Jianget al. Microbiome (2020) 8:142
https://doi.org/10.1186/s40168-020-00918-6

RESEARCH Open Acce

Trophic interactions as determinants of the ")
arbuscular mycorrhizal fungal community ™
with cascading plant-promoting

consequences

Yuji Jiang®, Lu Luah, Kaijie HY§ Mangiang Lij Ziyun Cheh Stefan Geisén Xiaoyun Cheh Huixin 3,
Qinsong X& Michael Bonkowskand Bo Suh

Abstract

Background: The soil mycobiome is composed of a complex and diverse fungal community, which includes
functionally diverse species ranging from plant pathogens to mutualists. Among the latter are arbuscular
mycorrhizal fungi (AMF) that provide phosphorous (P) to plants. While plant hosts and abiotic parameters gre
known to structure AMF communities, it remains largely unknown how higher trophic level organisms, including
protists and nematodes, affect AMF abundance and community composition.

Results:Here, we explored the connections between AMF, fungivorous protists and nematodes that could gartly
reflect trophic interactions, and linked those to rhizosphere P dynamics and plant performance in a long-tefm
manure application setting. Our results revealed that manure addition increased AMF biomass and the density of
fungivorous nematodes, and tailored the community structures of AMF, fungivorous protists, and nematodgs. We
detected a higher abundance of AMF digested by the dominant fungivorous nemaiqiietenchoidesd
Aphelenchus high manure treatments compared to no manure and low manure treatments. Structural equation
modeling combined with network analysis suggested that predation by fungivorous protists and nematodes|
stimulated AMF biomass and modified the AMF community composition. The mycorrhizal-fungivore interactions
catalyzed AMF colonization and expression levels of the P transporteZ \génel ;@ maize roots, which resultegl
in enhanced plant productivity.

Conclusions:Our study highlights the importance of predation as a key element in shaping the compositionjand
enhancing the biomass of AMF, leading to increased plant performance. As such, we clarify novel biologica
mechanism of the complex interactions between AMF, fungivorous protists, and nematodes in driving P abgorption
and plant performance.
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Introduction predation on bacteria and thereby enhancing AMF-
The soil mycobiome contains functionally diverse fungi, regulated nutrient update 13]. Hitherto, the biological
many of which are notorious plant pathogens that re- mechanism of predation-mediated nutrient acquisition
duce plant performance J]. On the other end of the of plants by fungivores in open-field environments is an
functional spectrum are mutualistic fungal taxa such asopen question in soil food-web research.
arbuscular mycorrhizal fungi (AMF). AMF are mono- The intent of our study was to quantitatively assess
phyletic in the phylum Glomeromycotina and form mu- the importance of predation on the AMF community
tualistic associations with the vast majority of plant and plant P uptake in comparison to the contribution of
species including most economically important crops soil properties under field conditions. We performed a
[2]. AMF enhance the plant nutrient availability, particu- 17-year field experiment under four manure treatments
lar of phosphorus (P), due to the presence of a largen a low-fertile red soil (Acrisol). We asked the following
interface for P acquisition via an extensive mycorrhizalthree questions: (1) how do biomass, diversity and com-
mycelium [3]. Roots infected with AMF show an upreg- position of the AMF community respond to manure
ulation of high-affinity AMF-specific P transporter genes treatments? (2) How and to what extent are fungivorous
[4]. It is increasingly accepted that organic manure ap-protists and nematodes linked to their potential prey
plication shapes AMF community structure, and subse- AMF community? and (3) how do AMF-fungivore inter-
quently promotes AMF colonization, P absorption, and actions mediate P uptake and plant productivity? Our
plant performance H, 6]. However, this knowledge work suggests that predation by fungivorous protists and
mostly stems from simplified controlled greenhouse ex- nematodes positively regulates the biomass and compos-
periments with little field-based evidence. The questionition of the AMF community, and subsequently pro-
remains whether these molecular mechanisms of themotes P uptake and plant productivity.
AMF community in mediating P absorption and plant
productivity exist under organic farming systems. Results

Profound knowledge gains have been made on theSoil properties and phosphatase activities
fundamental processes that determine the structure ofOne-way analysis of variance showed that manure treat-
the mycobiome including AMF ¥]. Abiotic parameters ments changed soil chemical propertieP € 0.01). High
and plant species as bottom-up processes are crucial taonanure (M2 and M3) treatments were characterized by
structure AMF biomass and composition following or- significantly ( < 0.001) higher soil pH, soil organic mat-
ganic fertilization. In contrast, top-down processes inter (SOM), total nitrogen (TN), and total phosphorus
structuring AMF have largely been ignored. Indeed, top- (TP) than the low manure (M1) and no manure (MO)
down predation by potentially fungivorous protists and treatments (Additional filel: Figure S1). Similarly, avail-
nematodes are suggested to contribute to the turnoverable phosphorus (AP), nitrate nitrogen (N©N), and
and changes in the structure and functioning of soil soil water content (SWC) were significantiyP(< 0.01) el-
AMF community [8]. Importantly, most predators are evated by high manure application. No significant differ-
not omnivorous but selective, which can influence fungalences of total potassium (TKP = 0.317), available
reproduction [9, 10]. Within trophic interactions, the potassium (AK,P = 0.768), and ammonium nitrogen
direction and strength to which the predation of fungi- (NH4 N, P = 0.932) were detected between fertilization
vores affect the AMF community remains a matter of treatments. Alkaline phosphomonoesterase activity was
debate. So far, scarce attention has been paid to the imincreased with increasing levels of manure additioR €
pact of trophic feeding on the AMF community, restrict- 0.01). The M1 treatment possessed highest acid phos-
ing our ability to better predict AMF dynamics in the phomonoesterase activity with M2 and M3 treatments
rhizosphere. having lowest levels (Additional fild: Figure S2).

As we are still limited in our knowledge of drivers of
soil AMF, particularly the role of AMF-predators, we Plant growth, root morphology, and P transporter
have an incomplete understanding of resulting func- Root morphology was significantlyR( < 0.001) affected
tional consequences of these complex interactions. Theby manure treatments, such that root dry biomass, root
distinct feeding preferences and selectiveness of fungitlength, projected area, surface area, average diameter,
vores on fungal diets can affect nutrient-dynamics androot volume, tips, forks, and crossings exhibited a gen-
plant productivity [11]. It has been shown that predation eral trend of M3 M2 > M1 > MO (Additional file 1:
by fungivorous nematodes on the AMF community Table S1). The same trend was found for plant product-
changes P mineralization, ranging from negative to posi-ivity, including shoot biomass, root biomass, and grain
tive depending on host-identity and AMF growth rate yield of maize P < 0.001, Figl). M2 and M3 treatments
[12]. A laboratory experiment revealed that protists in- significantly increased root colonization frequencies by
crease plant performance and nutrient uptake by AMF compared to the MO treatment P < 0.001, Figl).
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Fig. 1 Plant growth, root morphology, and phosphorus transporter in the rhizosphere under manure treadriéents.productivityp Root
colonization frequencies by arbuscular mycorrhizal fungi (&NIRg expression of P transporter ger&sRhtl;&nd ZmPhtl;6in the PHT1
family. Plant productivity is the sum of root, shoot, and grain biomasseAM fungal hyphae and vesicles at x 100 magnification in maize
roots.f, g AM fungal arbuscules at x 400 magnification in maize roots.rBar3) (with different lowercase letters indicate significant differences
as revealed by TukKeyHSD testd?< 0.05). MO, no manure; M1, low manure; M2, high manure; M3, high manure plus lime

The expression of the P transporter ger#mPhtl;6was (0.11%) (Fig.2). The comparison of AMF community
upregulated by 3.0 and 2.7 times under the M2 and M3 composition by principal coordinates analysis showed a
compared with the MO treatment® < 0.001, Figl). How- significant P < 0.01) separation among four manure
ever, the starvation-inducible P transporteZ MPht1;3) of treatments (Additional filel: Figure S3). There were sig-
the PHT1 family showed an opposite expression patternnificantly larger abundances oAmbispora Glomus and
as it significantly decreased under high manure treatmentsParaglomus under manure treatments in comparison

(P<0.01). with the MO treatments, whileAcaulospora Gigaspora
and Rhizophagusdisplayed the opposite trendsP( <

Communities of AMF and saprotrophic fungi in the 0.05). The ratio of AMF to plant biomass was signifi-

rhizosphere cantly lower under the high manure treatments than

We determined the biomasses of AMF and saprotrophicunder the MO and M1 treatments (Additional filel: Fig-
fungi in the rhizosphere by NLFA and PLFA analysis.ure S4). PERMANOVA indicated that manure treat-
On average, the biomass of saprotrophic fungi was 3.Inents explained approximately two-thirds (67.8%) of the
times higher than AMF biomassR < 0.0001). The bio- variations in AMF community composition P < 0.001).
masses of AMF and saprotrophic fungi under the M2 Biomass and composition of the AMF community were
and M3 treatments were 3.34.6 times and 2.63.1 times  positively correlated with AMF colonization frequencies,
than those under the MO treatment (Fig2, P < 0.05). alkaline phosphatase activity, and expressionZohPht1;
lllumina sequencing to investigate AMF diversity indi- 6 gene, respectively (Additional filé: Figure S5).

cated that the Shannon index and Chaol richness was

significantly higher under the M2 and M3 treatments Communities of fungivorous protists and nematodes in
than under the MO treatment, but lower than under the the rhizosphere

M1 treatment (Fig. 2). Across all samples, the AMF As for fungivorous protists in the rhizosphere, PCoA, and
community consisted of the dominant gener&lomus PERMANOVA indicated that the community compositions
(47.6%),Rhizophaguq17.8%),Paraglomus(8.0%),Giga- were determined by manure treatments (Additional fil&
spora(7.5%),Ambispora(7.4%), andAcaulospora(5.0%), Figure S3, 53.8%% < 0.001). Overall, the obligate fungal-
followed by the rare gener&rchaeosporg1.5%),Scutel- feeding family Grossglocknédae (31.1%) was dominant
lospora (1.2%), Geosiphon (1.1%), and Diversispora among the identified fungivorous protists (Fig.3).
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Fig. 2 The communities of arbuscular mycorrhizal fungi (AMF) anotrsgghic fungi in the rhizosphere under manure treatmenfsMF biomas$
Saprotrophic fungal biomassDiversityd AMF community composition. Bans=(3) with different lowercase letters indicate significant differences as
revealed by Tuk&yHSD test$< 0.05). NLFA, neutral lipid fatty acid; PLFA, phospholipid fatty acid. MO, no manure; M1, low manure; M2, high manure;
M3, high manure plus lime
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Dominant facultative fungivorous genera wef@ercomonas (35.8 £ 1.3 and 268.2 + 19.5 deg per nematode) treat-
(43.7%) andAcanthamoeba(10.3%), cumulatively repre- ments compared to the MO (16.3 = 2.6 and 15.9 + 2.2 cop-
senting 54% of the potentialljungivorous protists identi- ies per nematode) and M1 (30.0 + 2.9 and 62.5 + 6.9 copies
fied (Fig.3). The relative proportion of Grossglockneriidae per nematode) treatments (Figl). The fungivorous protists

to all protists and fungivoredo all protists under the high (Cryptodifflugia Grossglockneriidae, and.eptomyxa and
manure treatments significantly exceeded those under thenematodes Aphelenchoidesind Aphelenchuswere signifi-
MO and M1 treatments (Fig3, P < 0.05). Similar to fungiv- cantly associated with the biomass and composition of the
orous protists, PERMANOVA combined with PCoA indi- AMF community, as well as the biomass of saprotrophic
cated that the assemblages of fungivorous nematodefungi (Additional file 1: Figure S5).

varied by manure treatments (Additional fild: Figure S3,

69.9%,P < 0.001). From the fungivorous nematodes, theSoil properties, AMF, and fungivorous protists and

genera Aphelenchus(61.9%) andAphelenchoideg19.1%) nematodes jointly mediated P availability and root P

were the two most abundant groups in the nematode as-transporter gene

semblages (Fig3). The density of fun@yorous nematodes AMF, mycophagous protists, and fungivorous nematodes
under M2 and M3 treatments was 3.31.6-folds higher were clustered into four distinct modules in co-occurrence
than that under the MO treatment, mainly caused by the in- networks, which we examined tdecipher module-trait rela-
crease of the dominant generdphelenchoideq3.0 6.2- tionships (Fig.5). Modules 1, II, and IV consisted of 63, 42,
folds) and Aphelenchugq3.8 5.5-folds). Hovever, the rela- and 31 nodes, involving AMF, fungivorous protists, and
tive proportion of fungivorous nematodes to all nematodes nematodes, respectively, whereas module 1l comprised 21
and the ratio of fungivorous nematodes to plant biomassmembers exclusively from AMF. Modules Il and IV dis-
were substantially decreased under manure treatmentplayed more positive correlations (411 and 69 edges) than
compared to the MO treatment (Fig3, Additional file 1:  negative correlations (0 and 5 edges). However, the ratios of
Figure S4). Notably, AMF abundance insidghelenchoides negative correlations (73 eddet positive correlations (92
and Aphelenchuswas significantly higher under the M2 edges) were increased in module | compared to modules I
(48.9 + 5.6 and 349.1 £ 45.9 copies per nematode) and Mand IV. Modules I, 1I, and IV were positively correlated with
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Fig. 5 Co-occurrence network of rhizosphere soils showing strong and significant correlations. The network is colored by AMF/protist/nematode taxa
(@ and modulesk) with all the fungivorous protists and nematodes being listed, respectively. ModMlespresent four clusters with closely
interconnected nodes. Size of each node is proportional to the number of connections (degree), and the thickness of each connection between two
nodes (edge) is proportional to the value of correlation coefficients. Blue edges indicate positive, red edges negative con@eatéaton
coefficients between module eigengenes, soil properties, AMF colonization, exprezsieidf,Gene, and plant productivity. Bold values denote
significant relationships. SOM, soil organic matter; SWC, soil water content; TN, total nitrogen; TP, total phosphorus; TK, total, ptassium; INH
ammonia nitrogen; NON, nitrate nitrogen; AP, available phosphorus; AK, available potas§le.061; #®< 0.01; P< 0.05

\

soil chemical properties, including SOM, TN, TP, AP, SWC, fungivorous protists and nematodesP(< 0.05). Structural

and NOs N (r = 0.61 0.98,P < 0.05). Moreover, these three equation modeling (SEM) further predicted that AMF

modules were positively assotaa with alkaline phosphatase colonization and expression aZmPht1;6gene were directly

activity (¢ = 0.830.94, P < 0.001), AMF colonization influenced by the AMF community and indirectly by the as-

frequenciesi(= 0.86 0.98,P < 0.001), and the AM-specific P semblage of fungivorous protists and nematodes (F&y.

transporter geneZmPht1;6 expression ( = 0.87 0.93, Compared to the AMF community mycorrhiza-fungivores

P < 0.001), rather than acid phosphatase activity ¥ networks had a significant, albeit weaker contribution to

0.05) (Fig.5). AMF colonization, and consegently showed a significantly
Random forest modeling indicated that soil pHP(< 0.05), indirect relationship with the expression ocZmPht1;6 gene

SOM (P< 0.05), TN P<0.01), and TPR < 0.01) were the and plant productivity.

primary predictors among soil abiotic variables for AMF

colonization andZmPht1;6gene expression (Additional file Discussion

1. Figure S6). As for biotic variables, variations in AMF Manure treatments shaped biomass, composition, and

colonization and expression aZmPht1;6gene were signifi- functioning of the AMF community

cantly affected by the biomass and composition of the AMFOverall, we showed that manure application increased

community (P < 0.01), and by the assemblages ofthe biomasses of AMF and saprotrophic fungi.
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biomass, and the biomarkers PLFA 189c and 18:26,9c communities were calculated after rarefying all samples

as saprotrophic fungal biomasg}, 46]. to the same sequencing depth. Functional units of pro-
tists were categorized according to their feeding habits
lllumina sequencing and bioinformatic analysis [26, 53].

The soil DNA was extracted from 0.5 g samples using
the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany)AMF colonization and root morphology
following the manufacturess instructions. The extracted Plants from plots were randomly selected for the deter-
DNA was dissolved in tris-EDTA buffer and quantified mination of AM root colonization (in percent) b4].
by the ND-1000 spectrophotometer (NanoDrop Tech- Briefly, roots of each plant were carefully washed with
nologies, Wilmington, DE, USA). For the AMF and pro- distilled water for three times in order to remove soll
tistan communities, triplicate PCR amplifications of the particles, and then cut into 1-cm-long fragments. Subse-
18S rRNA gene fragments were performed using the pri-quently, root fragments were randomly selected and
mer sets of AMV4.5NF/AMDGR f#7] and TAR- cleared in 10% KOH solution in a boiling water bath for
euk454FWD1/TAReukREV348], respectively. The 8-bp 45 min. After rinsing with distilled water, root fragments
barcode oligonucleotides were added to distinguish thewere immersed in 1% HCI for 15 min, bleached in 10%
amplicons from different soil samples. Reaction mixtureshydrogen peroxide for 10 min. Then, roots were cleaned
(20 pL) contained 2uL of 10 x reaction buffer, 0.2%L  and stained for two hours in 0.02% (w/v) aniline blue so-
of each primer (10uM), 2 pL of 2.5 mM dNTPs, 10 ng lution at room temperature. Fifty root fragments per
template DNA, and 0.4uL FastPfu Polymerase. The PCRreplicate were examined at x 10@00 magnification
protocol was as follows: an initial pre-denaturation at 95 under a compound microscope for the presence of AM
°C for 5 min, followed by 28 cycles of denaturation at 94 structures. AMF colonization was calculated as the per-
°C for 30 s, annealing at 60 °C for 30 s, and extension atentage of the total root segments containing visible
72 °C for 45 s; and a final extension at 72 °C for 10 minAMF structures.
with a ramp of 3 °C s*. All amplicons were cleaned and  Shoot biomass, root biomass, and grain yield of maize
pooled in equimolar concentrations in a single tube, were measured immediately after harvest. We processed
after which they were subjected to library preparation, digital images of root system morphology using a desk-
cluster generation, and 300 bp paired-end sequencingop scanner and determined root length, surface area,
on an lllumina MiSeq platform (lllumina, San Diego, average diameter, root volume, and number of tips,
CA, USA). forks, and crossings using WinRhizo software (Regent
Raw sequences were quality screened and trimmednstruments, Québec, Canada). All measurements were
using the Quantitative Insights into Microbial Ecology expressed per g of root mass and scaled to a pef m
(QIIME package version 1.9.1) pipelingt§]. Sequences basis based on total standing root biomass (g¥nat the
that fully matched the barcodes were selected, and seplot level.
quence processing was performed including quality
trimming, demultiplexing, and taxonomic assignments. Identification and isolation of nematode assemblages
QIIME quality trimming was performed in accordance Nematodes were extracted from 100 g fresh soil using
with the following criteria: (1) no ambiguous bases, andthe shallow dish method §5]. Four functional groups of
(2) the minimum sequence length of 283 bp (AMF) and nematode assemblages, including bacterivores, fungi-
516 bp (protist) after trimming. The assembled readsvores, plant parasites, and omnivores and predators,
were processed using de novo chimera detection inwere identified based on known feeding habits, stoma,
UCHIME [50]. Thereafter, the sequence reads from eachand esophageal morphology9]. Nematode density was
sample were clustered to provide similarity-based oper-counted and expressed as nematode numbers per 100 g
ational taxonomic units (OTUs) that had 97% identity of dry weight soil.
cutoffs [b1]. Finally, the sequences were subjected to a Two kinds of fungivorous nematodesAphelenchoides
similarity search using the MaarjAM AMF database and and Aphelenchus were separately picked out into 10
the Protist Ribosomal Reference database (PR2, v4.3), reaM sterile phosphate buffer saline (pH 7.0) under a dis-
spectively 16, 52]. Prior to downstream analyses, AMF secting microscope according to morphological charac-
and protistan OTUs were extracted from the individual teristics. These harvested nematodes were then
OTU table to represent the structure of soil AMF and introduced into 2% sodium hypochlorite solution for 30
protistan communities. For the 3% cutoff, 537 AMF and s to avoid microbial interference from the body surface,
2798 protistan OTUs were observed out of 313,584 andthen washed five times with sterile distilled water. AMF
480,107 high-quality sequences, respectively. Alpha dispores in the final wash water were isolated and enumer-
versity and Bray-Curtis distances for a principal coordin- ated by wet-sieving and sucrose gradient centrifugation
ate analysis of AMF, fungivorous protist, and nematode[56, 57], and AMF abundance indicated by copy
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numbers of the 18S rRNA gene were quantified. NeitherTukeys HSD test in SPSS 23.0 software (SPSS, Chicago,
AMF spore nor AMF abundance was detected, suggestiL, USA). All statistical analyses were conducted based
ing that nematodes had been surface sterilized. In orderon 12 samples (4 fertilization treatments x 3 replicates).
to verify the predation of fungivorous nematodes on Principal coordinate analysis (PCoA) was used to evalu-
AMF, 30 individuals of Aphelenchoide®r Aphelenchus ate the Bray-Curtis distances of the AMF, protistan, and
were chosen and transferred into a 1.5 mL centrifugenematode community compositions under manure treat-

tube under sterile conditions for DNA extraction. ments B9. We conducted the<capscalefunction of the

R package vegan (version 3.1.2) to calculate the Bray-
Quantitative polymerase chain reaction (qPCR) and Curtis dissimilarities for PCoA and <¢permutest
reverse transcription-PCR (qRT-PCR) permutation-based testing for the calculation of the sig-

Total DNA of surface-sterilizedAphelenchoidesr Aphe- nificance valuesg0].
lenchuswas extracted using a DNeasy Blood & Tissue Kit To describe the complex co-occurrence patterns in
(Qiagen, Hilden, Germany) according to the manufac- mycorrhizal-fungivores networks, we constructed a cor-
turers instructions. AMF abundance inside fungivorous relation matrix by calculating multiple correlations and
nematodes was assessed by copy numbers of AMFsimilarities with Co-occurrence Network (CoNet) infer-
specific 18S rRNA gene using the same primers agnce pl]. The OTUs detected in more than three-
described above. The qPCR assays were conducted in trigourths of the soil samples at the same depth were kept
licate by using the fluorescent dye SYBR-Green approaclor the network construction. We transformed the distri-
on an ABI 7500 Sequence detection system (Applied Biobution matrix of AMF, and fungivorous protists and
systems, Foster City, CA, USA). The standard curve fomematodes into the relative abundance values. Then, we
AMF was obtained using 10-fold serial dilutions (1010° used an ensemble approach that combined four mea-
copies) of plasmid DNA carrying the corresponding genesurements, including Pearson and Spearman correlations
fragment. Target DNA was successfully amplified from alland Bray-Curtis and Kullback-Leibler dissimilarities. A
samples with an efficiency of 99.07% and correlation co- valid co-occurrence was considered a statistically robust
efficients higher than 0.99, except for negative controls.correlation between species when the correlation coeffi-
AMF abundance insideAphelenchoidesor Aphelenchus cient () was > 0.8 or < 0.8 and theP value was < 0.01.
was calculated as the copy number of AMF 18S rRNAThose P values < 0.01 were adjusted by a testing correc-
gene per nematode, respectively. tion using the Benjamini-Hochberg procedure to reduce
Root total RNA was isolated using RNA Plus (Takara,the chances of obtaining false-positive result82]. Co-
Dalian, China) with the guanidine thiocyanate extraction occurrence networks were visualized via Gephi software
method. Then, 1.2% agarose gel and the NanoDrop ND{63]. Modules were defined as clusters of closely inter-
1000 spectrophotometer were used to determine qualityconnected nodes (i.e., groups of co-occurring microbes)
and quantity RNA (NanoDrop Technologies, Wilming- [64]. The microbial networks were searched to identify
ton, DE, USA), respectively. DNase was used to eliminhighly associated nodes (clique-like structures) using
ate the potential trace of genomic DNA in RNA Molecular Complex Detection (MCODE) introduced for
samples. Root RNA was reversely transcribed into cDNAthe Cytoscape platform 5. We calculated the first
as templates for RT-PCR using the Roche reverse tranprincipal component of the modules (module eigengene)
scription kit. The qRT-PCR was carried out on an ABI in the standardized module expression data for the co-
7500 Sequence detection system (Applied Biosystemsccurrence networks §6]. The correlations between soil
Foster City, CA, USA). To support the notion that properties, network module eigengenes, AMF
mycorrhizal colonization regulates mycorrhizal P acqui- colonization, the expression ofZMPht1;6 gene, and
sition in roots, the ZmPht1;3 and ZmPht1;6 genes en- plant performance were evaluated using Spearnsarank
coding P transporter of the PHT1 family were correlation test.
monitored. The ZmPHT1;3 and ZmPHT1;6 genes were  Random forest tool was performed to quantitatively
amplified with the primer pairs B8]. The expression estimate the important predictors of AMF colonization
level of the maizeActin 1 gene was used as an internal and the expression of P transporter genes containing soil
control. The relative transcript level was normalized asproperties, AMF community, and the assemblages of

percent of the corresponding actin transcript levels. fungivores. Random forest modeling was conducted
using the randomForest packagé{] and the model sig-
Statistical analysis nificance and predictor importance were determined

One-way analysis of variance (ANOVA) was performedusing the A3R and rfPermute packages, respectivé§, [
to assess the effects of manure treatments on soil prop69. Based on random forest analyses, the significant
erties, the AMF communities, the assemblages of fungivpredictors were further chosen to perform a structural
orous protists and nematodes, plant performance usingequation modelling (SEM) analysis. SEM analysis was
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