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Abstract

Background: The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic
matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to
degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river
microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we
examined the Amazon River microbiome by analysing 106 metagenomes from 30 sampling points distributed
along the river.

Results: We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~
3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome
contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil).
Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite
tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based
on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile
compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its
genomic potential along the river course.

Conclusions: Our work contributes to expand significantly our comprehension of the world’s largest river
microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue
(AMnrGC) represents an important resource for future research in tropical rivers.
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Background
Continental waters play a major biogeochemical role by
linking terrestrial and marine ecosystems [1]. In particu-
lar, rainforest rivers receive large amounts of terrestrial
organic matter (TeOM), which may then reach the
ocean. TeOM is difficult to degrade (i.e. recalcitrant),
being normally processed in rivers by microorganisms,
stimulating its conversion to carbon dioxide [2–4].
Therefore, riverine microbiomes should have evolved
metabolisms capable of degrading TeOM. Even though
the gene repertoire of river microbiomes can provide
crucial insights to understand the links between terres-
trial and marine ecosystems, as well as the fate of
organic matter synthesized on land, very little is known
about the genomic machinery of riverine microbes that
degrade TeOM.
Microbiome gene catalogues allow the characterization

of functional repertoires, linking genes with ecological
function and ecosystem services. Recently, large gene
catalogues have been produced for the global ocean
[5–7], soils [8] and animal guts [9, 10]. In particular, ~
47 million genes have been reported for the global
ocean microbiome [11] and ~ 160 million genes for
the global topsoil microbiome [8]. Although functional
metagenomics was already performed in the Amazon
River [12–18], so far, no comprehensive gene catalogue
was generated, which hinders our understanding of the
genomic machinery that degrades almost half of the
1.9 Pg C discharged into rivers every year as recalci-
trant TeOM [1]. This is particularly relevant in tropical
rainforests, like the Amazon forest, which accounts for
~ 10% of the global primary production, fixing 8.5 Pg
C per year [19, 20]. The Amazon River basin comprises
almost 38% of continental South America [21], and its
discharge accounts for 18% of the world’s inland-water
inputs to the oceans [22]. Despite its relevance for
global-scale processes, there is a limited understanding
of the Amazon River microbiome.
Large amounts of organic and inorganic particulate

material [23] turn the Amazon River into a turbid
system. High turbidity reduces light penetration, and
consequently, the Amazon River has very low rates of
phytoplankton production [24], meaning that TeOM is
the major carbon source for microbial growth [25]. High
respiration rates in Amazon River waters generate a CO2

super-saturation that leads to its outgassing to the
atmosphere. Overall, Amazon River outgassing accounts
for 0.5 Pg C per year to the atmosphere [26], almost
equivalent to the amount of carbon sequestered by the
forest [19, 20]. Despite the predominantly recalcitrant
nature of the TeOM that is discharged into the Amazon
River, heterotrophic microbes are able to degrade up to
~ 55% of the lignin produced by the rainforest [27, 28].
The unexpectedly high degradation rates of some TeOM

compounds in the river was recently explained by the
availability of labile compounds that promote the
degradation of recalcitrant counterparts, a mechanism
known as priming effect, which has been observed in
incubation experiments [28].
Determining the repertoire of gene functions in the

Amazon River microbiome is one of the key steps to
understand the mechanisms involved in the degradation
of complex TeOM produced in the rainforest. Given
that most TeOM present in the Amazon River is lignin
and cellulose [27–31], the functions associated with their
degradation were expected to be widespread in the Amazon
microbiome. Instead, these functions exhibited very low
abundances [16, 17, 32], highlighting our limited under-
standing of the enzymes involved in the degradation of
lignin and cellulose in aquatic systems.
Cellulolytic bacteria use an arsenal of enzymes with

synergistic and complementary activities to degrade cel-
lulose. For example, glycosyl hydrolases (GHs) catalyse
the hydrolysis of glycoside linkages, while polysaccharide
esterases support the action of GHs over hemicelluloses
and polysaccharide lyases promote depolymerization [33,
34]. In contrast, lignin is more resistant to degradation
[35, 36], since its role is preventing microbial enzymes
from degrading labile cell-wall polysaccharides [37]. The
microbial production of extracellular hydrogen peroxide,
a highly reactive compound, is the first step of lignin
oxidation mediated by enzymes, like lignin peroxidase,
manganese-dependent peroxidase and copper-dependent
laccases [33]. Lignin oxidation also produces a complex
mixture of aromatic compounds, which compose the
humic fraction of dissolved carbon detected in previous
studies in the Amazon River [29, 30]. Our knowledge of
bacterial-mediated lignin degradation in the Amazon
River is limited; however, it is known that in tropical
streams bacterial lignocellulose degradation tends to
occur in the entire water column, being slow and also
predominantly modulated by bacteria in anoxic regions
close to sediments [38–41].
Here, we produced the first gene catalogue of the

world’s largest rainforest river by analysing 106 metagen-
omes (~ 500 × 109 base pairs), originating from 30 sam-
pling points covering a total of ~ 2106 km, from the upper
Solimões River to the Amazon River plume in the Atlantic
Ocean. This gene catalogue was used to examine the
genomic machinery of the Amazon River microbiome
potentially responsible for metabolizing large amounts of
organic carbon originating from the surrounding rainfor-
est. Specifically, we ask: How novel is the gene repertoire
of the Amazon River microbiome? Which are the main
functions potentially associated with TeOM degradation?
Do TeOM degradation-related genes and functions dis-
play a spatial distribution pattern? And finally, is there any
evidence of priming effect in TeOM degradation?
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Results
Cataloguing the genes of the Amazon River microbiome
Amazon River genes were predicted after co-assembling
106 metagenomes (Supplementary Tables 1 and 2 in
Additional file 1) in groups that shared the same
geographic origin (Fig. 1a). We predicted 6,074,767
genes longer than 150 bp, allowing for alternative initi-
ation codons. After redundancy removal by clustering
genes with an identity > 95% and an overlap > 90% of
the shorter gene, the Amazon River basin Microbial
non-redundant Gene Catalogue (AMnrGC) included 3,
748,772 non-redundant genes, with half of the genes
with a length ≥ 867 bp (publicly available in Zenodo, doi:
https://doi.org/10.5281/zenodo.1484504). About 52% of
the AMnrGC genes were annotated with at least one
database, while ~ 86% of the annotated genes were
simultaneously annotated using two or more different
databases. The recovered gene and functional diversity
seemed to be representative of this microbiota as

indicated by the leveling off of the rarefaction curves
of genes and functions (Fig. 1c).

The Amazon River microbiome differed from other
microbiomes
We compared the metagenomic information contained
in the Amazon River microbiome with that from the
Amazon rainforest soil and other available temperate
rivers (Canada watersheds and Mississippi River) using
k-mers (Supplementary Table 3 in Additional file 1).
The k-mer diversity comparison of these microbiomes
indicated that they are different in terms of genomic
composition (Fig. 1d), forming groups of heterogeneous
constitution (significant β dispersion [that is, average dis-
tance of samples to the group centroid]—PERMUTEST, F
= 25.7, p < 0.001). In particular, the k-mer composition of
Amazon River samples was markedly different to the other
microbiomes (PERMANOVA, R2 = 0.10, p = 9.99 × 10−5;
ANOSIM, R = 0.27, p < 0.001), which suggests that this

Fig. 1 The Amazon River basin Microbial Non-Redundant Gene Catalogue (AMnrGC). a Distribution of the 106 metagenomes used in this work
over the five sections of the Amazon River: Upstream (purple dots), Downstream (orange dots), Estuary (red dots), Plume (yellow dots) and
coastal Ocean (white dots). b Taxonomic classification of the ~ 3.7 million genes in the AMnrGC. “Unassigned” genes were not assigned
taxonomy, but they were functionally assigned, differently from “non-annotated” genes, which do not have any ortholog. Those genes displaying
orthology to poorly characterized genes found in metagenomes were referred to as “Metagenomic”. c Rarefaction curves of non-redundant
genes and PFAM families (internal plot). Note both point towards saturation. d NMDS comparing the Amazon river microbiome with other
microbiomes based on information content [k-mer composition]. Amazon River (AMAZON), Amazon forest soil (FOREST), Canada watersheds
(CANADA) and Mississippi River (MISSISSIPPI)
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basin, or tropical rainforest rivers in general, may contain
specific gene repertoires.
The metagenomic composition (k-mer based) of the

five sampled sections of the Amazon River (i.e. up-
stream, downstream, estuary, plume and ocean) displayed
significant differences (PERMANOVA test, F = 2.34, p
< 9.9e−5; Fig. 2a), indicating that river sections may
include different gene assemblages. These groups repre-
senting river sections were considered heterogeneous,
as there was a significant β dispersion (F = 7.7, p = 1e−3)
among metagenomic samples in each group (Fig. 2b).
Additionally, the freshwater samples from different river
sections (upstream, downstream and estuary) had shorter
distances to centroids than those of brackish and marine
samples (Fig. 2b). Even though we have used different size
fractions to capture free-living or particle-attached mi-
crobes, this did not influence the k-mer composition
(PERMANOVA test, F = 3.62, p = 0.06; β dispersion, F =
3.62, p = 0.074; Fig. 2c).

Gene identification
About 48% of the AMnrGC genes could not be anno-
tated due to lack of orthologs in reference databases.

Besides, even though ~ 1.6% of the genes in the AMnrGC
were previously found in metagenomic studies, they were
poorly characterized, without being assigned to a particular
taxon (here referred to as “Metagenomic” genes; Fig. 1b).
Genes annotated exclusively through hidden Markov
models (HMM) represented 13.3% of the AMnrGC. As the
annotation using HMM profiles does not rely on direct
orthology to specific sequences, but on orthology to a pro-
tein family (which may include mixed taxonomic signal),
we could not assign taxonomy to those genes and they are
referred to as “Unassigned genes” (Fig. 1b).
Overall, the previous results highlight our limited un-

derstanding about the gene composition of the Amazon
River microbiome, where most proteins (61.1%) do not
have orthologs in main reference databases. Prokaryotic
genes (35.7% bacterial and 0.6% archaeal) constituted
the majority of the AMnrGC, with only 0.3% and 0.6%
of the genes having eukaryotic or viral origin, respect-
ively (Fig. 1b).

Core metabolisms
Functional analysis comprised prokaryotic and eukaryotic
genes matching COG, KEGG and/or PFAM databases.

Fig. 2 Metagenomic and COG composition of the studied sections of the Amazon River microbiome. Ordination of metagenomes composing
the different river sections based on the Jaccard distances calculated from the presence-absence of k-mers in each sample (a-c). NMDS groups
were statistically different [PERMANOVA, F = 2.34, p value = 9.99e−5] (a), displaying intragroup heterogeneity [β dispersion; PERMUTEST, F = 7.72,
p value = 0.001] (b). Metagenomic composition of the Amazon River microbiome according to microbial lifestyle (free-living (FL) vs. particle-
attached (PA)) (c). NMDS groups were statistically different [PERMANOVA, F = 3.62, p value = 0.06], displaying intragroup homogeneity [β
dispersion; PERMUTEST, F = 3.62, p value = 0.074]. COG composition across size fractions and sections of the Amazon River (d). Gene functions
grouped into COG superclasses are shown per river section and microbial lifestyle (free-living vs. particle-attached). The Upstream river section is
not shown in the particle-attached fraction since it was not sampled
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The superclass “Metabolic processes” from the Clusters of
Orthologous Genes (COG) database comprises those gene
functions belonging either to energy production and
conversion, amino acids, nucleotides, carbohydrates, coen-
zymes, lipids and inorganic ions transport and metabol-
ism, secondary metabolites biosynthesis, transport and
catabolism. This superclass was the most abundant in
the AMnrGC (35.8% of the genes annotated with COG; Fig.
2d). Genes with unknown function represented 21.4%
of the COG annotated proteins. Functionally, micro-
bial lifestyle (i.e. free-living vs. particle-attached) did
not influence the COG superclass distribution (Fig.
2d).
Core metabolic functions are those involved in cell or

ecosystem homeostasis, normally representing the min-
imal metabolic machinery needed to survive in a given
environment. KEGG and PFAM databases were used to
determine the bacterial functional core, allowing also the
identification of metabolic pathways. Core functions
represented ~ 8% of KEGG and PFAM functions and
were mostly related to general carbon metabolism, being
predominantly associated with organic matter oxidation
to CO2 and respiration byproducts heading to acetogenic
pathways. Apart from core metabolisms, abundant
proteins can reveal essential biochemical pathways in
microbiomes. The top 100 most abundant functions in
the bacterial core were “house-keeping” functions involved
in main metabolic pathways (e.g. carbohydrate metabolism,
quorum sensing, transporters and amino acid metabolism),
as well as important protein complexes (e.g. RNA and
DNA polymerases and ATP synthase). The non-core me-
tabolism suggests adaptations to a complex environment,
including multiple genes related to xenobiotic biodegrad-
ation and secondary metabolism (that is, the production
and consumption of compounds not directly related to cell
survival).

The potential TeOM degradation machinery
A total of 6516 genes from the AMnrGC were identi-
fied as taking part in the potential TeOM degradation
machinery from the Amazon River microbiome, being
divided into cellulose degradation (143 genes), hemi-
cellulose degradation (92 genes), lignin oxidation (73
genes), lignin-derived aromatic compounds transport
and metabolism (2324 genes) and tricarboxylate trans-
port (3884 genes) (Figs. 3, 4, and 5). The large number
of gene variants associated with the metabolism of
lignin-derived compounds and the transport of tricar-
boxylates (Fig. 4) reflects the variety of molecules
generated during the lignin oxidation process in the
Amazon River. No significant differences were found
in the composition and distribution of genes in sam-
ples belonging to different microbial lifestyles (i.e. free-
living vs. particle-attached). Eukaryotic contributions

to the analysed functions were small (0.5–0.6%); thus,
the machinery analysed hereafter is mostly prokaryotic.

Lignin oxidation and deconstruction of cellulose and
hemicellulose
TeOM consists of biopolymers, so the first step of its
microbial-based degradation consists in converting
polymers into monomers. Thus, the identified genes
potentially involved in the oxidation of lignin and the
degradation of cellulose and hemicellulose were investi-
gated (Fig. 3). We observed a ubiquitous dominance of
glycosyl hydrolase GH3, related to cellulose degradation.
This function represented 63.2–65.3% of the genes
possibly associated with this catabolic step across all
river sections (71 ± 8 genes per section) (Fig. 3). In turn,
hemicellulose degradation is potentially performed
mostly by glycosyl hydrolase GH10 (52-56% of genes) in
all river sections (35 ± 6 genes per section). Analysis of
gene taxonomy (Fig. 3) indicated that cellulose and
hemicellulose hydrolysis could be carried out predomin-
antly by known taxa in fresh (70–81%) and brackish
waters (58–79%). Cellulose degradation is likely performed
by Betaproteobacteria and Actinobacteria in freshwaters,
while Bacteroidetes, Alphaproteobacteria and Gammapro-
teobacteria possibly dominate this step in the ocean and
plume sections (Fig. 3). A limited fraction of hemicellulose
degradation seems to be associated to Gamma- and Delta-
proteobacteria, which display a ubiquitous distribution
along the river course. In turn, Actinobacteria and Betapro-
teobacteria (in freshwaters), and Alphaproteobacteria (in
brackish waters) seem to contribute predominantly with
functions related to hemicellulose degradation in different
river sections (Fig. 3).
We found that lignin oxidation in the Amazon River

may be mainly mediated by dye-decolorizing peroxidases
(DyPs), as 61.5–71.2% of the genes potentially involved
in this step were predominantly associated with fresh-
water areas. Only laccases (19 ± 2 genes per section) and
peroxidases (42 ± 6 genes per section) were found in the
Amazon River microbiome, no other families involved in
lignin oxidation, like phenolic acid decarboxylase or
glyoxal oxidase, were found (Fig. 3). Lignin oxidation ap-
pears to be encoded by genes belonging predominantly
to taxonomically unassigned taxa (36–42%) in all river
sections, as well as Betaproteobacteria in freshwaters
and Alpha- / Gammaproteobacteria in brackish waters.
Moreover, there is a possible redundancy of functions in
Actinobacteria and Alphaproteobacteria, as they have
contrasting abundances in fresh- and brackish waters.

Lignin-derived compound transport
Lignin-derived aromatic compounds need to be trans-
ported from the extracellular environment to the cyto-
plasm prior to their degradation. Transporters that could
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be associated with lignin degradation (AAHS family and
ABC transporters) were found in the AMnrGC (Fig. 4).
Alphaproteobacterial AAHS and ABC genes had an in-
creased abundance in plume and ocean samples (Fig. 4).
Thus, Alphaproteobacteria contribute with their functional
machinery to the metabolism of lignin-derived compounds
in the Amazon River ecosystem. ABC transporters from
Betaproteobacteria were enriched in freshwater or brackish
river sections, while ABC transporters belonging to Alpha-
proteobacteria were enriched in sections with a higher

salinity (Fig. 4). Different to the main taxa potentially
involved in the degradation of TeOM, Actinobacteria had
a smaller functional contribution to the transport of lignin-
derived compounds, being more uniformly distributed
along the river course (Fig. 4).
The tripartite tricarboxylate transporting (TTT)

system is composed by three proteins, where tctC is re-
sponsible for capturing substrates in the extracellular
space and bringing them to the transporting channel
made by the proteins tctA and tctB, which recognize the

Fig. 3 Enzymes potentially involved in the initial steps of TeOM degradation in the Amazon River microbiome. Lignin oxidation (1), cellulose (2)
and hemicellulose degradation (3): the number of genes per family is shown (# genes). Taxa distribution per river section is also indicated
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substrate binding protein and move the substrate across
membrane into the cytoplasm. The TTT system is
suitable for transporting humic acids, and therefore
lignin-derived compounds. There was a large number of
gene variants (from 10 to 100) associated with the sub-
strate binding proteins (tctC). As each protein is specific
to one or a few substrates, possibly there is a huge
variety of substrates in the Amazon River ecosystem.
The extensive contribution of TTT system genes from
unknown taxa reflects our limited understanding about
it (Fig. 4). Similar to the other mentioned transporters,
TTT transporters from Alphaproteobacteria were enriched
in plume and ocean samples, while TTT transporters from
Betaproteobacteria were enriched in freshwater or brackish
sections of the river (Fig. 4).

Degradation of lignin-derived aromatic compounds
Following the initial degradation of lignin, diverse
aromatic compounds are released. These can be divided
into aromatic monomers (monoaryls) or dimers (diaryls),
which can be processed through several biochemical
steps (also called funneling pathways) until being con-
verted into vanilate or syringate. These compounds can
be processed through the ring cleavage pathways to form
pyruvate or oxaloacetate, which can be incorporated to
the tricarboxylic acid cycle (TCA) of cells, generating en-
ergy. All known functions taking place in the
metabolism of lignin-derived aromatic compounds were

found in the AMnrGC, except the gene ligD, a Cα-
dehydrogenase for αR-isomers of β-aryl ethers. The pos-
sible degradation pathway of lignin-derived compounds
in the Amazon River (Figs. 4 and 5) included 772 and
449 genes potentially belonging to funneling pathways of
diaryls and monoaryls, respectively (Fig. 4). Examination
of the pathways starting with vanilate and syringate
revealed 1059 genes likely to be responsible for the
ring-cleavage pathway. Almost 47% of all genes re-
lated to the degradation of lignin-derived compounds
in the AMnrGC belonged to 4 gene families (ligH,
desV, phcD or phcC). These genes represent the main
steps of intracellular lignin metabolism, which are (1)
funneling pathways leading to vanilate/syringate (Fig. 4),
(2.1) O-demethylation/C1 metabolism and (2.2) ring cleav-
age (Fig. 5).
The previously mentioned taxonomic patterns in lig-

nin oxidation as well as in the lignin-derived compound
transport were also observed in the genes potentially
related to the funneling pathways (Fig. 4) including the
posterior steps (Fig. 5). There was an enrichment of
Alphaproteobacteria functions in the river sections
closer to the ocean, while the number of Actinobacteria
genes decreased in those sections (Figs. 4 and 5). We
also observed a decrease in the relative functional contri-
bution of Betaproteobacteria, and an enrichment of
functions from Gammaproteobacteria with increasing
salinity (Figs. 4 and 5).

Fig. 4 Transporters of lignin-derived compounds and funneling pathways of dimers and monomers in the Amazon River. The number of genes
as well as taxonomy per protein family is indicated. The TTT system is depicted with (“?”) as its involvement is hypothetical. Funneling pathways
to monomers and dimers are shown in terms of gene family and taxonomy
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Potential to degrade TeOM among low-rank taxonomic
levels
Even though higher taxonomic levels are informative on
the main distribution trends of the TeOM degradation
potential along the Amazon River, lower taxonomic
levels can help linking functions with the actual species
or genomes carrying them. Yet, accuracy tends to de-
crease as genes are taxonomically annotated at lower
taxonomic ranks, given that many low-rank taxa are still
missing or poorly represented in reference databases.
Therefore, we used in most analyses high-rank taxo-
nomic annotations, but we also investigated main trends
in the distribution of low-rank taxa that may contribute
genes to TeOM degradation in the Amazon River. Spe-
cifically, we analysed genes associated to TeOM degrad-
ation that could be taxonomically assigned to genera or
genomes from unknown genera present in the Genome
Taxonomy Database (GTDB) [42]. Only genera or ge-
nomes contributing functions in more than half of the
samples in each of the river sections as well as in the
plume and ocean samples were considered.
Our results point to a limited number of widespread

genera or genomes contributing with their functional
machineries to the TeOM degradation in the Amazon
River system, especially in saline samples from the ocean
and plume (Table 1). Mainly two low-rank taxa,

HIMB11 (Rhodobacteraceae) and Pelagibacter, contrib-
uted functions to all TeOM-degradation steps in ocean
and plume samples, except for the hydrolysis of cellulose
(Table 1). In turn, low-rank taxa contributing genes to
TeOM degradation in the Amazon River sections were
more diverse than those present in ocean and plume
samples, suggesting the existence microbial consortia
(Table 1). Genera such as Ramlibacter, Planktophila,
Methylopumilus, Limnohabitans and Polynucleobacter
were enriched in TeOM degradation pathways along the
Amazon River (Table 1). Overall, there was a clear salin-
ity divide in terms of the main genomes or genera carry-
ing out TeOM degradation in the Amazon River and in
the plume and ocean areas.

Spatial distributions
We evaluated whether genes potentially associated with
TeOM degradation displayed spatial distribution patterns
along the river course (Fig. 6; Supplementary Table 4 in
Additional file 1). For this, we used the linear geographic
distance of sampling sites to the Amazon River source in
Peru. The linear distance to the river source was nega-
tively correlated with the number of genes possibly associ-
ated with lignin oxidation (RPearson’s = − 0.65, p-val. = 7.3
× 10−11), ring cleavage pathway (RPearson’s = − 0.63, p-val.
= 1.2 × 10−11), tripartite tricarboxylate transporting

Fig. 5 Main protein families potentially involved in the last steps of the lignin-derived compound metabolism. The O-demethylation and C1
metabolism of compounds is shown in terms of protein families and taxonomy (left), as well as the ring cleavage step that directs the substrates
to pyruvate, which enters into the TCA cycle to be converted into ATP and CO2 (right)
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(RPearson’s = − 0.57, p-val. = 5.4 × 10−10) and the AAHS
transporters (RPearson’s = − 0.35, p-val. = 4.5 × 10−6) (Fig.
6). This is coherent with a putative trend displayed by
gene-function distributions along the river, pointing to lig-
nin oxidation-related functions being replaced by cellulose
degradation counterparts in brackish waters. A potential
reduction of the microbial gene repertoire related to lignin
processing as the river approaches the ocean suggests the
ageing of TeOM during its flow through the Amazon
River.
AAHS transporters were negatively correlated to the

distance to the Amazon River source (RPearson’s = − 0.35,
p-val. = 4.5 × 10−6), while ABC transporters were not
correlated with this distance (p > 0.01) (Fig. 6). Further-
more, AAHS and ABC transporters showed positive
correlations to the funneling pathway of diaryls (RPearson’s
= 0.39, p-val. = 2.5 × 10−3) and monoaryls (RPearson’s =
0.33, p-val. = 9.6 × 10−3), respectively. This suggests
specificity in the transport of lignin-derived molecules
by those transporter families. Furthermore, AAHS

(RPearson’s = 0.38, p-val. = 2.2 × 10−5) and ABC (RPearson’s =
0.54, p-val. = 6.7 × 10−5) transporters were positively cor-
related to the ring cleavage pathway, suggesting that ABC
and AAHS transporters are relevant for the metabolism of
lignin-derived compounds.
The number of genes in the TTT system displayed a

negative correlation with the distance to the Amazon
River source (RPearson’s = − 0.57, p-val. = 5.4 × 10−10),
suggesting their predominance in freshwater sections of
the river (Fig. 6). TTT transporters showed a positive
correlation with lignin oxidation genes (RPearson’s = 0.67,
p-val. = 6.7 × 10−14), suggesting they could be transport-
ing lignin-derived products or a TTT coupling with the
machinery to oxidize lignin. The TTT system was posi-
tively correlated to AAHS (RPearson’s = 0.41, p-val. = 3.5
× 10−5) and ABC (RPearson’s = 0.46, p-val. = 2 × 10−4)
transporters (Fig. 6) pointing to a possible functional
complementarity, as the TTT would transport substrates
not transported by the other transporter families.

Table 1 Low-rank taxa contributing genes to TeOM degradation in the Amazon River system

Zone Genera or closest reference genomes from GTDBa TeOM degradation step

Upstream, downstream,
and estuary

Ramlibacter Lignin oxidation

Planktophila Hemicellulose hydrolysis

Methylopumilus, Planktophila, Polynucleobacter Cellulose hydrolysis

Acidovorax_D, Cupriavidus, Curvibacter_A, Fonsibacter, Hylemonella, Ideonella_A,
Limnohabitans, PALSA-911 (Acetobacteraceae), Polaromonas, Polynucleobacter,
Ramlibacter, Reyranella, SCGC-AAA027-K21 (Burkholderiaceae), UBA3064
(Burkholderiaceae), UBA6679 (Burkholderiaceae), Z2-YC6860 (Xanthobacteraceae)

TTT system

AAA044-D11 (Nanopelagicaceae), AcAMD-5 (Nanopelagicales), GCA-2737595
(Nanopelagicaceae), Limnohabitans, Nanopelagicus, Planktophila, Polynucleobacter,
RS62 (Burkholderiaceae), UBA6679 (Burkholderiaceae), UBA7398 (Nanopelagicaceae)

ABC transporters

Planktophila, Polynucleobacter FP-dimers

Limnohabitans FP-monomers

GCA-2737595 (Nanopelagicaceae), Methylopumilus, Planktophila, Fonsibacter O-demethylation/C1
metabolism

Acidovorax_D, Curvibacter_A, Limnohabitans, Pelomonas Ring cleavage

Ocean and plume HIMB11 (Rhodobacteraceae), Pelagibacter Lignin oxidation

HIMB11 (Rhodobacteraceae) Hemicellulose hydrolysis

D2472 (Gammaproteobacteria), UBA4465 (Cyclobacteriaceae) Cellulose hydrolysis

HIMB11 (Rhodobacteraceae), HIMB59 (Alphaproteobacteria), Pelagibacter TTT system

Pelagibacter, Pelagibacter_A, TMED189 (Acidimicrobiia) ABC transporters

HIMB11 (Rhodobacteraceae), Pelagibacter FP-dimers

HIMB11 (Rhodobacteraceae), Pelagibacter FP-monomers

HIMB11 (Rhodobacteraceae), Pelagibacter, SCGC-AAA076-P13
(Gammaproteobacteria)

O-demethylation

N/A Ring cleavage

Main prokaryotic genera, or genomes from the Genome Taxonomy Database (GTDB) without assigned genera, contributing genes to TeOM degradation in the Amazon
River sections as well as in plume and ocean samples are indicated. Only taxa contributing functions in more than half of the samples of each studied zone are reported
aGenera or GTDB reference-genome names are indicated. For reference genome names, the lowest taxonomic level indicated in GTDB is shown in brackets
FP funneling pathways, TTT tripartite tricarboxylic transporter, N/A not applicable
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The gene machinery associated with the processing of
lignin-derived aromatic compounds was positively corre-
lated to the machinery related to lignin oxidation along
the river course (Fig. 6), suggesting a co-processing of
lignin and its byproducts. In terms of genes, cellulose
degradation was not correlated with lignin oxidation (p >
0.01), but had a modest positive correlation to hemicellu-
lose degradation (RPearson’s = 0.31, p-val. = 5.4 × 10−3) (Fig.
6), suggesting a coupling between both pathways.
We found correlations between both genes associated with

the funneling pathway of dimers (RPearson’s = − 0.37, p-val. = 8
× 10−5) and the ring cleavage pathway (RPearson’s = − 0.63, p-
val. = 1.2 × 10−11), with the distance to the Amazon River
source (Fig. 6). This indicates that the degradation of lignin-
derived aromatic compounds may follow a similar pattern as
the lignin oxidation machinery, being predominantly restricted
to upstream sections of the river. Moreover, the number of
genes potentially related to hemi-/cellulose degradation was
positively correlated to those possibly related to funneling
pathways of lignin-derived monomers and dimers. This could
reflect a potential co-metabolism of lignin-derived compounds
and hemi-/cellulose degradation, instead of lignin oxidation.

The effect of environmental variables in the potential
TeOM degradation machinery
The potential processes related to TeOM degradation also
seem to be correlated to specific environmental variables
(Fig. 6; Supplementary Table 4 in Additional file 1). The
machinery related to the oxidation of lignin is potentially
more abundant in river sections with lower temperatures
(RPearson’s = − 0.58, p-val. = 2 × 10−4), lower dissolved inor-
ganic carbon (DIC) (RPearson’s = -0.59, p-val. = 1 × 10−9)
and oxygen (DO) (RPearson’s = − 0.54, p-val. = 2 × 10−4),
and at smaller depths (RPearson’s = − 0.48, p-val. = 1 ×
10−3). Similarly, the hemicellulose degradation machinery
was negatively correlated with temperature (RPearson’s = −
0.33, p-val. = 9 × 10−4). In contrast to those mentioned
above, the cellulose degradation arsenal was positively cor-
related to higher temperatures (RPearson’s = 0.31, p-val. = 8
× 10−4), DIC (RPearson’s = 0.53, p-val. = 1 × 10−7) and sam-
pling depth (RPearson’s = 0.42, p-val. = 5 × 10−5).
The transporters of lignin-derived molecules were

marginally correlated to the measured environmental
variables (Fig. 6). Specifically, ABC transporters did not
correlate to any variable; however, AAHS transporters were

Fig. 6 Correlations among genes associated with the processing of TeOM and their correlation to environmental variables. Correlations between
the number of genes associated with lignin oxidation, cellulose and hemicellulose deconstruction, transporting systems (AAHS, ABC and TTT),
lignin-derived aromatic compounds processing pathways (Ring cleavage pathways; Funneling pathways of dimers and monomers), and
environmental variables (dissolved inorganic carbon—DIC, dissolved oxygen—DO, temperature, conductivity, sample depth—Depth and linear
distance from the sampling site to the Amazon River source). Correlation coefficients are shown inside the boxes, and their color indicates the
correlation strength. White boxes are non-significant correlations (p > 0.01)
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negatively correlated to temperature (RPearson’s = − 0.32, p-
val. = 6 × 10−3), DIC (RPearson’s = − 0.40, p-val. = 1 × 10−4)
and conductivity (RPearson’s = − 0.28, p-val. = 3 × 10−3).
TTT transporters seemed to follow a similar trend as lignin
oxidation in terms of temperature (RPearson’s = − 0.51, p-val.
= 7 × 10−7), DIC (RPearson’s = − 0.53, p-val. = 8 × 10−8) and
DO (RPearson’s = − 0.48, p-val. = 2 × 10−5).
The initial steps of the metabolism of lignin-derived

molecules did not seem to be correlated to environmen-
tal heterogeneity (Fig. 6), except for the functions related
to the funneling pathways of dimers that were correlated
to temperature (RPearson’s = − 0.43, p-val. = 5 × 10−6).
The last steps of the processing of lignin-derived molecules,
the ring cleavage, were strongly correlated to environmental
heterogeneity. These final steps resembled patterns
observed in the lignin oxidation machinery in terms
of temperature (RPearson’s = − 0.58, p-val. = 4 × 10−8),
DIC (RPearson’s = − 0.53, p-val. = 1 × 10−7), DO (RPear-

son’s = − 0.46, p-val. = 4 × 10−5) and sampling depth
(RPearson’s = − 0.36, p-val. = 4 × 10−3).

Discussion
The AMnrGC significantly expands the comprehension
of the metabolic potential of the world’s largest river
microbiome and is publicly available (https://doi.org/10.
5281/zenodo.1484504). The predicted ~ 3.7 M genes are
a valuable resource for understanding the functioning of
this ecosystem as well as for bioprospecting. Almost half
of the genes in the catalogue had no close orthologs,
suggesting gene novelty. Yet, this extensive portion of
unknown genes (48%) is similar to other environmental
microbiomes that featured 40–60% of unknown genes
[6–8]. Interestingly, the analysis of k-mers indicated a
distinct composition, in terms of genomic information,
of the Amazon River microbiome when compared to
other rivers and to the Amazon rainforest soil, being
coherent with the novel diversity previously found in
Brazilian freshwater systems [43]. Altogether, this points
to gene novelty and a compositional distinctiveness of
the Amazon River microbiome.
Analyses of COG functions pointed to a number of core

functions along the Amazon River course, which was sup-
ported by the similar distribution of COG superclasses
along the different river sections (Fig. 2d). In particular,
COG functions within the superclass “Metabolism” were
the most abundant in the AMnrGC, as well as in the
upper Mississippi River [44]. Core functions included a
general carbohydrate metabolism and several transporter
systems, mainly ABC transporters. This suggests a sophis-
ticated machinery to process TeOM in the Amazon River,
with core metabolisms indicating a general organic matter
degradation system, ending in acetogenic pathways.
Lignin-derived aromatic compounds need to be trans-

ported from the extracellular milieu to the cytoplasm to

be degraded, and different transporting systems can be
involved in this process [36, 37, 45, 46]. In particular,
previous studies showed that the TTT system was
present in high quantities in the Amazon River, and this
was attributed to a potential degradation of allochthon-
ous organic matter [14]. Recent findings also suggest a
TTT system related to the transport of TeOM degrad-
ation byproducts [47, 48]. Little is known about these
transporters, but our findings indicate that TTT is an
abundant protein family in the Amazon River, suggest-
ing that tricarboxylates are a common carbon source for
prokaryotes in these waters. Our results also indicated
that the TTT transporters could be linked to the genes
potentially related to lignin oxidation, supporting the
role of TTT in TeOM degradation.
The taxa found to be potentially involved in TeOM

degradation mostly belong to Proteobacteria (Table 1),
especially Betaproteobacteria (such as the genera Polynu-
cleobacter, Methylopumilus and Limnohabitans) and
Alphaproteobacteria (e.g. HIMB11 and Candidatus Pela-
gibacter). Other important groups include Actinobacteria
(represented by the genus Candidatus Planktophila) and
Bacteroidetes, all regular freshwater taxa [49]. The partici-
pation of Bacteroidetes in hemi-/cellulose degradation has
been previously reported, being metabolically capable to
degrade recalcitrant organic compounds such as humic
substances [49, 50]. In the Amazon River, there was an in-
crease of Gammaproteobacteria and Alphaproteobacteria
genes, possibly involved in TeOM degradation, in the river
sections closer to the ocean. In turn, there was an increase
in the number of TeOM degradation genes from Actino-
bacteria and Betaproteobacteria in freshwater sections of
the Amazon River. This suggests that salinity shapes the
composition of microbial communities in the different
sections of the Amazon River and consequently affects
their ecology, agreeing with the salinity boundary hypoth-
esis introduced by Logares et al. [51]. The distribution of
bacterial taxa along the Amazon River may also reflect
taxon-specific preferences for TeOM quality, as previous
studies have reported a differential preference of bacteria
for fresh vs. aged TeOM [52]. For example, after long in-
cubation experiments, Actinobacteria, Bacteroidetes and
Betaproteobacteria showed a preference for fresh TeOM
while Alphaproteobacteria and Gammaproteobacteria dis-
played a preference for aged organic matter. Furthermore,
Sipler et al. [53] found that Arctic coastal Alphaproteobac-
teria, Bacteroidetes, Betaproteobacteria and Actinobacteria
were negatively affected by the addition of TeOM in bottle
experiments. This suggests that most TeOM degradation
occurs in rivers and that coastal microbiomes are less
capable to degrade these compounds, being coherent with
our results.
Correlations between measured environmental variables

and the potential TeOM degradation machinery indicated
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that lignin oxidation may happen in regions with low
concentration of oxygen and dissolved inorganic carbon,
and low temperature. This is coherent with previous
reports [38–41]. However, the machinery related to the
degradation of lignin-derived compounds seems to be
independent of environmental conditions, indicating a
potentially ubiquitous degradation of such compounds in
the Amazon River. The correlations between environmen-
tal variables and the potential degradation of cellulose and
hemicellulose still suggest that cellulose and lignin would
be degraded in different river sections. Therefore, both
processes seem to be decoupled in the Amazon River.
Our results agree with previous experimental evidence of

TeOM ageing in the Amazon River [27, 28], which
supported a priming effect in incubation experiments with
recalcitrant and labile organic matter [20]. However, the
mechanism behind this priming effect remained unex-
plained. Based on our findings, we hypothesized a model
for the potential priming effect acting in lignocellulose com-
plexes in the Amazon River (Fig. 7). In this model, there are
two different communities co-existing in a consortium: one
possibly responsible for hemi-/cellulose degradation and
another one likely involved in lignin degradation. The first
community would release extracellular enzymes (mainly
glycosyl hydrolases from families GH3 and GH10), produ-
cing different kinds of carbohydrates. These carbohydrates
may provide structural carbon and energy for the entire
consortium. The potential lignolytic community would also
use the cellulolytic byproducts to grow, which promotes an
oxidative metabolism. This oxidative metabolism could
trigger the production and secretion of reactive oxygen

species (ROS) (Fig. 7). ROS are then used by DyPs and lac-
cases secreted by these putative lignolytic communities to
oxidize lignin, exposing more hemi-/cellulose to cellulolytic
communities, re-starting the cycle (Fig. 7). Another import-
ant role of lignolytic communities could be the degradation
of lignin-derived aromatic compounds generated by the lig-
nin oxidation process. Those compounds, if not degraded,
can inhibit cellulolytic enzymes and microbial growth [54–
57], preventing TeOM degradation. This cycle may be con-
sidered as a priming effect, where both communities benefit
from each other.

Conclusions
The Amazon River is a major carbon link between ter-
restrial, atmospheric and marine ecosystems. Our work
represents a first effort to link the TeOM inputs into the
Amazon River with the microbial metabolisms poten-
tially responsible for their degradation. We identified
genes and metabolisms that are likely key in TeOM deg-
radation. Furthermore, our results indicate differential
distributions of TeOM-related genes that in some cases
seem to be driven by environmental heterogeneity. Our
work also generated the AMnrGC, an important re-
source for interrogating the functionality of the Amazon
River microbiome as well as for bioprospecting. Given
the extent and difficulty of access to many regions of the
Amazon River basin, our work is an important first step
that could pave the road for future ambitious sampling
campaigns that will investigate gene expression, meta-
proteomics and the capacity of the Amazon River

Fig. 7 Priming effect model of microbial TeOM degradation in the Amazon River. The cellulolytic communities degrade hemi-/cellulose through
secretion of glycosyl hydrolases (mainly GH3/GH10), which release sugars to the environment. These sugars can promote growth of the
cellulolytic and lignolytic communities, and during this process, the oxidative metabolism produces reactive oxygen species (ROS). ROS activate
the exoenzymes (mainly DYPs and laccases) secreted by the lignolytic community to oxidize lignin. After lignin oxidation, the hemi-/cellulose
becomes exposed again, helping the cellulolytic communities to degrade it. During the previous process, several aromatic compounds are
formed, which can potentially inhibit cellulolytic enzymes and microbial growth. However, these compounds are consumed by lignolytic
microorganisms, reducing their concentration in the environment allowing decomposition to proceed
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microbiota to degrade TeOM in field or laboratory
experiments.

Materials and methods
We analysed 106 metagenomes [12, 13, 15, 18] from 30
sampling points distributed along the Amazon river basin,
with an average coverage of 5.3 × 109 (± 7.4 × 109) base
pairs per metagenome (Supplementary Table 1 in Add-
itional file 1). The sampling points from the Solimões
River and lakes in the Amazon River course, located up-
stream from the city of Manaus, until the Amazon River’s
plume in the Atlantic Ocean covered ~ 2106 km and were
divided into 5 sections (Fig. 1a and Supplementary Table
1 in Additional file 1). These sections were (1) upstream
section (upstream Manaus city), (2) downstream section
(placed between Manaus and the start of the Amazon
River estuary. It includes the influx of particle-rich white
waters from the Solimões River as well as the influx of
humic waters from Negro River [58, 59]), (3) estuary
section (part of the river that meets the Atlantic Ocean),
(4) plume section (the area where the Ocean is influenced
by the Amazon River inputs) and (5) ocean (the area with
higher salinity surrounding the Plume).
Samples were taken as previously indicated [12, 13, 15,

18]. Depending on the original study, particle-associated
microbes were defined as those passing the filter of
300 μm mesh size and being retained in the filter of 2–
5 μm mesh size. Free-living microbes were defined as
those passing the filter of 2–5 μm mesh size, being
retained in the filter of 0.2 μm mesh size. DNA was
extracted from the filters as indicated in the original
studies [12, 13, 15, 18]. Metagenomes were obtained
from libraries prepared with either Nextera or TruSeq
kits. Different Illumina sequencing platforms were used:
Genome Analyzer IIx, HiSeq 2500 or MiSeq. Additional
information is provided in Supplementary Table 1 in
Additional file 1.

Metagenome analysis
Illumina adapters and poor-quality bases were removed
from metagenomes using Cutadapt [60]. Only reads lon-
ger than 80 bp, containing bases with Q ≥ 24, were kept.
The quality of the reads was checked with FASTQC
[61]. Reads from metagenomes belonging to the same
sampling points were assembled together using MEGA
HIT (v1.0) [62], with the meta-large presets. Only
contigs > 1 kbp were considered, as recommended by
previous work [63]. Assembly quality was assessed with
QUAST [64]. Metagenome assembly yielded 2,747,383
contigs ≥ 1000 base pairs, in a total assembly length of
~ 5.5 × 109 bp with an average N50 of 2064 ± 377 bp
(see Supplementary Table 2 in Additional file 1).

Analysis of k-mer diversity over different river zones
A k-mer diversity analysis was used to compare the
genetic information of the Amazon River microbiome
against that in other microbiomes from Amazon rainfor-
est soil and temperate rivers (Supplementary Table 3 in
Additional file 1). Specifically, the Amazon River meta-
genomes (106) were compared against 37 metagenomes
from the Mississippi River [65], 91 metagenomes from
three watersheds in Canada [66] and 7 metagenomes
from the Amazon forest soil [67]. The rationale to in-
clude soil metagenomes was to check whether genomic
information in the river could be derived from soil
microbiota. K-mer comparisons were run with SIMKA
(version 1.4) [68] normalizing by sample size. Low
complexity reads and k-mers (Shannon index < 1.5)
were discarded before SIMKA analyses. The resulting
Jaccard’s distance matrix was used to generate a non-
metric multidimensional scaling (NMDS) analysis. Permu-
tation tests were used to check the homogeneity of β
dispersion in the groups, and permutational multivariate
analysis of variance (PERMANOVA/ANOSIM) was used
to test the groups’ difference. Both analyses were performed
using the R package Vegan [69].

Amazon River basin Microbial non-redundant Gene
Catalogue (AMnrGC)
Genes were predicted using Prodigal (version 2.6.3) [70].
Only open reading frames (ORFs) predicted as complete,
accepting alternative initiation codons, and longer than
150 bp, were considered in downstream analyses. Gene
sequences were clustered into a non-redundant gene
catalogue using CD-HIT-EST (version 4.6) [71, 72] at
95% of nucleotide identity and 90% of overlap of the
shorter gene [5]. Representative gene sequences were used
in downstream analyses. GC content per gene was in-
ferred via Infoseq, EMBOSS package (version 6.6.0.0) [73].

Gene abundance estimation
The quality-checked sequencing reads were backmapped
against our non-redundant gene catalogue using BWA
(version 0.7.12-r1039) [74] and SamTools (version 1.3.1)
[75]. Gene abundances were estimated using the soft-
ware eXpress (version 1.5.1) [76], with no bias correc-
tion, as counts per million (CPM). We used a CPM ≥
1.00 for a gene to be present in a sample, and an average
abundance higher than zero (μCPM > 0.0) for a gene to
be present in a river section or water type (i.e. fresh-
water, brackish water or the mix of them in the plume).

Functional annotation
Representative genes (and their predicted amino acid
sequences) were annotated by searching them against
KEGG (Release 2015-10-12) [77], COG (Release 2014)
[78], CAMERA Prokaryotic Proteins Database (Release
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2014) [79] and UniProtKB (Release 2016-08) [80] via the
Blastp algorithm implemented in Diamond (v.0.9.22)
[81], with a query coverage ≥ 50%, identity ≥ 45%, e-
value ≤ 1e−5 and score ≥ 50. Hits were parsed by score,
e-value and identity until the best result was found. KO-
pathway mapping was performed using KEGG mapper
[82]. HMMSearch (version 3.1b1) [83] was used to
search proteins against dbCAN (version 5) [84], PFAM
(version 30) [85] and eggNOG (version 4.5) [86] data-
bases, using an e-value ≤ 1e−5, and posterior probability
of aligned residues ≥ 0.9, and no domain overlapping.
Accumulation curves were obtained using random pro-
gressive nested comparisons with 100 pseudo-replicates
for genes and PFAM predictions.

Core metabolisms
We adopted the definition of core metabolic functions
as those involved in cell or ecosystem homeostasis,
representing the minimal metabolic machinery needed
to survive in a given environment. Similar to other
works [6, 7], we used the annotations with KEGG and
PFAM databases to determine the bacterial functional
core. By using gene abundances as CPM as a criterion
for counting functions in each sample or river section,
we analysed metabolic pathways. Those functions
present in at least 80% of the samples were considered
as core. KEGG Mapper [87] and MinPath [88] were used
to organize the information underlying core functions.

Gene taxonomy
Given that a high number of low-rank taxa are missing or
poorly represented in reference databases, taxonomic
annotation accuracy tends to decrease as genes are
taxonomically annotated at lower taxonomic ranks. For this
reason, we used two different approaches to taxonomically
annotate genes. Approach 1 is more conservative, aiming to
annotate genes at higher taxonomic ranks (e.g. Class) and
therefore being potentially more accurate than the less con-
servative Approach 2, which aims at annotating genes at
lower taxonomic ranks (e.g. Genus). The specific methods
associated to each approach are indicated below:

� Approach 1: High-rank gene taxonomy was assigned
considering the best hits (score, e-value and identity;
see above) using KEGG (Release 2015-10-12) [77],
UniProtKB (Release 2016-08) [80] and CAMERA
Prokaryotic Proteins Database (Release 2014) [79].
Taxonomic last common ancestors (LCA) were
determined from TaxIDs (NCBI) associated with
UniRef100 and KO entries. Information from the
CAMERA database was also used to retrieve
taxonomy (NCBI TaxID). Taxonomy was assigned
using the best hit, of a given protein, obtained across
databases. Proteins were annotated as “unassigned” if

their taxonomic signatures were mixed, containing
representatives from several domains of life, or if
they had the function assigned without taxonomic
information. Reference sequences with hits to poorly
annotated sequences from other metagenomes were
referred to as “Metagenomic”.

� Approach 2: Low-rank taxonomic affiliation was
determined using MMseqs2 version 11-e1a1c [89]
using default settings, based on the Genome
Taxonomy Database (GTDB; publicly available in
https://gtdb.ecogenomic.org/) [42].

Potential TeOM degradation machinery
To investigate the potential TeOM degradation, we grouped
samples by river section and assessed their gene content.
Genes were then searched against reference sequences and
protein families known to be involved in TeOM degradation
(see Supplementary Table 5 in Additional file 1). In particu-
lar, bacterial lignin degradation starts with extracellular
polymer oxidation followed by monomers and dimers mov-
ing across membranes into the cytoplasm for their ultimate
degradation. Protein families related to lignin oxidation
(PF05870, PF07250, PF11895, PF04261 and PF02578) were
searched among PFAM-annotated genes. The genes related
to the metabolism of lignin-derived aromatic compounds
were annotated with Diamond (Blastp search mode;
v.0.9.22) [81], with query coverage ≥ 50%, protein identity ≥
40% and e-value ≤ 1e−5 as recommended by Kamimura
et al. [45], using their dataset as reference.
Cellulose and hemicellulose degradation involve glycosyl

hydrolases (GH). The most common cellulolytic protein
families (GH1, GH3, GH5, GH6, GH8, GH9, GH12,
GH45, GH48, GH51 and GH74) [90] and cellulose-
binding motifs (CBM1, CBM2, CBM3, CBM6, CBM8,
CBM30 and CBM44) [90, 91] were searched in PFAM/
dbCAN annotations. In addition, the most common hemi-
cellulolytic families (GH2, GH10, GH11, GH16, GH26,
GH30, GH31, GH39, GH42, GH43 and GH53) [91] were
searched in the PFAM/dbCAN database. Lytic polysac-
charide monooxygenases (LPMO) [91] were also identified
using PFAM to investigate the simultaneous deconstruc-
tion of cellulose and hemicellulose.
During the degradation of refractory and labile mater-

ial by exoenzymes, microbes produce a complex mix of
particulate and dissolved organic carbon. The use of this
mix is mediated by a vast variety of transporter systems
[46]. The typical transporters associated with lignin deg-
radation (AAHS family, ABC transporters, MHS family,
ITS superfamily and TRAP transporter) were searched
with Diamond (v.0.9.22) [81], using query coverage ≥
50%, protein identity ≥ 40% and e-value ≤ 1e−5 and a
reference dataset previously compiled [45].
Similarly to the fate of hemi-/cellulose degradation

byproducts, lignin degradation ends up in the production
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of 4-carboxy-4hydroxy-2-oxoadipate, which is converted
into pyruvate or oxaloacetate, both substrates of the
tricarboxylic acid cycle (TCA) [45]. Recently, several sub-
strate binding proteins (TctC) belonging to the tripartite
tricarboxylate transporter (TTT) system were associated
with the transport of TeOM degradation byproducts, like
adipate [47] and terephthalate [48]. To investigate the
metabolism of these compounds, and the possible link be-
tween the TTT system and lignin/cellulose degradation,
the protein families TctA (PF01970), TctB (PF07331) and
TctC (PF03401) were searched in PFAM.
The genes found using the abovementioned strategy

were submitted to PSORT v.3.0 [92], to determine the
protein subcellular localization (cytoplasm, secreted to
the outside, inner membrane, periplasm or outer mem-
brane). We carried out predictions in the three possible
taxa (Gram negative, Gram positive and Archaea), and
the best score was used to determine the subcellular
localization. Genes assigned to an “unknown” location,
as well as those with a wrong assignment, were elimi-
nated (for example, genes known to work in extracellular
space that were assigned to the cytoplasmic membrane).
The total amount of TeOM degradation genes found per

function (lignin oxidation, transport, hemi-/cellulose deg-
radation and lignin-derived aromatic compounds metabol-
ism) in each section of the river were normalized by the
maximum gene counts per metagenome. Subsequently,
correlograms were produced adding the environmental var-
iables and using Pearson’s correlation coefficients calculated
with complete pairwise observations using the R packages
Corrplot [93] and RColorBrewer [94]. The linear geo-
graphic distance of each metagenome to the Amazon River
source (i.e. Mantaro River, Peru, 10° 43′ 55″ S / 76° 38′
52″ W) was also used in this analysis to infer changes in
gene counts along the Amazon River course. The sampling
site distance to the Amazon River source in Peru was calcu-
lated with the R package Fields [95].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00930-w.

Additional file 1: Supplementary Tables. (1) Description of the 106
metagenomes used to build the Amazon River basin Microbial non-
redundant Gene Catalogue (AMnrGC). The Amazon River basin section
shows the group that a sample belongs to according to its geographic
location. Other features were obtained from the original publications and
SRA codes. “N.A.” stands for not available. (2) Co-assembly groups used to
build the Amazon River basin Microbial non-redundant Gene Catalogue
(AMnrGC). (3) Metagenomes used for K-mer diversity assessment. (4) Cor-
relation and significance between gene content and environmental vari-
ables. Pearson’s correlation coefficients are shown under the diagonal
and correspondent p-values are shown in red above the diagonal. The
correlations were calculated using complete pairwise observations. (5)
Reference proteins and protein families involved in terrestrial organic
matter degradation used to annotate proteins related to lignin oxidation,
cellulose and hemicellulose degradation in the AMnrGC.
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