to vaginal epithelial cells in vitro was inversely associated
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Fig. 6 Longitudinal changes in FGT metaproteomic profiles. Liquid chromatography-tandem mass spectrometry was used to evaluate the
metaproteome in lateral vaginal wall swabs from 74 women from Cape Town, South Africa, at two visits 9 weeks (interquartile range 9-11 weeks)
apart. a Sankey diagram was used to visualize changes in inflammatory cytokine profiles between visits. b Principal component analysis
(mixOmics R package) was used to group women based on the log,-transformed intensity-based absolute quantification (iBAQ) values of all
proteins identified at both visits. Grouping is based on vaginal pro-inflammatory cytokine concentrations, and each point represents an individual
woman. ¢ Top 20 proteins (UniProt IDs) distinguishing women with and without inflammation at both visits determined by moderated ¢ test
(limma R package) and random forest analysis (randomForest R package). d Top 10 taxa distinguishing women with and without inflammation at
both visits determined by moderated t test (limma R package) and random forest algorithm (randomForest R package). e Top 14 biological
process and cellular component gene ontology terms distinguishing women with and without inflammation at both visits determined by
moderated t test (limma R package) and random forest algorithm (randomForest R package). Positions of participants in each heatmap are fixed,
and the inflammation status of each participant across the visits can be tracked using the row sidebars. Inflammation groups were defined based
on hierarchical followed by K-means clustering of nine pro-inflammatory cytokines [interleukin (IL)-1q, IL-1(3, IL-6, IL-12p40, IL-12p70, tumor
necrosis factor (TNF)-a, TNF-3, TNF-related apoptosis-inducing ligand (TRAIL), interferon (IFN)-yl. ABC ATP-binding cassette, Agg aggregated, BP
biological process, CC cellular component, Infla inflammation, PC principal component, PEP-PTS phosphoenolpyruvate-dependent
phosphotransferase system, RNDP complex ribonucleoside-diphosphate reductase complex

with cytokine responses, suggesting that direct inter-
action between the isolates and vaginal epithelial cells is
critical for immunoregulation [25]. In addition to cell
wall and membrane properties, L-lactate dehydrogenase
activity was identified as a molecular function inversely
associated with inflammation. Similarly, D-lactate de-
hydrogenase relative abundance and D-lactate produc-
tion by the Lactobacillus isolates included in this study
were also associated with inflammatory profiles in an
in vitro analysis [25]. These findings support the results
of previous studies showing that lactic acid has immuno-
regulatory properties [16]. Taken together, these findings
suggest that lactobacilli may modulate the inflammatory
environment in the FGT through multiple mechanisms.
It was further found that L. crispatus was more strongly
associated with low inflammation in the differential
abundance analysis and that L. iners was the Lactobacil-
lus species most frequently detected in women with high
inflammation. The co-expression analysis revealed that
the majority of L. crispatus proteins grouped separately
to L. iners proteins. However, both the L. crispatus and
the L. iners modules were strongly inversely associated
with inflammatory cytokine and chemokine concentra-
tions. This is interesting since L. crispatus dominance
is considered optimal, while the role of L. iners, the
most prevalent Lactobacillus species in African
women [10, 11], is poorly understood and it has been
associated with compositional instability and transi-
tion to a non-optimal microbiota, as well as increased
risk of STI acquisition [32, 33].

In this study, we observed a similar host proteome
profile associated with high FGT inflammation com-
pared to previous studies [7]. Multiple inflammatory
pathways were overrepresented in women with high ver-
sus low FGT inflammation, while signatures of reduced
barrier function were observed in women with high in-
flammation, with underabundant endothelial, ectoderm,

and tight junction biological processes. These findings
similarly suggest that genital inflammation may be asso-
ciated with epithelial barrier function.

Conclusions

The link between FGT microbial function and local in-
flammatory responses described in this study suggests
that both the presence of specific microbial taxa in the
FGT and their properties and activities likely play a crit-
ical role in modulating inflammation. Currently, the an-
notation of microbial functions is sparse, but with ever-
increasing amounts of high-quality, high-throughput
data, the available information will improve steadily. The
findings of the present study contribute to our under-
standing of the mechanisms by which the microbiota
may influence local immunity, and in turn alter the risk
of HIV infection. Additionally, the analyses described
herein identify specific microbial properties that may be
harnessed for biotherapeutic development.

Methods

Participants

This study included sexually experienced HIV-negative
adolescent girls and young women (16-22 years) from the
Women’s Initiative in Sexual Health (WISH) study in Cape
Town, South Africa [22]. While the parent study cohort
comprised 149 women, the present sub-study included 113
women who had both vaginal swabs available for metapro-
teomics analysis and menstrual cup (MC) cervicovaginal se-
cretions available for cytokine profiling. Seventy-four of
these women had specimens available at a second time
point 9weeks later (interquartile range 9-11 weeks) for
metaproteomics analysis. Of these women, 12 received anti-
biotic treatment for laboratory-diagnosed or symptomatic
STIs and/or BV (doxycycline, metronidazole, azithromycin,
cefixime, ceftriaxone, and/or amoxicillin) between study
visits, while 2 received topical antifungal treatment
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(clotrimazole vaginal cream). Ten additional women
who did not have visit 1 samples available for analysis
were included for validation purposes. The University
of Cape Town Faculty of Health Sciences Human Re-
search Ethics Committee (HREC REF: 267/2013) ap-
proved this study. Women > 18years provided
written informed consent, and those <18years pro-
vided informed assent and informed consent was ob-
tained from parents/guardians.

Definition of genital inflammation based on cytokine
concentrations

For cytokine measurement, MCs (Softcup®, Evofem Inc,
USA) were inserted by the clinician and kept in place for
an hour, after which they were transported to the lab at
4.°C and processed within 4 h of removal from the par-
ticipants. MCs were centrifuged, and the cervicovaginal
secretions were resuspended in phosphate-buffered sa-
line (PBS) at a ratio of 1 ml of mucus: 4 ml of PBS and
stored at —80°C until cytokine measurement. Prior to
cytokine measurement, MC secretions were pre-filtered
using 0.2-um cellulose acetate filters (Sigma-Aldrich,
MO, USA). The concentrations of 48 cytokines were
measured in MC samples using Luminex (Bio-Rad La-
boratories Inc®, CA, USA) [23]. K-means clustering was
used to identify women with low, medium, and high
pro-inflammatory cytokine [interleukin (IL)-1la, IL-1(,
IL-6, IL-12p40, IL-12p70, tumor necrosis factor (TNF)-
o, TNF-B, TNF-related apoptosis-inducing ligand (TRAI
L), interferon (IFN)-y] and chemokine profiles [cutane-
ous T cell-attracting chemokine (CTACK), eotaxin,
growth regulated oncogene (GRO)-a, IL-8, IL-16, IFN-y-
induced protein (IP)-10, monocyte chemoattractant pro-
tein (MCP)-1, MCP-3, monokine induced by IFN-y
(MIG), macrophage inflammatory protein (MIP)-1q,
MIP-1p, regulated on activation, normal T cell expressed
and secreted (RANTES)] (Additional file 1: Fig. S2).

STl and BV diagnosis and evaluation of semen
contamination

Vulvovaginal swab samples were screened for common
STIs, including Chlamydia trachomatis, Neisseria gonor-
rhoeae, Trichomonas vaginalis, Mycoplasma genitalium,
herpes simplex virus (HSV) types 1 and 2, Treponema
pallidum, and Haemophilus ducreyi, using real-time
multiplex PCR assays [22]. Lateral vaginal wall swabs
were collected for BV assessment by Nugent scoring.
Blood was collected for HIV rapid testing (Alere Deter-
mine™ HIV-1/2 Ag/Ab Combo, Alere, USA). PSA was
measured in lateral vaginal wall swabs using Human Kal-
likrein 3/PSA Quantikine ELISA kits (R&D Systems,
MN, USA).
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Discovery metaproteomics and analysis

For shotgun LC-MS/MS, lateral vaginal wall swabs were
collected, placed in 1 ml PBS, transported to the labora-
tory at 4 °C, and stored at — 80 °C. Samples were compu-
tationally randomized for processing and analysis. The
stored swabs were thawed overnight at 4 °C before each
swab sample was vortexed for 30s, and the mucus
scraped off the swab on the side of the tube and vor-
texed for an additional 10s. The samples were then
clarified by centrifugation, and the protein content of
each supernatant was determined using the Quanti-Pro
bicinchoninic acid (BCA) assay kit (Sigma-Aldrich, MO,
USA). Equal protein amounts (100 pg) were denatured
with urea exchange bulffer, filtered, reduced with dithio-
threitol, alkylated with iodoacetamide, and washed with
hydroxyethyl piperazineethanesulfonic acid (HEPES).
Acetone precipitation/formic acid (FA; Sigma-Aldrich,
MO, USA) solubilization was added as a further sample
clean-up procedure. The samples were then incubated
overnight with trypsin (Promega, WI, USA), and the
peptides were eluted with HEPES and dried via vacuum
centrifugation. Reversed-phase liquid chromatography
was used for desalting using a step-function gradient.
The eluted fractions were dried via vacuum centrifuga-
tion and kept at — 80 °C until analysis. LC-MS/MS ana-
lysis was conducted on a Q-Exactive Quadrupole-
Orbitrap MS (Thermo Fisher Scientific, MA, USA)
coupled with a Dionex UltiMate 3000 nano-UPLC sys-
tem (120 min per sample). The solvent system included
solvent A: 0.1% formic acid (FA) in LC grade water (Bur-
dick and Jackson, NJ, USA), and solvent B: 0.1% FA in
acetonitrile (ACN; Burdick & Jackson, NJ, USA). The
MS was operated in positive ion mode with a capillary
temperature of 320°C, and 1.95kV electrospray voltage
was applied. All 187 samples were evaluated in 11
batches over a period of 3 months. A quality control
consisting of pooled lateral vaginal swab eluants from
the study participants was run at least twice with every
batch. Preliminary quality control analysis was con-
ducted, and flagged samples/batches were rerun.

Due to the important role of database in metaproteo-
mic analysis, we compared two different databases to
identify proteins in our dataset: (i) UniProt database re-
stricted to human and microbial entries (73,910,451, re-
lease August 2017) and filtered using the MetaNovo
pipeline [34] and (ii) vaginal metagenome-based data-
base with human proteins obtained from the study of
Afiuni-Zadeh et al. [35]. The raw data were processed
using MaxQuant version 1.5.7.4 against each database,
separately. The detailed parameters are provided in Add-
itional file 1: Table S6. In brief, methionine oxidation
and acetylation of the protein N-terminal amino acid
were considered as variable modifications and carbami-
domethyl (C) as a fixed modification. The digestion
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enzyme was trypsin with a maximum of two missed
cleavages. The taxonomic analysis of the proteins identi-
fied using both of the databases was comparable; how-
ever, the first database (filtered UniProt human and
microbial entries) resulted in the identification of a
greater number of proteins compared to the vaginal
metagenome database, while exhibiting a high degree of
similarity compared to the 16S rRNA gene sequence
data. Therefore, the data generated using the first data-
base was used for downstream analysis.

For quality control analysis, raw protein intensities and
logyo-transformed iBAQ intensities of the quality control
pool, as well as the raw protein intensities of the clinical
samples, were compared between batches (not shown).
As variation in raw intensity was observed, all data were
adjusted for batch number prior to downstream analysis.
The cleaned and transformed iBAQ values were used to
identify significantly differentially abundant proteins ac-
cording to inflammatory cytokine profiles, BV status, or
STIs using the limma R package [36]. The p values were
obtained from the moderated ¢ test after adjusting for
confounding variables including age, contraceptives,
PSA, and STIs. Proteins with FDR-adjusted p values
< 0.05 and log,-transformed fold change > 1.2 or < - 1.2
were considered as significantly differentially abundant.
To define significantly differentially abundant taxa and
GOs, aggregated iBAQ values of proteins of the same
species or GO IDs were compared between women with
low, medium, and high inflammation using the limma R
package. The aggregation was performed separately for
host and microbial proteins. The p values along with
GO IDs were uploaded to REVIGO (http://revigo.irb.hr/
) to visualize the top 50 biological processes with the
lowest p values.

The effects of BV, STIs, and chemokine and pro-
inflammatory cytokine profiles on the metaproteome were
investigated by PCA using the mixOmics R package [37].
The ComplexHeatmap package [38] was used to generate
heatmaps and cluster the samples and metaproteomes
based on the hierarchical and K-means clustering
methods. Additionally, R packages EnhancedVolcano,
weighted correlation network analysis (WGCNA) [39],
and FlipPlots were applied for plotting volcano plots, co-
correlation analysis, and Sankey diagrams, respectively.
Basic R functions and the ggplot2 R package were used for
data manipulation, transformation, normalization, and
generation of graphics. To identify the key factors distin-
guishing women defined as having low, medium, and high
inflammation in their FGTs, we used random forest ana-
lysis using the R package randomForest [40] using the fol-
lowing settings: (i) the type of random forest was
classification, (ii) the number of trees was 2000, and (iii)
the number of variables evaluated at each split was one-
third of the total number of variables [proteins/molecular

Page 17 of 21

function GO IDs/16S rRNA gene-based operational taxo-
nomic units (OTUs)]. To compare the accuracy of the
protein-, function- and species-based models, we iterated
each random forest model 100 times for each of the input
datasets separately. The distributions of the OOBs for 100
models for each data type were then compared using ¢
tests. For the WGCNA analysis, a microbial-host weighted
co-correlation network was built using iBAQ values for all
proteins and modules were identified using dynamic tree
cut. Correlations between proteins and modules were then
determined and the top taxa and biological processes
assigned to each of the proteins identified. Spearman’s
rank correlation was used to determine correlation coeffi-
cients between individual cytokines/chemokines and mod-
ule eigengenes (the first principal component of the
expression matrix of the corresponding module) for all
samples. Average Spearman’s correlation coefficients for
all pro-inflammatory cytokines and chemokines were then
determined. Similarly, Spearman’s correlation coefficients
were calculated between module eigengenes and Nugent
scores and STIs (including C. trachomatis, N. gonorrhoeae,
T. vaginalis, M. genitalium, and active HSV-2).

16S rRNA gene sequencing and analysis

Bacterial 16S rRNA gene sequencing and analysis was
conducted as previously described [27]. Briefly, the V4
hypervariable region of the 16S rRNA gene was ampli-
fied using modified universal primers [41]. Duplicate
samples were pooled, purified using Agencourt AMPure
XP beads (Beckman Coulter, CA, USA), and quantified
using the Qubit dsDNA HS Assay (Life Technologies,
CA, USA). Illumina sequencing adapters and dual-index
barcodes were added to the purified amplicon products
using limited cycle PCR and the Nextera XT Index Kit
(Ilumina, CA, USA). Amplicons from 96 samples and
controls were pooled in equimolar amounts, and the re-
sultant libraries were purified by gel extraction and
quantified (Qiagen, Germany). The libraries were se-
quenced on an Illumina MiSeq platform (300-bp paired-
end with v3 chemistry). Following de-multiplexing, raw
reads were preprocessed, merged, and filtered using
DADA?2 [42]. Primer sequences were removed using a
custom python script and the reads truncated at 250 bp.
Taxonomic annotation was based on a customized ver-
sion of SILVA reference database. Only samples with >
2000 reads were included in further analyses. The repre-
sentative sequences for each amplicon sequence variant
were BLAST searched against NCBI non-redundant pro-
tein and 16S rRNA gene sequence databases for further
validation, as well as enrichment of the taxonomic classi-
fications. Microbial functional predictions were per-
formed using Piphillin server [43] against the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
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(99% identity cutoff). The relative abundance of func-
tional pathways (KEGG level 3) was used for RF analysis.

Lactobacillus isolation

Lactobacilli were isolated from cervicovaginal secretions
collected using MCs by culturing in de Man Rogosa and
Sharpe (MRS) broth for 48 h at 37 °C under anaerobic
conditions. The cultures were streaked onto MRS agar
plates under the same culture conditions, and single col-
onies were picked and then pre-screened microscopically
by Gram staining. Matrix Assisted Laser Desorption
Ionization Time of Flight (MALDI-TOF) was conducted
to identify the bacteria to species level. A total of 115
lactobacilli were isolated and stored at — 80 °C in a final
concentration of 60% glycerol. From these, 64 isolates
from 25 of the study participants were selected for the
evaluation of inflammatory profiles.

Vaginal epithelial cell stimulation and measurement of
cytokine concentrations

As described previously [25], vaginal epithelial cells
(VK2/E6E7 ATCC® CRL-2616™; RRID:CVCL_6471) were
maintained in complete keratinocyte serum-free media
(KSEM) supplemented with 0.4 mM calcium chloride,
0.05 mg/ml of bovine pituitary extract, 0.1 ng/ml human
recombinant epithelial growth factor, and 50 U/ml peni-
cillin and 50 U/ml streptomycin (Sigma-Aldrich, MO,
USA). The VK2 cells were seeded into 24-well tissue cul-
ture plates, incubated at 37 °C in the presence of 5% car-
bon dioxide, and grown to confluency. Lactobacilli,
adjusted to 4.18 x 10° colony forming units (CFU)/ml in
antibiotic-free KSFM, were used to stimulate VK2 cells
for 24 h at 37°C in the presence of 5% carbon dioxide.
As previously described, G. vaginalis ATCC 14018 cul-
tures standardized to 1 x 10” CFU/ml in antibiotic-free
KSFM were used as a positive control [25]. Production
of IL-6, IL-8, IL-1a, IL-1p, IP-10, MIP-3a, MIP-1a, MIP-
1B, and IL-1RA were measured using a Magnetic Lumi-
nex Screening Assay kit (R&D Systems, MN, USA) and a
Bio-Plex™ Suspension Array Reader (Bio-Rad Labora-
tories Inc®, CA, USA). VK2 cell viability following bac-
terial stimulation was confirmed using the Trypan blue
exclusion assay. PCA was used to compare the overall
inflammatory profiles of the isolates and to select the 22
most inflammatory and 22 least inflammatory isolates
for characterization using proteomics.

Characterization of Lactobacillus protein expression

in vitro using mass spectrometry

Forty-four Lactobacillus isolates were adjusted to 4.18 x
10° CFU/ml in MRS and incubated for 24 h under anaer-
obic conditions. Following incubation, the cultures were
centrifuged and the pellets washed 3x with PBS. Protein
was extracted by resuspending the pellets in 100 mM
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triethylammonium bicarbonate (TEAB; Sigma-Aldrich,
MO, USA) 4% sodium dodecyl sulfate (SDS; Sigma-
Aldrich, MO, USA). Samples were sonicated in a sonic-
ating water bath and subsequently incubated at 95 °C for
10 min. Nucleic acids were degraded using benzonase
nuclease (Sigma-Aldrich, MO, USA), and samples were
clarified by centrifugation at 10 000xg for 10 min. Quan-
tification was performed using the Quanti-Pro BCA
assay kit (Sigma-Aldrich, MO, USA). HILIC beads
(ReSyn Biosciences, South Africa) were washed with
250 ul wash buffer [15% ACN, 100 mM Ammonium
acetate (Sigma-Aldrich, MO, USA) pH4.5]. The beads
were then resuspended in loading buffer (30% ACN,
200 mM ammonium acetate pH 4.5). A total of 50 ug of
protein from each sample was transferred to a protein
LoBind plate (Merck, NJ, USA). Protein was reduced
with tris (2-carboxyethyl) phosphine (Sigma-Aldrich,
MO, USA) and alkylated with methylmethanethiosul-
phonate (MMTS; Sigma-Aldrich, MO, USA). HILIC
magnetic beads were added at an equal volume to that
of the sample and a ratio of 5:1 total protein and incu-
bated on the shaker at 900 rpm for 30 min. After bind-
ing, the beads were washed four times with 95% ACN.
Protein was digested by incubation with trypsin for 4 h
and the supernatant containing peptides was removed
and dried down in a vacuum centrifuge. LC-MS/MS
analysis was conducted with a Q-Exactive quadrupole-
Orbitrap MS as described above. Raw files were proc-
essed with MaxQuant version 1.5.7.4 against a database
including the Lactobacillus genus and common contami-
nants. Logo-transformed iBAQ intensities were com-
pared using the Mann-Whitney U test, and p values
were adjusted for multiple comparisons using an FDR
step-down procedure.

FGT-DB application

We have developed FGT-DB (Female Genital Tract
Metaproteomics), an online application for exploring
and mining the FGT microbial composition and func-
tion of South African women at high risk of HIV infec-
tion. The app is available at http://fgtdb.org/ and allows
users to repeat the analyses presented here, as well as
perform additional analyses and investigation using the
metaproteomic data generated in this study.
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evaluate the metaproteome in lateral vaginal wall swabs from 113
women from Cape Town, South Africa. The false discovery rate (FDR) cor-
rected p-values were obtained based on the log,-transformed intensity-
based absolute quantification of each protein applying the moderated t-
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mitted infections (STls). Proteins with FDR adjusted p-values <0.05 and
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Town, South Africa. The false discovery rate (FDR) corrected p-values were
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