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Abstract

Background: Interest in the interplay between host genetics and the gut microbiome in complex human diseases
is increasing, with prior evidence mainly being derived from animal models. In addition, the shared and distinct
microbiome features among complex human diseases remain largely unclear.

Results: This analysis was based on a Chinese population with 1475 participants. We estimated the SNP-based heritability,
which suggested that Desulfovibrionaceae and Odoribacter had significant heritability estimates (0456 and 0476, respectively).
We performed a microbiome genome-wide association study to identify host genetic variants associated with the gut
microbiome. We then conducted bidirectional Mendelian randomization analyses to examine the potential causal
associations between the gut microbiome and complex human diseases. We found that Saccharibacteria could potentially
decrease the concentration of serum creatinine and increase the estimated glomerular filtration rate. On the other hand,
atrial fibrillation, chronic kidney disease and prostate cancer, as predicted by host genetics, had potential causal effects on
the abundance of some specific gut microbiota. For example, atrial fibrillation increased the abundance of Burkholderiales
and Alcaligenaceae and decreased the abundance of Lachnobacterium, Bacteroides coprophilus, Barnesiellaceae, an undefined
genus in the family Veillonellaceae and Mitsuokella. Further disease-microbiome feature analysis suggested that systemic
lupus erythematosus and chronic myeloid leukaemia shared common gut microbiome features.

Conclusions: These results suggest that different complex human diseases share common and distinct gut microbiome
features, which may help reshape our understanding of disease aetiology in humans.
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Background

Ever increasing evidence has suggested that the gut
microbiome is involved in many physiological processes,
such as energy harvesting, the immune response and
neurological function [1-3]. With successes of investiga-
tion into the clinical application of faecal transplants, the
modulation of the gut microbiome has emerged as a po-
tential treatment option for some complex diseases, in-
cluding inflammatory bowel disease and colorectal
cancer [4, 5]. However, it is still unclear whether the gut
microbiome has the potential to be clinically applied for
the prevention or treatment of many other complex dis-
eases. Therefore, it is important to clarify the bidirec-
tional causal association between the gut microbiome
and complex human diseases or traits.

Mendelian randomization (MR) is a method that uses
genetic variants as instrumental variables to investigate
the causality between an exposure and an outcome in
observational studies [6]. Prior studies provide evidence
that the composition or structure of the gut microbiome
can be influenced by host genetics [7-10]. On the other
hand, host genetic variants associated with the gut
microbiome are rarely explored in Asian populations;
thus, we still lack instrumental variables to perform MR
for the gut microbiome in Asians. This calls for a novel
microbiome genome-wide association study (GWAS) in
Asian populations.

Along with the causality issue between the gut micro-
biome and complex human diseases, it is unclear
whether complex human diseases have similar or unique
gut microbiome features. The identification of common
and distinct gut microbiome features across different
diseases may shed light on novel relationships among
the complex diseases and update our understanding of
the disease aetiology in humans. However, the compos-
ition and structure of the gut microbiome are influenced
by a variety of factors, including the environment, diet
and regional variation [11-13], which poses a key chal-
lenge for the description of representative microbiome
features for a specific disease. Although there were sev-
eral studies comparing disease-related gut microbiome
features [14-16], few of them examined and compared
the microbiome features across different complex hu-
man diseases.

In the present study, we performed a microbiome
GWAS in a Chinese cohort, the Guangzhou Nutrition
and Health Study (GNHS) [17], including 1475 partici-
pants. Subsequently, we applied a bidirectional MR
method to explore the genetically predicted relationship
between the gut microbiome and complex human dis-
eases. To explore novel relationships among complex
human diseases based on the gut microbiome, we inves-
tigated the shared and distinct gut microbiome features
across diverse complex human diseases.
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Results

Overview of the study

Our study was based on the GNHS, with 4048 partici-
pants (40-75 years old) living in the urban area of
Guangzhou city recruited during 2008 and 2013 [17]. In
the GNHS, stool samples were collected among 1937
participants during follow-up visits, among whom 1475
unrelated participants not taking antibiotics were in-
cluded in our discovery microbiome GWAS. We then
included an additional 199 participants with both genetic
data and gut microbiome data as a replication cohort,
which belonged to the control arm of a case-control
study of hip fracture in Guangdong Province, China [18]
(see also Fig. 1).

SNP-based heritability of the gut microbiome

The heritability of alpha diversity ranged from 0.035 to
0.103 (SE: from 0.174 to 0.193, Supplementary Table
S3). Significant heritability estimates were observed for
several taxa (see also Fig. 2, Supplementary Table S3),
with crude p values < 0.05. To further correct the mul-
tiple testing, we calculated the effective number of inde-
pendent taxa in each taxonomic level (phylum level: 2.3,
class level: 2.9, order level: 2.9, family level: 5.5, genus
level: 5.6, species level: 3.2), as some taxa were highly
correlated with each other. The results suggested that
Desulfovibrionaceae and Odoribacter were heritable (p <
0.05/n, where n is the effective number of independent
taxa). Notably, among the suggestively heritable taxa in
our cohort [Paraprevotellaceae), Veillonellaceae, Desul-
fovibrionaceae, Pasteurellaceae, Odoribacter, Paraprevo-
tella, Veillonella and Bifidobacterium had nominally
significant heritability estimates in prior literature [7,
31-33].

Association of host genetics with gut microbiome
features

We generated categorical variable enterotypes (Prevo-
tella vs. Bacteroides) of the participants based on the
genus-level relative abundance of the gut microbiome
[34]. Thereafter, we performed a GWAS for enterotypes
using a logistic regression model to explore potential as-
sociations between host genetics and enterotypes. How-
ever, we did not find any genome-wide significant loci (p
<5x107%).

To examine the association of host genetic variants
with alpha diversity, we performed a GWAS for four in-
dices (Shannon diversity index, Chaol diversity indices,
observed OTU index and phylogenetic diversity), but
again, no genome-wide significant signal (p < 5 x 107
was found. To further investigate whether there is a host
genetic basis underlying alpha diversity, we constructed
a polygenic score for each alpha diversity indicator in
the replication cohort using the genetic variants that
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A. Association of host genetics with gut microbiome in
a Chinese population.
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Fig. 1 Study overview. The figure shows the highlights of our study. First, we performed a microbiome genome-wide association study in a
Chinese population (step A). We validated significant genetic variants reported in previous studies and replicated our results in an independent
cohort. Second, we investigated the causal relationship between the gut microbiome and complex human diseases using host genetics as
instrumental variables for bidirectional Mendelian randomization (MR) analysis (step B). For the analysis of the effects of the gut microbiome on
complex traits, we used publicly available GWAS summary statistics of complex traits (n = 58) and diseases (type 2 diabetes mellitus (T2DM), atrial
fibrillation (AF), colorectal cancer (CRC) and rheumatoid arthritis) reported by BioBank Japan [19-24]. For the reverse MR analyses, the diseases of
interest included T2DM (cases: 7,109; non-cases: 86,022), AF (cases: 8,180; non-cases: 28,612), coronary artery disease (cases: 1,515; non-cases:
5019), chronic kidney disease (n = 71,149), Alzheimer's disease (cases: 477; non-cases: 442), CRC (cases: 8027; non-cases: 22,577) and prostatic
cancer (cases: 495; non-cases: 640) reported in the previous large-scale GWASs in East Asians [19, 25-30]. Finally, we identified common and
distinct gut microbiome features across different diseases (step C)
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Fig. 2 The SNP-based heritability of the gut microbiome. The plot shows the taxa with nominally significant heritability estimates (p < 0.05).
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showed suggestive significance (p < 5 x 107°) in the
discovery GWAS. The polygenic score was not signifi-
cantly associated with its corresponding alpha diver-
sity index in our replication cohort. Furthermore,
none of the associations with alpha diversity indices
reported in the literature could be replicated (Supple-
mentary Table S8) [7].

The beta diversity GWAS was performed with Micro-
biomeGWAS based on Bray—Curtis dissimilarity [35].
We found that one locus at the SMARCA2 gene
(rs6475456) was associated with beta diversity at a
genome-wide significant level (p = 3.96 x 10™°). How-
ever, we could not replicate the results in the replication
cohort, which might be due to the limited sample size of
the replication cohort. In addition, prior literature had
reported 73 genetic variants that were associated with
beta diversity [8, 13, 36, 37], among which we found that
3 single-nucleotide polymorphisms (SNPs, UHRF2 gene-
rs563779, LHFPL3 gene-rs12705241, CTD-2135]3.4-
rs11986935) had nominally significant (p < 0.05) associa-
tions with beta diversity in our cohort (Supplementary
Table S7), although none of the associations survived
Bonferroni correction. These studies used various
methods for the sequencing and calculation of beta di-
versity, which raised challenges to verify and extrapolate
results across populations.

We subsequently performed a discovery GWAS for in-
dividual gut microbes in our own GNHS discovery

dataset. For the taxa (n = 114) present in not fewer than
90% of participants, we carried out an analysis based on
a log-normal model. For other taxa (n = 88) present in
fewer than 90%, we transformed the absence/presence of
the taxon into binary variables and used a logistic model
to prevent zero inflation (Supplementary Table S1). For
all the gut microbiome taxa, the significance threshold
was defined as 5 x 107% in the discovery stage. We found
that 6 taxa were associated with host genetic variants in
the discovery cohort (p < 5 x 107%/n, where n is the ef-
fective number of independent taxa in each taxonomic
level, Supplementary Table S5); however, these associa-
tions were not significant (p > 0.05) in the replication
cohort. We then took the genetic loci reported to be as-
sociated with individual taxa in prior studies [7, 8, 13,
37] for replication in our GNHS dataset. Although none
of the associations of these genetic variants with taxa
survived the Bonferroni correction (p < 1 x 107%), we
found that STPG2-rs4699323 had a nominally significant
association (p < 0.05) with Clostridiales (Beta: —0.131
[95% CI -0.233, -0.029], p = 0.012; Supplementary
Table S6). We then used a threshold of p < 5 x 107 at
the discovery GWAS stage to incorporate additional
genetic variants that might explain a larger proportion
of heritability for taxa, and based on this, we constructed
a polygenic score for each taxon in the replication. We
found that the polygenic scores were significantly associ-
ated with 5 taxa, including Saccharibacteria (also known



Xu et al. Microbiome (2020) 8:145

as TM?7 phylum), Clostridiaceae, Comamonadaceae,
Klebsiella and Desulfovibrio d168, in the replication set
(p < 0.05, Methods, see also Supplementary Figure S1,
Supplementary Table S9).

Genetic correlation of gut microbiome and traits

While the associations of the microbiome with complex
diseases and traits have been widely reported [38], the
genetic correlation between the gut microbiome and
traits of interest is less clear. Therefore, we applied bi-
variate GREML analysis to address this question. The
traits included BMI, fasting blood sugar (EBS), glycosyl-
ated haemoglobin (HbAlc), systolic blood pressure
(SBP), diastolic blood pressure (DBP), high-density lipo-
protein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), total cholesterol (TC) and triglycer-
ide (TG), none of which could pass Bonferroni correc-
tion. HDL-C was the only trait that had nominal genetic
correlation (p < 0.05) with gut microbes (specifically,
Desulfovibrionaceae and [Prevotella], Supplementary
Table S4).

Bidirectional assessment of the genetically predicted
association between the gut microbiome and complex
diseases/traits

Using genetic-variant-composed polygenic scores as gen-
etic instruments, we performed MR analysis to assess
the putative causal effect of the microbiome (Sacchari-
bacteria, Clostridiaceae, Comamonadaceae, Klebsiella
and Desulfovibrio d168) on complex human diseases or
traits. The inverse variance weighted (IVW) method was
used for the MR analysis, while the other three methods
(weighted median, MR-Egger and MR-PRESSO) were
applied to confirm the robustness of the results. Hori-
zontal pleiotropy was assessed using the MR-PRESSO
global test and MR-Egger regression. For the analysis of
the gut microbiome on complex traits, we downloaded
publicly available GWAS summary statistics of complex
traits (nm = 58) and diseases (type 2 diabetes mellitus
(T2DM), atrial fibrillation (AF), colorectal cancer (CRC)
and rheumatoid arthritis (RA)) reported by BioBank
Japan [19-24]. The results suggested that Saccharibac-
teria (per 1-SD higher in the log-transformed abun-
dance) could potentially decrease the concentration of
serum creatinine (- 0.011 [95% CI - 0.019, - 0.003], p =
0.007) and increase the estimated glomerular filtration
rate (eGFR) (0.012 [95% CI 0.004, 0.020], p = 0.003, Sup-
plementary Table S10), which might help improve renal
function. We did not find evidence of pleiotropic effects:
genetic variants associated with Saccharibacteria were
not associated with any of the above traits (58 complex
traits and 4 disease outcomes, p < 0.05/62). These taxa
were not causally associated with other complex diseases
or traits in our MR analyses, which might be due to the
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limited genetic instruments discovered in our present
study.

We subsequently performed a reverse MR analysis to
assess the potential causal effect of complex human dis-
eases on gut microbiome features. For the reverse MR
analyses, the diseases of interest included T2DM, AF,
coronary artery disease (CAD), chronic kidney disease
(CKD), Alzheimer’s disease (AD), CRC and prostatic
cancer (PCa), and their instrumental variables for the
MR analysis were based on previous large-scale GWASs
in East Asians [19, 25-30]. The results suggested that
AF and CKD were causally associated with the gut
microbiome (see also Fig. 3a, b, Supplementary Table
S11). Specifically, genetically predicted higher risk of AF
(per log odds) was associated with a lower abundance of
Lachnobacterium (Beta: —0.078 [95% CI -0.148, -
0.006], p = 0.034), Bacteroides coprophilus (Beta: — 0.113
[95% CI -0.184, —0.041], p = 0.002), Barnesiellaceae
(odds ratio: 0.818 [95% CI 0.686, 0.976], p = 0.026), an
undefined genus in the family Veillonellaceae (odds ra-
tio: 0.801 [95% CI 0.669, 0.960], p = 0.017) and Mitsuo-
kella (odds ratio: 0.657 [95% CI 0.496, 0.870], p = 0.003),
and higher abundance of Burkholderiales (Beta: 0.079
[95% CI 0.009, 0.150], p = 0.027) and Alcaligenaceae
(Beta: 0.082 [95% CI 0.012, 0.152], p = 0.022). Addition-
ally, genetically predicted higher risk of CKD could in-
crease Anaerostipes (Beta: 0.291 [95% CI 0.057, 0.524], p
= 0.015) abundance, and a higher risk of PCa could de-
crease [Prevotella] (odds ratio: —0.758 [95% CI - 1.354,
~0.162], p = 0.013).

Microbiome features of complex human diseases
To further investigate the potential complex diseases that
may be correlated with the taxa affected by AF, we applied
Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) to predict the
disease pathway abundance [39]. We used Spearman’s
rank-order correlation to test whether the relative abun-
dances of predicted diseases based on PICRUSt were asso-
ciated with the aforementioned AF-associated taxa (see
also Supplementary Figure S2, Supplementary Table S12).
The heatmap indicated that cancers and neurodegenera-
tive diseases, including Parkinson’s disease (PD), AD,
amyotrophic lateral sclerosis (ALS) and AF, were corre-
lated with similar gut microbiomes. Although the associ-
ation among these diseases is highly supported by
previous studies [40—42], no study has compared common
gut microbiome features across these different diseases.
To compare gut microbiome features across human
diseases, we used the predicted disease abundance based
on PICRUSt and performed k-medoid clustering. Ac-
cording to the optimum average silhouette width [43],
we chose the optimal number of clusters for further ana-
lysis. The plot showed that neurological diseases,
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Fig. 3 Effect of host genetically predicted higher atrial fibrillation risk on the gut microbiome. a Causal association of atrial fibrillation with the
abundance of Burkholderiales, Alcaligenaceae, Lachnobacterium and Bacteroides coprophilus. The magnitude of the effect of atrial fibrillation on taxa
is dependent on changes in the abundance of bacteria (1-SD of the log-transformed abundance) per genetically determined higher log odds of
atrial fibrillation. b Causal association of atrial fibrillation with the presence of Barnesiellaceae, an undefined genus in the family Veillonellaceae and
Mitsuokella. The magnitude of the effect of atrial fibrillation on taxa is presented as an odds ratio increase in the log odds of atrial fibrillation

OR (95% Cl) per log odds of atrial fibrillation

including ALS and AD, belonged to the same cluster,
while PD and CRC had much similarity in the gut
microbiome. The results also suggested that systemic
lupus erythematosus (SLE) and chronic myeloid leukae-
mia (CML) shared similar gut microbiome features (see
also Fig. 4a, b). Moreover, we could replicate these clus-
ters in our replication cohort, which suggested that the
clustering results were robust (see also Fig. 4c).

We further asked whether the gut microbiome con-
tributed to the novel clustering. To this end, we repeated
the analysis among participants who took antibiotics less
than two weeks before stool sample collection, consider-
ing that antibiotic treatments were believed to cause
microbiome imbalance. We used the Jaccard similarity
coefficient to estimate the cluster difference among the
GNHS cohort, the replication cohort and the antibiotic
group. The similarity between the GNHS cohort and the
replication cohort was higher than that between the
GNHS cohort and the antibiotic group (Jaccard similar-
ity coefficient: 0.61 vs. 0.11). The results indicated a dif-
ferent clustering, which suggested that the gut
microbiome indeed contributed to the correlations
among diseases (see also Fig. 4d). To further demon-
strate common microbiome features across different dis-
eases, we examined the correlation of the predicted

diseases with genus-level taxa. The results showed that
complex human diseases shared similar gut microbiome
features, as well as distinct features on their own (see
also Fig. 5, Supplementary Table S13).

To validate whether the disease-related gut micro-
biome features annotated by KEGG would be associated
with the risk of the disease in a real-world community-
based cohort, we used T2DM as an example, examining
the association of predicted T2DM-related microbiome
features with T2DM risk in our GNHS cohort. We con-
structed a microbiome risk score (MRS) based on 16 se-
lected taxa with predicted correlation coefficients with
T2DM greater than 0.2. A logistic regression model was
used to examine the association between MRS and
T2DM risk in GNHS (# = 1886, with 217 T2DM cases).
The results showed that MRS was positively associated
with the risk of T2DM (odds ratio: 1.176 [95% CI 1.114,
1.244], p = 8.75 x 107°).

Discussion

Our study is among the first to investigate host genetics-
gut microbiome associations in East Asian populations
and reveals that several microbiome species (e.g., Sac-
charibacteria and Klebsiella) are influenced by host gen-
etics. We found that Saccharibacteria might causally
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improve renal function by affecting renal function bio-
markers (i.e., creatinine and eGFR). On the other hand,
complex diseases such as atrial fibrillation, chronic kid-
ney disease and prostate cancer have potential causal ef-
fects on the gut microbiome. More interestingly, our
results indicated that different complex diseases may be
mechanistically correlated by sharing common gut
microbiome features but also maintaining their own dis-
tinct microbiome features.

Previous studies and our study showed that the gut
microbiome had an inclination to be influenced by host
genetics [8, 10, 37, 44, 45]. The results suggested that
Desulfovibrionaceae and Odoribacter had nominally sig-
nificant heritability estimates, which were consistent
with prior results [7]. We also identified several suggest-
ively heritable taxa that were nominally significant in
previous studies [31-33]. In addition, we successfully

constructed polygenic scores for Clostridiaceae and
Comamonadaceae, both of which have been identified to
be heritable or suggested to be heritable [7, 45].

We could not replicate any of the reported genetic
variants that were significantly associated with gut
microbiome features in prior reports, which might be
due to multiple reasons. One of the major reasons may
be that the massive multiple testing in insufficiently
large samples in prior microbiome GWASs may poten-
tially lead to false-positive findings. In addition, other
factors, including ethnic differences, heterogeneity be-
tween studies, gene-environment interactions and dis-
similarity in sequencing methods, might also make it
difficult to extrapolate results from microbiome GWASs
across populations in the microbiome field. Neverthe-
less, we successfully replicated several polygenic scores
of the gut microbiome. The current study represents the
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Fig. 5 Correlation of complex human diseases with the gut microbiome.
The heatmap shows Spearman’s correlation of predicted diseases and
the gut microbiome at the genus level. The grey components show no
significant correlation with Bonferroni correction (p > 0.05/(56*22),

p > 00004)

largest dataset, to the best of our knowledge, in Asian
populations and may serve as a unique resource for
large-scale trans-ethnic meta-analyses of microbiome
GWASs in the future.

MR analysis showed that Saccharibacteria might de-
crease the concentration of serum creatinine and in-
crease eGFR. Little is known about Saccharibacteria as
one of the uncultivated phyla, and previous studies have
shown that it might be essential for the immune re-
sponse, oral inflammation and inflammatory bowel dis-
ease [46-48]. Our results also provided a genetic
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instrument of Saccharibacteria for further causal ana-
lysis with other complex diseases. The reverse MR
analysis provided evidence that AF, CKD and PCa
could causally influence the gut microbiome. The rare
and low-frequency variants may have an important
impact on common diseases [49]; thus, it will be of
interest to clarify the effects of low-frequency variants
on the gut microbiome in cohorts with large sample
sizes in the future.

Our results indicate that the gut microbiome helps re-
veal novel and interesting relationships among complex
human diseases, and different diseases may have com-
mon and distinct gut microbiome features. A prior study
including participants from different countries identified
three microbiome clusters [34]. Notably, this study fo-
cused on classifying the individuals into distinct entero-
types regardless of the individuals’ health status, while in
the present study, we described representative micro-
biome features for diseases of interest. We provided an
approach to interpret the data from mechanistic studies
based on the microbiome. The microbiome features re-
vealed a close association of AF with neurodegenerative
diseases as well as cancers, which was supported by prior
studies showing that AF had a correlation with AD and
PD [40, 41], and AF patients had relatively higher risks
of several cancers, including lung cancer and CRC [42,
50]. We also observed that the microbiome features of
SLE and CML were highly similar. Interestingly, a tyro-
sine kinase inhibitor of platelet-derived growth factor re-
ceptor, imatinib, was widely used to treat CML and
significantly ameliorated survival in murine models of
SLE [51]. In addition, a close association between CRC
and PD has also been reported in several observational
cohorts [52, 53]. Collectively, these findings strongly
supported our hypothesis that complex human diseases
sharing similar microbiome features might be mechanis-
tically correlated. Furthermore, from the perspectives of
risk genes of AF and neurodegenerative diseases, previ-
ous GWASs for AF identified two loci at PITX2 gene-
rs6843082 and C9orf3 gene-rs7026071, which were also
associated with a risk of ALS (p = 0.0138 and p = 0.049,
respectively) [54-56].

We acknowledge several limitations of our study. First,
the participants were of East Asian ancestry; thus, factors
such as ethnic differences and gene-environment inter-
actions might make it difficult to generalize the prior re-
sults to our study and extrapolate our results to different
ethnic populations. Second, although our analysis in-
cluded participants with the identical by descent (IBD)
<0.185, the vertical transmission of the microbiome
from parent to offspring might still partially affect the
SNP-based heritability estimates and polygenic scores
[32, 57]. Third, genetic factors could explain only a small
proportion of the variance in gut microbiome features;
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thus, the power to detect the causal relationship was
limited. Therefore, large-scale studies are warranted to
reveal potential relationships between the gut micro-
biome and complex traits.

Conclusions

In summary, we reveal some causal relationships be-
tween the gut microbiome and complex human diseases
or traits. The disease and gut microbiome feature ana-
lysis revealed novel relationships among complex human
diseases, which may help reshape our understanding of
disease aetiology and provide some clues for extending
the clinical indications of existing drugs for different
diseases.

Method

Study participants and sample collection

Our study was based on the Guangzhou Nutrition and
Health Study (GNHS), with 4048 participants (40-75
years old) living in the urban area of Guangzhou city re-
cruited during 2008 and 2013 [17]. We followed up with
participants every 3 years. In the GNHS, stool samples
were collected from 1937 participants during follow-up
visits. Among those with stool samples, 1717 partici-
pants had genetic data, and IBD for 1475 participants
was less than 0.185.

We included 199 participants with both genetic data
and gut microbiome data as a replication cohort, which
belonged to the control arm of a case-control study of
hip fracture with the participants (52—83 years old) re-
cruited between June 2009 and August 2015 in Guang-
dong Province, China [18].

Blood samples of all participants were collected after
overnight fasting, and the buffy coat was separated from
whole blood and stored at — 80°C. Stool samples were col-
lected during the on-site visit of the participants at Sun
Yat-sen University. All samples were manually stirred,
separated into tubes and stored at — 80 °C within 4 h.

Genotyping data

For both the discovery and replication cohorts, DNA
was extracted from leukocytes using the TIANamp®
Blood DNA Kit (DP348, TianGen Biotech Co, Ltd.,
China) according to the manufacturer’s instructions.
DNA concentrations were determined using the Qubit
quantification system (Thermo Scientific, Wilmington,
DE, USA). Extracted DNA was stored at — 80 °C. Geno-
typing was carried out with Illumina ASA-750K arrays.
Quality control and relatedness filters were performed
by PLINK1.9 [58]. Individuals with a high or low propor-
tion of heterozygous genotypes (outliers defined as 3
standard deviations) were excluded [59]. Individuals who
had different ancestries (the first two principal compo-
nents + 5 standard deviations from the mean) or related
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individuals (IBD > 0.185) were excluded [59]. Variants
were mapped to the 1000 Genomes Phase 3 v5 by SHAP
EIT [60, 61], and then we conducted genome-wide geno-
type imputation with the 1000 Genomes Phase 3 v5 ref-
erence panel by Minimac3 [62, 63]. Genetic variants
with imputation accuracy RSQR > 0.3 and MAF > 0.05
were included in our analysis. We used the Pan-Asian
reference panel, consisting of 502 participants, and
SNP2HLA v1.0.3 to impute the HLA region [64—66].

Sequencing and processing of 16S rRNA gene data
Microbial DNA was extracted from faecal samples using
the QIAamp® DNA Stool Mini Kit per the manufacturer’s
instructions. DNA concentrations were determined using
the Qubit quantification system. The V3-V4 region of the
16S rRNA gene was amplified from genomic DNA using
primers 341F (CCTACGGGNGGCWGCAG) and 805R
(GACTACHVGGGTATCTAATCC). At the step of
amplicon generation, 2 uL sterile water was used as nega-
tive controls in the PCR reaction system. At the subse-
quent step of sequencing, no sequencing negative controls
were included, since no contamination of PCR products
was observed. The pooled amplicons were sequenced
using MiSeq Reagent Kits v2 on the Illumina MiSeq Sys-
tem with 2 x 250 bp pair-end sequencing.

Fastq files were demultiplexed by MiSeq Controller
Software. Ultra-fast sequence analysis (USEARCH)
was performed to trim the sequence for amplification
primers, diversity spacers, sequencing adapters and
merged paired-end reads [67]. The low-quality reads
(Phred quality scores < 30) were removed. Operational
taxonomic units (OTUs) were clustered based on 97%
similarity using UPARSE [68]. We removed the OTUs
present only in one sample. OTUs were annotated
with Greengenes 13_8 (https://greengenes.secondgen-
ome.com/) [69]. After randomly selecting 10000 reads
for each sample, Quantitative Insights into Microbial
Ecology (QIIME) software version 1.9.0 was used to
calculate alpha diversity (Shannon diversity index,
Chaol diversity indices and the observed OTU index
and phylogenetic diversity) based on the rarefied
OTU counts [70].

Statistical analysis

Proportion of variance explained by all SNPs

We used the GREML method in GCTA to estimate the
proportion of variance explained by all SNPs [71]. The
taxa were divided into two groups based on whether the
taxa were present in ninety percent of participants. Our
model was adjusted for age and sex. The power of
GREML analysis was calculated with the GCTA power
calculator [72].
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Genome-wide association analysis of gut microbiome
features

For each of the GNHS participants and the replication
cohort, we clustered participants based on genus-level
relative abundance, estimating the JSD distance and
PAM clustering algorithm, and then we defined two
enterotypes according to the Calinski-Harabasz index
[34, 73]. We calculated the genetic principal components
of ancestry from genome-wide genetic variants to esti-
mate the population structure. PLINK 1.9 was used to
perform a logistic regression model for enterotypes and
taxa present in fewer than ninety percent, adjusted for
age, sex, sequencing batch and the first five genetic prin-
cipal components of ancestry.

For beta diversity, the analysis for the genome-wide
host genetic variants with beta diversity was performed
using MicrobiomeGWAS [35], adjusted for covariates
including the first five genetic principal components of
ancestry, age and sex.

Alpha diversity was calculated after randomly sam-
pling 10,000 reads per sample. For the taxa present in
no fewer than 90% of participants and alpha diversity,
we used Z-score normalization to transform the distri-
bution and carried out analysis based on a log-normal
model. A mixed linear model-based association (MLMA)
test in GCTA was used to assess the association, fitting
the first five genetic principal components of ancestry,
age, sex and sequencing batch as fixed effects and the ef-
fects of all the SNPs as random effects [74—76]. For
other taxa present in fewer than 90% of participants, we
transformed the absence/presence of the taxon into bin-
ary variables and used PLINK1.9 to perform a logistic
model, adjusted for the first five genetic principal com-
ponents of ancestry, age, sex and sequencing batch. For
all the gut microbiome features, the significance thresh-
old was defined as 5 x 1078/ (n is the effective number
of independent taxa in each taxonomic level) in the dis-
covery stage. QUANTO software was used for power
calculations (http://biostats.usc.edu/Quanto.html). We
estimated genomic inflation factors with LDSC v1.0.1 at
the local server [77].

Genetic correlation of gut microbiome and traits

We used GCTA to perform a bivariate GREML analysis
to estimate the genetic correlation between the gut
microbiome and traits in GNHS participants [74, 78].
The gut microbiome was divided into two groups ac-
cording to the previous description. We used continuous
variables for taxa present in no fewer than 90% of partic-
ipants. For taxa present in fewer than 90% of partici-
pants, we used binary variables according to the
absence/presence of taxa. This analysis included traits
such as BMI, FBS, HbAlc, SBP, DBP, HDL-C, LDL-C,
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TC and TG. The power of bivariate GREML analysis
was calculated with the GCTA power calculator [72].

Constructing polygenic scores for taxa and alpha diversity
We selected lead SNPs using PLINK v1.9 with the
‘—clump’ command to clump SNPs with a p value <5 x
10 and * < 0.1 within 0.1 cM. We used beta coeffi-
cients as the weight to construct polygenic scores for
taxa and alpha diversity. For alpha diversity and taxa
present in no fewer than 90% of participants, we con-
structed weighted polygenic scores and performed the
analysis on a general linear model with a negative bino-
mial distribution to test for association between the
polygenic scores and taxa, adjusted for the first five gen-
etic principal components of ancestry, age, sex and se-
quencing batch. We used weighted polygenic scores and
logistic regression to the absence/presence taxa, adjusted
for the same covariates as in the above analysis. Taxa
with significance (p < 0.05) in the replication cohort
were included for further analysis.

The effective number of independent taxa

As some taxa were correlated with each other, we used
an eigendecomposition analysis to calculate the effective
number of independent taxa for each taxonomic level
[79, 80]. Matrix M is an m x n matrix, where m is the
number of participants and # is the number of total taxa
in the corresponding taxonomic level. Matrix A is the
variance-covariance matrix of matrix M. P is the matrix
of eigenvectors. diag{), A5, -+, 1,,} is the diagonal matrix
composed of the ordered eigenvalues, which can be cal-
culated as

diag{A, Ay, -+, A, } = P 1AP

The effective number of independent taxa can be cal-
culated as

(Z:’:Ml‘)z
S

Bidirectional MR analysis

In the analysis of the potential causal effect of gut micro-
biome features on diseases, we used independent genetic
variants (selected as part of the polygenic score analysis)
as the instrumental variables. For each trait, we excluded
instrumental variables that showed a significant associ-
ation with the trait (p < 0.05/n, where # is number of in-
dependent genetic variants). In the analysis of the
potential causal effect of diseases on gut microbiome
features, we selected genetic variants that were repli-
cated in East Asian populations as instrumental vari-
ables. As all instrumental variables were from East Asian
populations, we chose independent genetic variants (> <
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0.1) based on the GNHS cohort. We identified the best
proxy (r* > 0.9) based on the GNHS cohort or discarded
the variant if no proxy was available. We used the in-
verse variance weighted (IVW) method to estimate the
effect size. To confirm the robustness of the results, we
performed three other MR methods, including weighted
median, MR-Egger and MR-PRESSO [81-83]. To assess
the presence of horizontal pleiotropy, we performed the
MR-PRESSO global test and MR-Egger regression. The
magnitude of the effect of the gut microbiome on traits
was dependent on the units of traits (Supplementary
Table S1). The results of the effects of complex human
diseases on the absence/presence of specific gut mi-
crobes are presented as the risk of the presence (vs. ab-
sence) of the microbe per the log odds difference of the
disease. The results of the effects of diseases on other
gut microbes were presented as changes in the abun-
dance of taxa (1-SD of log transformed) per the log odds
difference of the respective disease.

The statistical significance of the effects of the gut
microbiome on traits and diseases was defined as p <
0.0008 (0.05/62). In addition, the statistical significance
of the effects of diseases on gut microbiome features was
defined as p < 0.05/n (where 7 is the effective number of
independent taxa on the corresponding taxonomic level).
The results that could not pass Bonferroni adjustment
but p < 0.05 in all four MR methods were considered
potential causal relationships. We performed MR ana-
lyses with R v3.5.3.

Pathway analysis

We used OTUs by QIIME and annotated the variation
of functional genes with Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States
(PICRUSY) [39]. The pathways and diseases were anno-
tated using KEGG [84-86]. We used Spearman’s rank-
order correlation to investigate the association of the
predicted pathway or disease abundance with AF-
associated taxa and genus-level taxa. In the heatmap,
diseases were clustered with the ‘hcluster’ function in R.
To test whether the non-normalized pathway or disease
abundance were associated with each other, we used
SPIEC-EASI to test the interaction relationship and then
used Cytoscape v3.7.2 to visualize the interaction net-
work [87, 88].

Construction of the microbiome risk score

The microbiome risk score was constructed to validate
the accuracy of the association between the predicted
disease-related gut microbiome features and the corre-
sponding disease. As we have a large sample size for
T2DM cases (n = 217 cases) in our cohort, we con-
structed a microbiome risk score of T2DM as an ex-
ample. We used Spearman’s rank-order correlation to
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select taxa with an absolute value of correlation coeffi-
cient higher than 0.2. The score for each taxon abun-
dance in the < 5% quantile in our study was defined as 0.
For those above 5%, the score for each taxon showing an
inverse association with T2DM was defined as - 1; the
score for each taxon showing a positive association with
T2DM was defined as 1. We then summed values from
all taxa. We selected a logistic regression model to esti-
mate the association of the MRS with T2DM risk and a
linear model to estimate the association of the MRS with
the continuous variables, adjusted for age, sex, dietary
energy intake, alcohol intake and BMI at the time of
sample collection.

Clustering diseases

The clustering analysis was carried out with ‘cluster’ and
‘factoextra’ for plot in R. We performed the PAM
algorithm based on the predicted abundance of diseases
or the average relative abundance after Z-score
normalization [89]. The PAM algorithm searches k
medoids among the observations and then finds the
nearest medoids to minimize the dissimilarity among
clusters [90]. Given a set of objects x = (x1, x5, ..., x,,), the
dissimilarity between objects x; and x; is denoted by d(i,
j). The assignment of object i to the representative ob-
ject j is denoted by z;. z; is a binary variable and is 1 if
object i belongs to the cluster of the representative ob-
ject j. The function to minimize the model is given by

SO d(i )z

i—1 j=1

To identify the optimal cluster number, we used the
‘pamk’ function in R to determine the optimum average
silhouette width. For each object i, we defined N; as the
average dissimilarity between object i and all other ob-
jects within its cluster. For the remaining clusters, b(i,
w) represents the average dissimilarity between i and all
objects in cluster w. The minimum dissimilarity M; can
be calculated by

M; = minVYw(b(i,w)).
The silhouette width for object i can be calculated by

M; -N;
Wy =——————
! max(M, ,N L’)

Then, we calculated the average silhouette width for
each object. The cluster number is determined by the
number at which the average silhouette width is max-
imum. We estimated the Jaccard similarity coefficient to
quantify the cluster difference between groups. The Jac-
card similarity coefficient is positively associated with
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the similarity of clusters. Given objects i and j, as well as
groups A and B, there are four situations, as follows:

1. Sl1:in both groups A and B, objects i and j belong
to the same cluster

2. S2:in group A, objects i and j belong to the same
cluster; in group B, they belong to different clusters

3. S3:in group A, objects i and j belong to different
clusters; in group A, they belong to the same
cluster

4. S4: in both groups A and B, objects i and j belong
to different clusters

The letters a, b, ¢ and d represent the numbers of S1,
S2, S3 and S4, respectively. The Jaccard similarity coeffi-
cient can be calculated by the following formula:

a

Py
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