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Soil origin and plant genotype structure ®

distinct microbiome compartments in the
model legume Medicago truncatula
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Abstract

Background: Understanding the genetic and environmental factors that structure plant microbiomes is necessary
for leveraging these interactions to address critical needs in agriculture, conservation, and sustainability. Legumes,
which form root nodule symbioses with nitrogen-fixing rhizobia, have served as model plants for understanding
the genetics and evolution of beneficial plant-microbe interactions for decades, and thus have added value as
models of plant-microbiome interactions. Here we use a common garden experiment with 16S rRNA gene
amplicon and shotgun metagenomic sequencing to study the drivers of microbiome diversity and composition in
three genotypes of the model legume Medicago truncatula grown in two native soil communities.

Results: Bacterial diversity decreased between external (rhizosphere) and internal plant compartments (root
endosphere, nodule endosphere, and leaf endosphere). Community composition was shaped by strong
compartment x soil origin and compartment X plant genotype interactions, driven by significant soil origin effects
in the rhizosphere and significant plant genotype effects in the root endosphere. Nevertheless, all compartments
were dominated by Ensifer, the genus of rhizobia that forms root nodule symbiosis with M. truncatula, and
additional shotgun metagenomic sequencing suggests that the nodulating Ensifer were not genetically
distinguishable from those elsewhere in the plant. We also identify a handful of OTUs that are common in nodule
tissues, which are likely colonized from the root endosphere.

Conclusions: Our results demonstrate strong host filtering effects, with rhizospheres driven by soil origin and
internal plant compartments driven by host genetics, and identify several key nodule-inhabiting taxa that coexist
with rhizobia in the native range. Our results set the stage for future functional genetic experiments aimed at
expanding our pairwise understanding of legume-rhizobium symbiosis toward a more mechanistic understanding
of plant microbiomes.
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Background

Plants grow in close co-association with a striking diver-
sity of microorganisms [1]. These microbes, including bac-
teria, archaea, fungi, and protists, can inhabit every
conceivable plant organ and tissue as either epiphytes or
endophytes. A rapidly growing body of literature has doc-
umented the influence that the microbiome can have on
critical plant traits including disease resistance [2—-5], nu-
trient acquisition and growth [6-9], abiotic stress toler-
ance [10, 11], and flowering phenology [12, 13]. Thus, the
microbiome can be viewed as an extended phenotype of
the plant genome that can enhance the ability of plants to
cope with environmental stressors [1, 10, 14-16]. A fuller
understanding of plant microbiomes is critical for im-
provements in environmental sustainability [17], agricul-
ture [18], and conservation [19]. To leverage microbiomes
to address critical needs, we must better understand the
factors that structure microbial communities within and
among plant hosts, building a predictive understanding of
microbiome assembly.

The advent of modern sequencing technology has pro-
vided a renaissance for microbial ecology by allowing for
rigorous characterization of microbial communities and
their relationships with macrobial hosts [20]. Some au-
thors have even suggested that the hologenome, com-
prised of the host’s genome and all genomic content of
associated microbes, is a unit of biological organization
driving ecological and evolutionary processes [21, 22].
Microbiomes are diverse and have been found to vary
across plant species [23-25], within species among dif-
ferent genotypes [26-30], and among plants grown in
different environments [29, 31-33]. Additionally, distinct
compartments within a plant (e.g., phyllosphere, rhizo-
sphere, endosphere) often vary in microbiome compos-
ition [1, 29, 33]. Thus, environmental and genetic factors
working together largely determine plant microbiome
assembly.

Soil communities can vary considerably in space and
time, leading to variation in the microbial pool available
for colonization [34, 35]. For roots, a two-step model for
microbiome colonization has been proposed [1, 33],
wherein root exudates initially drive a shift in commu-
nity composition in the soil directly influenced by the
root (i.e., the rhizosphere), followed by plant genetic fac-
tors that regulate entry inside the root (i.e., the root
endosphere). The acquisition of the leaf microbiome
(i.e., phyllosphere) is less well-understood, but likely de-
pends on similar multi-level processes [36, 37]. In order
to gain entry into the endosphere (interior of the leaves,
roots, stem, etc.), microbes must overcome plant innate
immunity [38]. The field of community genetics has long
held that intraspecific genetic variation, and thus intra-
specific evolution, can scale up to influence community
and ecosystem-level processes [39]. In plants, substantial
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genetic variation is maintained for plant immune re-
sponse machinery [40], and numerous other ecologically
relevant phenotypes; thus, it is perhaps not surprising
that host genotypes vary in microbiome composition
[24, 28, 29, 33]. Yet many microbiome studies have fo-
cused on only a single genotype; therefore, studies using
multiple genotypes and wild species are necessary to bet-
ter resolve the role of host plant genotypes in structuring
the microbiome, particularly since domesticated species
may be inferior in their ability to regulate microbiomes
when compared to wild relatives [41-43].

Leveraging existing knowledge in well-studied models
for plant-microbe interactions can help us better under-
stand the factors structuring plant microbiomes. Legumin-
ous plants (Fabaceae) are one of the most diverse lineages
(ca. 20,000 spp.), and legumes are the second most im-
portant crop family behind grasses [44]. For decades, le-
gumes have served as important model systems for
understanding the genetics, ecology, and evolution of
plant-microbe interactions because they form intimate
symbioses both with nodulating nitrogen-fixing bacteria
(rhizobia) and with arbuscular mycorrhizal fungi (AMF).
Decades of molecular genetic work have uncovered nu-
merous genes that are required for symbiosis with these
key symbionts [45-47], and a subset of these so-called
“symbiosis genes” have been implicated in interactions be-
tween legumes and a diversity of microorganisms beyond
rhizobia and AMF [48-50]. Zgadzaj et al. [51], for ex-
ample, detected a shift in microbiome community com-
position in mutant Lotus japonicus that were defective in
nodulation, compared to wild type plants. This line of
inquiry suggests that core symbiosis genetic pathways can
influence interactions with a broad range of microbes be-
yond the model symbiosis in which they were discovered,
and thus that models for plant-microbe symbiosis have
added value in understanding plant microbiomes.

Microbial communities can be strongly structured by
plant compartments, and this is potentially the case for
legume nodules. Nodules represent a truly distinct envir-
onment from the adjacent root endosphere by being (1)
low in oxygen, which is necessary for nitrogen fixation
[52, 53], (2) rich in both carbon and nitrogen [54], and
(3) dominated by single microbial taxon (i.e., rhizobia).
Thus the nodule may harbor microbes that are special-
ists of this unique environment; however, this hypothesis
has not been tested. Limited evidence in AMF supports
this notion by demonstrating that communities differ
between the root and the nodule, but are more similar
between nodules of different legume species, suggesting
that there may indeed be nodule AMF specialists [55].
Furthermore, the origin of nodule microbial communi-
ties is uncertain; bacteria could migrate into nodules
from within roots, or there could be directed
colonization from the rhizosphere. Culturing initiatives
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have revealed a diverse group of non-rhizobial species
housed in nodules, and several of these bacteria can act
to increase nodulation as well as overall plant growth
(reviewed by [56]). In fact, commercially available inoc-
ula often include both rhizobia and non-rhizobial strains
for this reason [57]. The mechanisms for enhanced
nodulation and/or plant performance are unknown, but
likely involve microbe-microbe interactions which could
manifest inside the nodule or in other plant compart-
ments. Interestingly, non-rhizobial members of nodule
microbiomes can even possess nodulation and/or nitro-
gen fixation genes [56]. A rigorous characterization of
nodule microbiomes that is not limited by culture bias is
necessary to determine if specialist taxa exist in this
unique compartment, and potentially shed light on func-
tional interactions and mechanisms.

The model legume Medicago truncatula (hereafter
Medicago), a winter annual native to the Mediterranean
basin [58], has been used extensively to discover the
genetic pathways necessary for establishment and on-
going symbiotic trade in both the rhizobium and AMF
symbiosis [45, 59—61]. Despite its prominence in plant-
microbe interactions, however, no studies have pre-
sented a thorough characterization of the Medicago
microbiome grown in native soil, so to date we have an
incomplete picture of the microbiome of this species be-
yond its interaction with Ensifer rhizobia. Here we first
grow three Medicago genotypes from natural populations
in each of two native soils in a common garden experi-
ment to ask: (1) To what extent do plant genotype and soil
origin structure the microbiome? (2) Do plant compart-
ments (rhizosphere, root endosphere, nodule endosphere,
phyllosphere) harbor distinct microbiomes, and how are
these affected by plant genotype and soil origin? (3) Are
there specialist microbial taxa in the nodule, and how is
this community assembled (i.e., from the rhizosphere or
root endosphere)? Next we perform an additional inocula-
tion experiment, adding one of four Ensifer strains to ask:
(4) Does genetic variation in rhizobia influence the
broader microbiome, and in what compartments? Finally,
we use additional shotgun metagenomic sequencing of a
subset of root, nodule, and leaf samples to explore the
genetic variation in Ensifer bacteria throughout the plant.

Results

Sequencing results—16S rRNA amplicon sequencing
After all sequence quality control, OTU demarcations,
and removal of rare OTUs, we retained 3180 OTUs for
the plant genotype x soil experiment and 1650 OTUs
for the rhizobium genotype experiment. A detailed sam-
ple x OTU table is provided in Table S1, and OTU
abundances across the sampling design with associated
taxonomy, biomarker results, and representative se-
quences are available in Table S2.
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Sequencing results—shotgun metagenomic sequencing
After quality control, on average 41 million paired end
reads per sample were retained. After removing read
pairs that mapped to the Medicago reference, root endo-
sphere samples contained on average six million read
pairs and nodule samples contained 34 million read
pairs. On average, 25% of the remaining reads success-
fully mapped to the reference (E. medicae WSM419) in
root endosphere samples, versus 90% in nodule samples.
Root endophyte samples with a high percentage of reads
mapped to E. medicae WSM419 produced more than 30
scaffolds ranging from 50 to 427 kb, while nodule sam-
ples regularly produced 40 or more scaffolds greater
than 50 kb, and each nodule sample produced more than
15 scaffolds greater than 100 kb.

Plant genotype X soil experiment

Several results suggest that compartment was the major
force structuring the microbiome of Medicago plants.
First, PVCA indicated that interactions with compartment
explained the largest amount of variance in bacterial com-
munity composition (compartment x soil source: 23%,
and compartment x plant genotype: 6%; Table 1), indicat-
ing that soil origin and plant genotype both influenced
community composition, but that these effects depended
on compartment. Main effects of plant genotype, soil ori-
gin, compartment, and the soil origin x plant genotype
interaction accounted for an additional 1.2-3.2% of the
variation in bacterial composition each (~ 10.9% total;
Table 1). ANOVAs on diversity estimators (diversity,
evenness, and richness) indicated that compartment was
the only significant effect (Table 1), with rhizospheres hav-
ing the most rich, diverse, and even bacterial communities
(Fig. 1a). We found no evidence for overall differences in
diversity estimates among plant genotypes or between soil
sources (Table 1).

To unpack the interactions indicated in the PVCA, we
next used PerMANOVAs to test for the effects of soil
source and plant genotype on the composition of bacter-
ial communities within each compartment separately.
Rhizospheric communities were distinct between soils
originating from mainland France vs. Corsica (Table 2,
Figure S1, Figure S2), but this legacy of soil origin was
lost in internal plant compartments (Table 2). Instead,
bacterial communities within roots responded to plant
genotype (Table 2, Fig. 2), though genotype was not sig-
nificant for nodule or leaf compartments (Table 2).

Bacterial communities were quite distinct across the four
compartments (Table 1; Fig. 1b); only 327 (10%) of OTUs
were shared across all compartments (Figure S1). The
genus Ensifer, which contains the primary N-fixing rhizobia
that form root nodule symbiosis with Medicago, was the
most abundant in all compartments, though it reached
higher abundances in internal plant compartments
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Table 1 Results from modified principal variance component analysis (PVCA) enumerating the amount of community variation
explained by soil origin (France of Corsica), plant genotype (G1, G27, G96), plant compartments (rhizosphere, root, nodule, leaf) and
all possible interactions. Further, diversity estimator ANOVA results are presented across the same design. Complement of Simpson's
Diversity and Evenness were transformed using logit transformation and richness was transformed using Box-Cox functions prior to
analysis

Test Variance explained—PVCA (%) Diversity (1-D) Evenness (Ep) OTU richness (Sgps)
Soil origin 3.207 F=0685P=0411 F=0.767,P=0384 F=1845P=0.178
Genotype 1.274 F = 0054, P = 0947 F=1356P=0265  F=00704, P=0498
Compartment 3.231 F=14.151,P < 0.001 F=3.171,P=0.029 F =39.509, P < 0.001
Soil origin x genotype 3222 F=0297,P=0753 F=1169, P=0316  F=0215P=0807
Soil origin X compartment 23.098 F=1582,P=0202 F=1.123,P=0346 F=2381,P=0077
Genotype X compartment 6.295 F=0884,P=0511 F=0.702, P=0649 F=1379, P=0235
Soil origin x genotype x compartment  0.369 F=0634,P=0703 F=049, P=0809 F=0488 P=0815
Residual 59.302

(particularly in the nodule, unsurprisingly, where it com-  taxonomic identities (see Table S2), some of which were
prised ~ 85% of reads; Fig. 1b). Consistent with the diversity = common (Fig. 3b). Prominent shifts occurred in the abun-
results, the rhizosphere compartment had the most (772)  dances of other OTUs across internal plant compartments,
unique OTUs (Figure S1), and LEfSe analyses identified including Halomonas (increased in root and leaf endo-
313 biomarker OTUs for the rhizosphere, of wide-ranging  spheres compared to nodules; Fig. 3a) and Pseudomonas
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Table 2 PerMANOVAs by compartment testing for the effects of soil origin (Corsica or France) and plant genotype on bacterial
community composition. PerMANOVA tests are based on a Bray-Curtis dissimilarity matrix using an iterative subsampling of a depth
of 1500 sequences (1000 iterations) per sample. Pseudo-F test statistics, degrees of freedom, and P values are presented, and

significant tests are displayed in bold and in italics

Test Soil origin Pseudo-F4¢

Soil origin P value

Genotype Pseudo-Fy¢ Genotype P value

Rhizosphere Fi,2¢ = 4.838 0.001
Root Fi125 = 1.006 0374
Nodule Fyo; = 1057 0330
Leaf Fy28 = 0.501 0.801

Fyny = 0762 0679
Fy, = 1.982 0.026
Fy67 = 0.506 0.941
Fy27 = 1052 0411

(increased in leaves relative to root and nodule; Fig. 3c).
Our LEfSe analyses identified 10 biomarker OTUs for leaves,
dominated by Pseudomonas, Niastella, and the cyanobacteria
Phormidium and 12 biomarker OTUs for roots dominated
by Thioalkalibacter, Neorhizobium, and Ohtaekwangia, plus
one OTU (Ensifer) for nodules (Table S2).

Examination of nodule core communities identified 15
OTUs that were found in > 50% of nodule samples, includ-
ing some of the most overall abundant OTUs (Table S3).
Common nodule taxa included other putative N-fixing or
plant growth promoting bacterial (PGPB) members of the
Rhizobiales and Burkholderiales (including several Ensifer
as well as Rhizobium, Bradyrhizobium, and Rhizobacter).
Besides Ensifer (OTUL), only one other OTU was found in
100% of sampled nodules—OTU4, best identified as Shewa-
nella (Order Alteromonadales). Our fSrc analyses of

community similarity suggest that nodule communities
were much more similar to, and likely deterministically de-
rived from, root communities (70% significant Src values
between paired samples; all significant values of Src were <
- 0.95, indicating deterministic establishment) rather than
rhizosphere communities (26.6% significant Src values)
from the same plant (Fisher exact test, P = 0.0017), and that
this difference persisted independent of genotype and soil
origin (all P > 0.1). Additionally, we examined if nodule as-
sembly was driven by OTU competition and co-occurrence
dynamics. There were no significant co-occurrence patterns
for nodule communities (Z = 0.304, P > 0.05 and Z = 0.478,
P > 0.05 for the entire nodule community and while ex-
cluding Ensifer respectively) suggesting that these nodule
communities do not follow deterministic assembly rules.
However, investigation of OTU co-associations with OTU1
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Fig. 2 Bacterial communities in the root endosphere respond to plant genotype. a Nonmetric multidimensional scaling plot (Bray-Curtis) of
bacterial root endophytes plotted by genotype, with insert showing Axis 2 loading scores (explains 48.36% of community variation) across
genotypes (ANOVA). b Average bacteria Bray-Curtis dissimilarity values between paired rhizosphere and root endosphere samples (samples are
paired by plant)
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Fig. 3 Paired effect size analysis of the 20 most abundant OTUs comparing relative abundances of each OTU within the same plant between root
and nodule (a), rhizosphere and root (b), and root and leaf (c) compartments. Bacterial genera are on the left and OTU number presented
parenthetically. Presented are quintiles (minimum, 25%, median, 75%, maximum) of paired effect size [e.g., nodule — root/(nodule + root)] where
a value of 1.0 indicates this OTU is only found in the nodules where as a value of — 1.0 means the genus was only found in the Root. Tests for
significant enrichment of OTUs between compartments using Wilcoxon signed-rank tests are presented where significant and indicated with
tests statistics and p values

(Ensifer) resulted in 87 OTUs with significant correlations
(26 negative and 61 positive correlations). Interestingly, of
our core nodule OTUs, four OTUs were correlated with
OTUI; among these, OTU26 (Rhizobium) and OTU30
(Bradyrhizobium) were significantly negatively correlated
with OTU1 (correlation coefficients of — 0.359 and — 0.404
and P = 0.024, and P = 0.0 respectively), suggesting that
these other diazotrophic taxa are competitively excluded by
Ensifer. The core nodule OTUs, OTU34 (Halomonas) and
OTU 371 (Ensifer), were positively associated with OTU1
(correlation coefficients of 0.390 and 0.593 and P = 0.022,
and P = 0.0 respectively).

Despite a strong effect of host genotype on root com-
munities (Table 2), our LEfSe analysis found no OTUs
as biomarkers for particular plant genotypes, indicating
that these community differences were largely driven by
shifting OTU abundance ratios rather than the exclusion
of specific taxa. Interestingly, however, when we com-
pared the dissimilarity between root and rhizosphere
bacterial communities across the three plant genotypes,
root and rhizosphere communities were more alike in
plant genotype G96 compared to G1 (Fig. 2b), poten-
tially suggesting that this host genotype G96 is a less
stringent “filter” of external bacteria.

Rhizobium genotype experiment

In stark contrast to the plant genotype x soil experiment,
the rhizobium genotype experiment did not yield any dif-
ferences in diversity estimates across rhizobium strains (P
> 0.30 for strain for richness, diversity, and evenness) or
rhizobium strain x compartment interactions (P > 0.4 for
all estimators; Table S4). Compartments did differ,

however, with the rhizosphere having higher richness (P <
0.001), diversity (P = 0.002), and evenness (P = 0.021) in
ANOVA analyses (Table S4). Further, rhizobium strain
did not impact communities in PerMANOVA tests for
the rhizosphere (F314 = 1.08, P = 0.23), root (F3 15 = 0.97,
P =0.48), or leaf endosphere (F31; = 0.94, P = 0.57).

Minimum entropy decomposition of Ensifer (OTU1)

Of the four demarcated minimum entropy decompos-
ition (MED) nodes within Ensifer (Table S5), represent-
ing within-OTU variation, only two were common (node
3 and node 6; comprising 84.89% and 15.02% of total
node counts, respectively). The proportions of these two
MED nodes found in plants differed between France and
Corsica (f* = 3775.6, P < 0.001). Plants grown in Cor-
sican soils had higher node 3 occurrences (87.5% vs.
79.9% in French soil), and reduced node 6 occurrence
(12.4% vs. 20.6% in French soil), and these differences
were consistent across each of the four plant compart-
ments (Leaf: y* = 2601.9, P = 0.001; Nodule: y* = 5647,
P < 0.001; Root: y* = 16842, P < 0.001; Rhizosphere: y* =
12460, P < 0.001). Interestingly, Medicago genotype af-
fected the proportion of Ensifer MED nodes in each
compartment (Leaf: y* = 3591.9, P < 0.001; Nodule: y* =
4412, P < 0.001; Root: y* = 8958, P < 0.001; Rhizosphere:
X° = 5994.7, P < 0.001), suggesting that plant genotypes
were differentially colonized by Ewnsifer variants; however,
the pattern differed across compartments. Plant geno-
type G96 contained a smaller proportion of Eunsifer MED
node 3 in nodules and roots, relative to the two other
host genotypes (nodules—78.5% in G96 vs. 90.2% and
90.3% in G1 and G27, respectively; root—60.1% in G96
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vs. 99.8% and 87.1% in G1 and G27, respectively), but
actually had more node 3 in rhizosphere samples (99.9%
in G96 vs. 65.2% and 64.9% in G1 and G27, respectively).
Within leaves, however, G27 and G96 were similar (> 99%
MED node 3), while G1 contained a smaller proportion of
node 3 (83.3% node 3, 16.6% node 6). This indicates that
Ensifer MED node membership within plants is driven by
soil origin and host genotype, but patterns are generally
consistent independent of plant compartments.

Metagenomic sequencing

Because Ewnsifer was the dominant taxon in all compart-
ments, and MED analysis at the 16S rRNA gene indicated
minimal diversity within Ensifer OTUs (see above), we
used metagenomic shotgun sequencing to further exam-
ine genome-wide similarity of Ensifer populations across
different compartments. Ensifer scaffolds reconstructed
from root endophyte and nodule communities had, on
average, 99% global sequence identity in homologous re-
gions—suggesting that Ewnsifer are extremely similar
throughout an individual plant. Moreover, our estimate of
the fraction of Ewnsifer cells containing each of the two
symbiotic megaplasmids did not significantly differ be-
tween plant compartments (W = 132, P = 0.10 for
pSMEDO1; W = 151, P = 0.14 for pSMEDO2; Fig. 4)—
again suggesting that Ensifer are highly similar throughout
the plant, including at the symbiosis megaplasmids.

Discussion

An increasing number of studies characterize plant micro-
biomes, moving us toward a more mechanistic and synergistic
understanding of factors structuring these communities.
Nevertheless, while many studies have looked at spatial vari-
ation or plant genetic variation, most studies do not simultan-
eously examine both soil origin and plant genotype in the
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same design, making direct comparisons among these effects
difficult (but see [33, 62—64]). Our design, combined with se-
quencing microbial communities from both endosphere (root,
nodule, leaf) and rhizosphere compartments, allows us to dir-
ectly compare the effects of soil and genotype across these dis-
tinct “organs.” Here we show that both soil origin and plant
genotype contribute to microbiome composition, but that the
strength of these effects depend on the compartment—
whether the microbes are inside (root endosphere) or outside
(rhizosphere) plant tissues. Namely, plant genotype had much
stronger effects on microbes within root tissues, while soil ori-
gin had stronger effects in the rhizosphere communities.
Other interesting findings include the following: (1) that our
results mirror those of recent studies in rice [33], poplar [62],
and soybean [63] identifying a similar magnitude of effects
and a larger role of soil origin than plant genotype in structur-
ing microbiome variation, particularly in the rhizosphere, (2)
nodule microbiomes, while containing more than the rhizo-
bium that fixes nitrogen in Medicago nodules (Ensifer), were
much less diverse than the rest of the root endosphere and do
not appear to harbor specialist microbial taxa, and (3) Enusifer
was the dominant OTU, not only in the nodules, but through-
out the entire plant. Medicago is a well-studied genetic model
for plant-microbe symbiosis [60, 61, 65], and ours is the first
NGS study of its native soil microbiome; therefore, we antici-
pate that our results will be of interest to many in the plant
genetics community who are interested in building on our
mechanistic understanding of 2-player plant-microbe interac-
tions to better understand plant microbiomes. We discuss the
major implications of our main results below.

Soil origin influences the microbiome

Soil microbial communities are remarkably diverse [66]
and serve as a source reservoir for plant colonization.
Throughout the range of a plant species, soil communities
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Fig. 4 Genomic content of Ensifer from root versus nodule endosphere compartments from shotgun metagenomic sequencing data, shown as
the median proportion of reads mapping to the symbiotic plasmid (pSymB in black, pSymA in white) relative to the chromosome. Lower and
upper bounds of each box depict the first and third quartiles, respectively, with whiskers representing the range of observed values
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can vary considerably [67, 68], which could potentially
confer variation in microbiomes. Here we find that soil
origin had a larger effect than plant genotype overall and
that rhizosphere communities, in particular, responded
strongly to soil source. Finding significant soil origin vari-
ation suggests that we would discover additional rhizo-
sphere taxa if we were to sample from more locations
(though less so for internalized plant microbiomes, i.e.,
root, nodule, leaf endospheres). This is noteworthy, as
rhizosphere communities are much more diverse than in-
ternalized plant communities, and rhizosphere dynamics
can have profound impacts on plant fitness (reviewed by
[1, 69]). Microbes are recruited to the rhizosphere by plant
exudate production (reviewed by [70]). These exudates
can provide a nutrient source and interact with edaphic
conditions to generate a distinct environment from the
surrounding soil that facilitates microbial growth, setting
the stage for myriad microbe-microbe interactions that
shape this dynamic community [1, 71]. These factors,
which structure the rhizosphere, depend heavily on the
abiotic and biotic facets of the soil; thus, it is not surpris-
ing that soil variation impacts the rhizosphere micro-
biome. Despite this variation in rhizosphere communities,
and the fact that the rhizosphere encapsulates the roots
and is the source community for endosphere colonization,
internalized plant microbiomes were consistent across
soils, consistent with plant genetic, cellular, and/or bio-
chemical mechanisms that restrict entry inside plant tis-
sues (reviewed by [1, 16]).

Plant genotype structures the Medicago microbiome
Plant genetic variation played a role in structuring vari-
ation in the root endosphere community, but not in
other compartments. Although we did not find that
plant genotype structured rhizosphere communities,
studies in other systems have identified such an effect
[33, 63]. As mentioned above, root exudates mediate the
rhizosphere community assembly, and these exudates
are genetically determined [71]. Examination of add-
itional Medicago genotypes may very well reveal genetic
variation for exudates which may confer rhizosphere
variation, and/or nodule and leaf compartments. Import-
antly, growing plants in closed, bottom-watered boxes
likely caused us to underestimate leaf endosphere diver-
sity and miss key taxa; our leaf bacteria likely colonized
through vertical migration via plant vasculature, whereas
leaves in nature are often colonized from external
sources [36, 37].

Plants in our experiment were grown in soils from the
native range [58, 72]; therefore, we are likely capturing
an ecologically relevant and co-evolving set of microbes
that colonize Medicago in nature. In particular, the root
endosphere taxa that we sampled likely contain many of
the “core” players within native Medicago plants, at least
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at the taxonomic scale sampled here (genus or above,
see “Discussion” below), because our results join many
other studies showing that plants are robust filters of
their environmental microbes [1, 73, 74], with soil origin
having little effect on internal compartments. Indeed, in
our study, microbiome diversity decreased moving from
outside to inside the plant—from the rhizosphere to the
root/leaf endosphere to the nodule endosphere. This fil-
tering, operating at the boundary between the rhizo-
sphere and the internal tissues, is likely the result of
multiple selective processes [1], and our data join others
suggesting that at least some of this filtering is plant
genotype-dependent (see below).

Our data hint at the existence of quantitative genetic
variation for niche breadth in plant microbiomes. We
found that the similarity between the endosphere and
rhizosphere varied among Medicago genotypes, suggest-
ing that some genotypes might represent weaker filters
than others. There is empirical evidence for variation
along the specialist-generalist continuum within plant-
microbe symbioses [75, 76], as well as among plant spe-
cies, with potential applied implications for the spread of
invasive legumes [77, 78]. Using five genotypes of the
plant Boechera stricta, Wagner et al. [29] found signifi-
cant genetic variation for metrics of microbiome diver-
sity. Thus while considering such variation in the
broader context of niche breadth theory can help us to
make sense of plant-microbe symbiosis [76], our ability
to interrogate the plant genes controlling microbiome
diversity alongside those controlling microbiome com-
position grows as plant quantitative genetics and micro-
biome studies come together [16].

The variation in microbial community composition
that can be partitioned among plant genotypes, and thus
attributed to plant genetic variation, represents the nat-
ural variation upon which selection can act in nature
and also the amount of standing genetic variation avail-
able to plant breeders interested in optimizing plant-
microbe interactions. Although the main effect of plant
genotype was small (~ 1.3% of total variation), the plant
genotype x compartment interaction accounted for
much more variation (~ 6.3%) because the effect of
genotype was strong, but limited to the root endosphere
compartment. These patterns generally mirror studies in
other systems (e.g., [33, 62, 79, 80]). The mechanisms by
which plant genotype influences the microbiome are still
being elucidated, but genetic studies to date suggest that
plant genes related to disease resistance, cell walls, and
root hair structure may contribute [81-84].

The amount of variation explained by genotype in our
experiment is likely an underestimate for multiple rea-
sons. First, we only surveyed three plant genotypes; thus,
we cannot account for any genetic variants not repre-
sented in these three genotypes. Second, our 16S survey
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represents species- or even genus-level variation; the
long history of plant-microbe symbiosis literature has
shown enormous within-species genotypic variation and
genotype-by-genotype interactions for infection rates
and abundance [85-89]; surely, this variation is also
present within at least some of the taxa in the less-
studied members of the plant microbiome. Indeed a re-
cent study showed that plant genotype-dependent shifts
after multiple serial passages occurred at fine taxonomic
scales among closely related OTUs [90]. We have little
ability to incorporate these finer-scale genotypic effects
using 16S surveys of community composition, though
shotgun metagenomic methods for simultaneously ad-
dressing population genetics alongside community shifts
are quickly evolving (e.g., [91, 92]).

The nodule microbiome
As expected, the nodule microbiome was dominated by
Ensifer and was also inhabited by a diverse community, al-
beit less diverse than the surrounding root endosphere
and rhizosphere (Fig. 1). Despite evidence that nodule
communities were deterministically sampled from the
root endosphere, we did not find evidence that the nodule
harbors unique microbial specialists, as no OTUs were
found to be biomarkers for the nodule, besides Emnsifer
(Table S3). Nevertheless, we did identify multiple core
nodule OTUs that were abundant throughout all nodules.
The occurrence of Shewanella spp. within all nodules and
at great abundance is intriguing, but further experimenta-
tion is needed to investigate the potential functional roles
of this taxon. We also identified a positive co-association
between Eunsifer and Halomonas. Halomonas is a moder-
ate halophile and has been demonstrated to improve al-
falfa yield (Medicago sativa) when co-inoculated with
Ensifer in saline soils [93]. This suggests the strong poten-
tial for Halomonas-Ensifer syntrophy within nodules.
Tkazc et al. [80] also identified numerous taxa coinha-
biting Medicago nodules, but only two OTUs with ap-
preciable sequence counts (greater than 100),
Solirubrobacter sp., and an Azohydromonas sp. While
neither of the genera were represented in our core nod-
ule taxa list (Table S4), we did resolve four Solirubrobac-
ter OTUs and seven Azohydromonas OTUs that were
present in nodules (Table S3), but with relatively little
sequence representation. These differences are likely at-
tributed to different soil sources; here, we utilized native
soils collected from the base of Medicago plants in the
field, whereas Tkazc et al. [80] used non-native soils
where Medicago was not present. More research is re-
quired to resolve consistent patterns of nodule endo-
phyte associations and how they vary across native and
non-native soils, and thus whether taxa like Azohydro-
monas, Solirubrobacter, and Halomonas have a major
functional role in Medicago nodules.
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Nodules seemingly represent a distinct environment
from the adjacent root endosphere, yet many OTUs are
found within nodules and across other compartments.
Along these lines, there are numerous examples of non-
classic rhizobial species (e.g., Pseudomonas spp., Agro-
bacterium spp., etc.) that possess nodulation genes, ni-
trogen fixation genes, or both, being cultured from
nodules, suggesting that these microbes may have a spe-
cialized role in the nodule [56]. Nevertheless, culturing
efforts have identified non-rhizobium species that act to
increase nodulation [57]. Additional unidentified, syner-
gistic microbes of this type likely exist, but our findings
suggest they will not be strictly restricted to nodules and
could be cultured from root or rhizosphere communities.

Ensifer—a major actor in the Medicago microbiome
Beyond the nodule, our results suggest an extremely dom-
inant role for Emnsifer throughout the Medicago micro-
biome, both inside and outside the plant. Species in
Rhizobiales have been found widely in plant microbiomes,
including root and leaf tissues, and from a broad diversity
of plants beyond legumes (e.g., [28, 79, 80, 94, 95]). In-
deed, we have identified Rhizobium and Bradyrhizobium
in our study, and these taxa are major members of micro-
biome communities in multiple compartments (Table S2),
yet they do not nodulate Medicago. Recent phylogenetic
reconstructions [96] and mutant screens [97] suggest that
such less-specific plant associations predate the origin of
root nodule symbiosis in this group. Thus nodulating rhi-
zobia may have evolved from commensal ancestors of
plant microbiomes. In many rhizobia, including Ensifer,
the majority of the genes governing nodulation are con-
tained on symbiosis plasmids [98, 99], and symbiosis genes
or entire plasmids can be lost as rhizobia evolve to a com-
mensal lifestyle [96], though this might be unlikely, at least
for pSymB, which is currently considered to be a chromid
(rather than conjugative plasmid) and contains at least
one essential gene [99].

These past observations raised the question of whether
the Ensifer OTUs in the nodule were distinct from those
in other plant compartments, in terms of sequence simi-
larity as well as genome content. Further interrogation
of a subset of communities using metagenomic shotgun
sequencing suggested that leaf and root endosphere
Ensifer likely retain their symbiosis plasmids and thus
the ability to form nodules and fix nitrogen in the future.
Beyond its presence outside the nodules, however, the
dominance of Enusifer was striking—reaching more than
50% OTU relative abundance (Fig. 1b) even in the leaf
tissue. While microbiome studies routinely identify vari-
ous rhizobium taxa, this level of prevalence among all
compartments is unique. Tkazc et al. [80] also identified
Ensifer as a major component of the microbiome com-
munity outside of the nodule; however, it was not the
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dominant taxon as in our study. Once again this high-
lights the potential novelty of examining native soil com-
munities. Our soils were collected from the base of the
Medicago plants and thus Ensifer populations were likely
enriched through plant-soil feedbacks [100] in the start-
ing soil community. Furthermore in the absence of Med-
icago plants, as was the case for Tkazc et al. [80], the
Ensifer populations may have adapted to free-living con-
ditions and are not as well suited for plant colonization.
Indeed, one hypothesis for the prevalence of Ensifer is
that they are particularly able to colonize and proliferate
in host tissues due to long-standing beneficial symbiosis
with Medicago species [101], the result of a coevolution-
ary process within this group and throughout the leg-
ume phylogeny, and one that appears to have led to
differentiation of signaling interactions among taxa while
maximizing the signaling recognition within taxa [102].
The ability to compete for and colonize root nodules in
rhizobia is conferred by genes that act in a complex cas-
cade of molecular “handshakes,” including nod factor,
exopolysaccharides, and effectors (e.g., [88]; reviewed by
[46, 103]). It is possible that these molecules are used
throughout the plant tissues to signal entry and allow
Ensifer to proliferate in all compartments; this hypoth-
esis could be tested by competing nod+ and nod- strains
of Ensifer (or other nodulation mutants) and testing
their relative abundance across host compartments.

In our experiment, we did not find evidence that rhi-
zobium genotype structured microbiome variation
across endosphere compartments, or in the rhizosphere,
although this question deserves further investigation.
Abundant evidence exists demonstrating genetic vari-
ation for partner quality (i.e., the fitness benefits that the
plant receives from interaction with a given rhizobium
strain) among rhizobium genotypes [86, 87, 104, 105].
Given the abundance of rhizobia within plant micro-
biomes (beyond the nodule), it stands to reason that they
could play a pivotal role in microbe-microbe interactions
and thus influence plant fitness. Indeed, nodulation mu-
tant plants have been demonstrated to elicit distinctive
shifts in microbiome composition [51]. Here we inocu-
lated plants with individual strains of rhizobia, which is
a common practice for agriculture and restoration [57].
In future experiments, one could investigate the role of
rhizobium genetic variation by inoculating plants with
strains that are known to be of high vs. low partner
quality, or manipulate strain identity for plants with
highly specific strain preference (ie., partner choice,
which is known to vary in M. truncatula [106]).

Conclusions

Here we use a manipulation in native soil to show that
plant genetics and soil origin structure different com-
partments of the Medicago microbiome. We also found
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that Ensifer bacteria were abundant throughout plant tis-
sues, where they retain symbiosis plasmids, though we
do not yet know whether these symbionts are mutualis-
tic outside the nodule. Future efforts should examine the
functional roles and fitness effects of rhizobia in plant
microbiomes, both above and belowground. Genetic map-
ping studies can uncover whether well-known legume
symbiosis genes are pleiotropic, affecting interactions with
Ensifer and other microbes residing throughout the plant.
In particular, identifying the genetic basis of root exudate
variation may be insightful for understanding mechanisms
structuring plant microbiome variation. Leveraging plant
genetics and plant breeding to improve plant health via
the microbiome is a critical next step, given evidence that
controlling microbial colonization through even intensive
management and inoculation methods can be challenging
in some conditions [107]. Finally, in this and other host-
microbiome systems, integrating the vast functional vari-
ation known to exist at the strain level (genotypic variation
and G x G interactions; reviewed by [89, 108]) with micro-
bial ecology has the potential to reveal much of the hidden
heritability of the microbiome.

Methods

Overview

To study how host and symbiont genetic variation medi-
ate the microbial communities in the rhizosphere, root
endosphere, nodules, and phyllosphere of Medicago, we
performed two experiments. In the “plant genotype x
soil” experiment, we grew three plant genotypes in each
of two soils sourced from the native range of Medicago
to ask how the plant microbiome is structured based on
plant genetic variation and what role soil origin contrib-
uted to microbiome variation. In the “rhizobium geno-
type” experiment, we used a single plant genotype and
soil community and inoculated with one of four strains
of Ensifer from two species (2 strains E. meliloti and 2
strains of E. medicae) to ask if plant microbiomes can be
altered by rhizobium genetic variation.

Plant genotypes, rhizobium strains, and soil sources

Here we chose 3 Medicago genotypes (G1, G27, G96)
which originated from native populations and are repre-
sentative of typical Medicago plants. While these geno-
types were not selected due to a priori phenotypic
differentiation, our previous work indicates that they
possess genetic variation for symbiosis-related genes and
phenotypes. These genotypes are differentiated at DMI1,
a key symbiosis gene known to be under selection in na-
ture [109, 110]. Additionally, in a previous experiment,
these genotypes were inoculated with a mix of 3 rhizo-
bium strains from the native range. In this experiment
G96 had marginally higher nodule numbers than G1 (p
= 0.075) and G27 (p = 0.085), as well as larger shoot
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biomass than G27 (p = 0.001). The plant genotype ex-
periment used these three Medicago genotypes, whereas
only genotype (G96) was used for the rhizobium geno-
type experiment. Native soils collected from representa-
tive wild Medicago populations from mainland France
(43° 08.845 N, 003° 00.047 E) and from the island of
Corsica (42° 58.471 N, 009° 21.861 E) were used in these
experiments. Soil was collected from the base of plants
growing in the field. Strains of Enusifer used in the rhizo-
bium genotype experiment were acquired from culture
collections at the University of Minnesota.

Planting, inoculation, and harvest

Seeds were provided by the Institut National de la
Recherche Agronomique (INRA) collection maintained
at Station de Génétique et Amélioration des Plantes,
INRA, Montpellier, France. For each soil treatment, na-
tive soil from either France or Corsica was added in a 1:
1 ratio of field soil to sterile root wash soil media (auto-
claved at 121 °C four times for 45 min, alternating wet
and dry cycles). Before planting, seeds were surface ster-
ilized in dilute (5%) bleach for 5 min, rinsed in sterile
water, and cold stratified on moist filter paper for 2 days
until seeds germinated. Seedlings were planted with na-
tive soil mixture into sterile, sealed, fully self-contained
Magenta vessel “leonard jars” to prevent cross-
contamination and colonization of microbes other than
those found in the native soils [87, 111]. Here 3 GA7
vessels (Caisson Labs, Smithfield UT) were assembled
with the bottom jar serving as a water basin, the middle
jar filled with soil medium, and the upper jar serving as
an empty head space for plant growth. A sterilized nylon
wick connected the lower and middle box through a
drilled hole. Magenta pots were randomly placed in a
temperature-controlled grow room (23 ° C) under artifi-
cial light set to 12-h days and randomly rearranged twice
per week until harvest.

For the rhizobium genotype experiment, we inoculated
three replicate plants (only G96 with only soil from
mainland France) grown as above with four rhizobium
strains: two Ewnsifer medicae (KH36b and A321) and two
Ensifer meliloti (M156 and HMO007-10). Strains were
grown in TY media at 30° C and equilibrated to ODggg
= 0.5 before pipetting 1 ml directly on the soil at the
base of the seedlings. Once inoculated, magenta pots
were rearranged twice a week and grown concurrently
and with the same conditions as the plant genotype x
soil experiment. Plants received a second inoculation as
above at 16 days after planting.

Plants were harvested after 7 weeks of growth. Ma-
genta vessels were opened in a containment flow hood
and plants were excised from the soil. Plants were cut at
the root-shoot interface and six randomly selected leaves
per plant were placed into a sterile microcentrifuge tube.
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Leaf tissues were washed with 1% Triton-X 100 (v:v) by
vortexing and rinsing three times with ddH2O to re-
move any surface particles or epiphytic microbes to en-
sure only true endophytic microbial members remain
[112]. Root tissue was rinsed in ddH,O to remove
loosely adhered soils. Roots were placed into sterile 50-
mL Falcon tubes filled with 40 mL ddH,O and agitated
thoroughly to remove rhizospheric soils. Next 4 mL of
this rhizospheric soil slurry was placed into microcentri-
fuge tubes and pelleted [113]. These rhizospheric soils
were placed directly into PowerSoil DNA Isolation Kit
extraction tubes (MoBio; Carlsbad, CA, USA). Washed
plant roots were placed into sterile petri dishes and all
nodules were harvested and five random living nodules
were placed into DNA extraction tubes. Remaining root
material was cut into approximately 5-cm sections and
six random root segments were collected (a total 30 cm
of root tissue), and was placed a microcentrifuge tube,
surface sterilized in 30% bleach for 60seconds, and
rinsed in ddH2O three times. Phyllosphere (leaf), rhizo-
sphere, nodule, and endosphere (root) tissues were
placed into extraction kits (as above) and stored at — 20°
C until DNA extraction. Plants in the rhizobium geno-
type experiment were harvested as above.

DNA extraction, amplification, and sequencing

Full methods may be found in Supplemental Text S1. In
brief, following extraction, bacterial communities were
targeted by amplifying the V4 region of the 16S rRNA
gene operon as previously described [114] (Supplemental
Text S1; Table S6). Samples were pooled, ligated with
[lumina-specific sequencing linkers, and sequenced in
one reaction of Illumina MiSeq (300PE) at the W. M Keck
Center (Urbana IL, USA). Sequence data were processed
as previously described using the program mothur
(v.1.39.5 [115];), with modifications (see [114, 116, 117]).

Diversity, communities, and statistical analyses

Observed OTU richness (Syps), complement of Simp-
son’s Diversity (1-D), and Simpson’s Evenness (Ep) were
estimated (1000 iterations) by subsampling 1500 se-
quences per sample and the average of these estimators
used for downstream analysis. We used the OTU x sam-
ple table (Table S1) to generate a pairwise dissimilarity
matrix (Bray-Curtis) with the above subsampling and it-
eration framework. We used fully factorial three-way
ANOVA to test for effects of plant compartment, soil
origin, or plant genotype on diversity estimators. Data
were transformed to increase normality by using logit
transformations (1-D and Ep) and Box-Cox transforma-
tions (richness) by compartment prior to analysis
(Rhizosphere A = 1.6, Root A = 0, Leaf A = — 0.2, Nodule
A = -0.2). To investigate whether bacterial communities
shifted across genotypes and soil origin, we conducted a
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series of one-way PerMANOVAs [118] separately for
each compartment (adonis function in the R package
vegan; R core team 2017 [119];), since initial analysis
suggested that communities across plant compartment
were extremely different (F3 115 = 6.32, P < 0.001).

We visualized communities using nonmetric multidi-
mensional scaling (NMDS) as implemented in mothur
using 1000 iterations (3D stress = 0.123), and used axes
loading scores to examine community shifts across ge-
notypes and soil origin where PerMANOVAs were sig-
nificant. To quantify the amount of bacterial community
variation accounted for by each treatment and inter-
action, we used a modified principal variance component
analysis (PVCA [120, 121];). Briefly loading scores from
each of the first 10 NMDS axes (representing over >
99% variation) were used as dependent variables in ran-
dom effects models using restricted maximum likelihood
(REML) to determine the percentage of variation ex-
plained by each treatment, interactions, and residuals.
These variance partitions were then weighted by the per-
centage of community variation explained by the NMDS
axis (R%) (see [122]) then scaled and summed across all
tested axes to total 100%.

We identified biomarker OTUs that were over-
represented between plant compartments, soil origins,
or for genotypes within compartments using independ-
ent linear discriminant analysis effect size (LEfSe [123];)
for each comparison. LEfSe uses Kruskal-Wallis and
pairwise Wilcoxon signed-rank tests, signed linear dis-
criminant analysis (LDA) log scores, and associated p
values to identify OTUs that are biomarkers for a par-
ticular treatment. Since individual plants were isolated
in Magenta boxes, we also used a paired effect size ap-
proach on the 20 most abundant OTUs to test whether
these taxa differed in abundance across compartments
within individual plants. To calculate paired effects sizes,
the differences between the relative abundance of each
OTU for each compartment (within the same plant)
were divided by the sum of the relative abundances. We
then visualized the obtained effect size quartiles and
used paired Wilcoxon signed-rank tests of whether
OTUs differed between compartments within a plant.

To investigate the composition of nodule communi-
ties, we identified core bacterial taxa within nodules (de-
fined as found in greater than 50% of all nodule
samples) to distinguish between transient taxa that may
incidentally be found in the nodules from those that
may have tighter associations. To test whether nodule
communities were deterministically, versus independ-
ently stochastically, structured from root or rhizosphere
communities, we calculated pairwise Src (Beta Raup-
Crick) values [124, 125] to estimate the probability of
pairwise community dissimilarity compared to null
models based on data randomization. Using the program
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PaST (v3.12 [126];) with 1000 replicates, we calculated
pairwise standardized Src values between nodule and
root (or rhizosphere) communities for the same plant in
a paired design as above (- 1 < Brc < 1, where |frc| >
0.95 indicates divergence from null expectation; two-
tailed test, alpha = 0.05). We then used Fisher’s exact
two-tailed tests on the number of significant paired Src
values to determine whether community similarity be-
tween compartments differed between genotypes or soil
origins, and whether root-nodule and rhizosphere-
nodule deterministic assembly rates differed.

To further investigate root nodule colonization dy-
namics, we investigated if nodule assembly could be ex-
plained by OTU competition, suggesting assembly rules
driven by co-occurrence dynamics [127]. To do so, we
tested our obtained Nodule OTU x sample matrices (as
implemented in mothur, both with and without the ex-
clusion of OTUl—Ensifer) against a null distribution
(using the metric COMBO) [128] with the null model al-
gorithm SIM6—these were selected as these best fit as-
sumed dynamics associated with nodule colonization
including that probabilities of occurrence within nodules
are proportional to richness and following recommenda-
tion by [127] with 10,000 iterations. Additionally, to ex-
plore nodule OTU co-associations with Ensifer, we
utilized a SparCC (Sparse Correlations for Componential
Data) [129] following data filtering recommendations
[130] as implemented in mothur (10 iterations with
1000 permutations).

Further interrogating endophytic Ensifer

Because Ewusifer bacteria were exceedingly common
throughout all plant compartments (see “Results”), we
examined the potential for sub-OTU variation within
OTUL (Emsifer) by first harvesting all sequences from
OTUs identified as Rhizobaceae using the script
mothur2oligo  (http://deneflab.github.io/MicrobeMiseq),
then used minimum entropy decomposition (MED
[131];) to demarcate distinct genetic groupings using
Shannon entropy of obtained sequences. Representative
sequences for the 17 identified nodes were then com-
pared (BLASTn) against the representative sequences of
OTU1, and MED nodes matching OTU1 at > 99% iden-
tity were retained (Table S5). This identified four Ensifer
nodes, two common (MED 3, MED 6) and two rare
nodes (MED 101, MED 102). Next we tested whether
the distributions of MED nodes differed across soil ori-
gin, genotype, or plant compartment using a series of
Pearson’s chi-squared tests on node contingency tables,
implemented in R (function chisq.test; p values were
simulated using 10,000 Monte Carlo replications because
some cells including minor nodes have low expected
values).
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Because we demarcated multiple MED nodes (see below),
we aimed to investigate if these different Ensifer strains might
have dissimilar genomic and plasmid composition as well,
potentially indicative of differential nodulating and diazo-
trophic capabilities. Thus, we further explored the genomic
composition of Ensifer throughout the plant using shotgun
metagenomic sequencing for a subset of libraries used in 16S
sequencing (Table S7). Libraries were prepared using the
Tecan UltraLow DNA Library construction kit and se-
quenced on NovaSeq 6000 150 PE, using NovaSeq SP re-
agent kit (all library construction and sequencing was
performed by the Roy J. Carver Biotechnology center at the
University of Illinois). We generated, demultiplexed, and
adapter-trimmed fastq files using bcl2fastq v2.2 then assessed
sequence quality using FastQC and performed quality con-
trol using bbduk (qtrim = rl trimq = 12 hdist = 1 k = 27 min-
lenfraction = 0.6 minlen = 40 maxns = 1 maq = 8) [132]. To
remove sequences corresponding to plant DNA, reads were
mapped against the Medicago Mt 4.0 genome [133] using
bowtie2 --sensitive [134]. Read pairs in which either read
mapped to the Medicago reference were removed.

We used the shotgun data in two ways to examine the
similarity between Ensifer found outside versus inside the
nodule compartment. First, we compared whole-genome
similarity of populations of Eusifer from different plant
compartments of the same plant. We assembled microbial
reads using metaSPAdes 3.14.0 [135]. We used sends-
ketch.sh in the BBtools suite [132] to identify scaffold
taxonomic identity, and we compared scaffolds greater
than 1 kb in each assembly to RefSeq [136]. Scaffolds that
had best hits to any Ensifer genome were then selected,
and BLASTn [137] (ungapped) was used to determine glo-
bal sequence identity between Emusifer scaffolds across
endophyte and nodule compartments from within the
same plant (when scaffolds > 100 km and average nucleo-
tide identity > 95% or Ewnsifer in RefSeq). Foliar samples
were overwhelmed with Medicago sequences, and < 1% of
the remaining reads mapped to E. medicae WSM419, so
these were omitted from further analyses.

Differences in gene content could exist between otherwise
similar genomes [138]. Thus, we next asked whether all Ensi-
fer had similar genome content (chromosome, pSymA, and
pSymB) by comparing the relative abundance of reads map-
ping to each of the two symbiotic plasmids relative to those
mapping to the chromosome. To do this, we first mapped
reads to a reference assembly (E. medicae WSM419 assem-
bly [139] using Bowtie2 in -sensitive mode), which was the
most similar and used FeatureCounts [140] to parse the out-
put of Bowtie2 and determine the number of reads mapped
onto each coding sequence. Samples with fewer than 20
reads mapping to common core gene rpoB [141] belonging
to Ensifer medicae WSM419 were not included in further
analyses, as the signal to noise ratio of these samples was ex-
pected to be low. To ask whether symbiotic plasmid
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abundance might change across compartments, we calcu-
lated an estimate of the fraction of Ewmsifer cells possessing
each of pSymA and pSymB. For each of the remaining sam-
ples, we divided the reads (per megabase) that mapped to
the plasmid by the reads (per megabase) that mapped to the
chromosome (representing all Ensifer cells), then tested
whether this ratio differed between root endosphere and
nodule compartments using a Wilcoxon-Mann-Whitney
test.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540168-020-00915-9.

Additional file 1:. Table S1 Full matrix of sequence counts for OTUs
(retained) with sample identification. Listed in sample name are soil
location (C - Corsica; F - France), genotype (1, 27, 96), replication
number (a, b, ¢, d, e), and plant compartment (L — Leaf; N — Nodule; R -
Root (endosphere); and S - Soil (rhizosphere)).

Additional file 2:. Table S2 Full OTU information including total
sequence count, sequence distribution across compartments, sequence
distribution across genotypes, sequence distribution across soil location,
LEfSe results (where significant) and to which compartment, LEfSe results
(where significant) and to which soils, representative OTU sequences, and
full OTU taxonomy string (with bootstrap support for taxonomic rank).

Additional file 3:. Figure ST Venn diagrams of shared OTUs across
compartments (a) and soil sources (b). Only OTUs greater than 10
sequences within a particular compartment are included.

Additional file 4:. Figure S2: Nonmetric Multidimensional Scaling plot
(Bray-Curtis) of rhizopsheric bacteria plotted by soil origin (France or
Corsica). PERMANOVA statistics indicate that communities differ between
soil origin. Insert represents Axis 3 loading scores (explains 6.61% of
community variation) across soil origin (t-test) showing Corsican samples
have lower average loading scores than French soils.

Additional file 5:. Table S3 Core OTUs with taxonomy found within
nodule communities across sampling design, an OTU was defined as
core if present in >50% nodule samples

Additional file 6: Table S4 ANOVA results of Ensifer Inoculation
experiment are presented across compartments, Ensifer genotypes, and
compartment X genotype interactions. Complement of Simpson'’s
Diversity and Evenness were transformed using logit transformation and
Richness was transformed using Box-Cox functions (\ = 0.478) prior to
analysis.

Additional file 7: Table S5 Results of BLASTn identification of all
demarcated Ensifer MED nodes. Where these MED nodes best matched
Ensifer sp. or our OTU1 representative sequence, full blast results are also
presented. The four nodes that matched to OTU1 were used for analysis.

Additional file 8:. Supplementary Text S1 Supplementary methods for
DNA extraction, amplification, and sequencing, and bioinformatics for 16S
rRNA gene sequencing.

Additional file 9:. Table S6 Primer and MID sequence information for
16S rRNA gene amplicon sequencing, with sample identifications. MIDs
and forward primer (515f) were used for secondary PCR reactions.

Additional file 10: Table S7 Sequencing and Assembly Information for
Metagenomic Samples. Count of sequences per sample before and after
quality control, as well as count of sequences considered plant
sequences and Ensifer sequences for each sample. Summarization of
reads mapped to plasmid and chromosome for Ensifer medicae WSM419
for each sample.
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