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Abstract

Background: Polycyclic aromatic hydrocarbons (PAHs) are of environmental and public health concerns and
contribute to adverse skin attributes such as premature skin aging and pigmentary disorder. However, little
information is available on the potential roles of chronic urban PAH pollutant exposure on the cutaneous
microbiota. Given the roles of the skin microbiota have on healthy and undesirable skin phenotypes and the
relationships between PAHs and skin properties, we hypothesize that exposure of PAHs may be associated with
changes in the cutaneous microbiota. In this study, the skin microbiota of over two hundred Chinese individuals
from two cities in China with varying exposure levels of PAHs were characterized by bacterial and fungal amplicon
and shotgun metagenomics sequencing.

Results: Skin site and city were strong parameters in changing microbial communities and their assembly
processes. Reductions of bacterial-fungal microbial network structural integrity and stability were associated with
skin conditions (acne and dandruff). Multivariate analysis revealed associations between abundances of
Propionibacterium and Malassezia with host properties and pollutant exposure levels. Shannon diversity increase was
correlated to exposure levels of PAHs in a dose-dependent manner. Shotgun metagenomics analysis of samples (n
= 32) from individuals of the lowest and highest exposure levels of PAHs further highlighted associations between
the PAHs quantified and decrease in abundances of skin commensals and increase in oral bacteria. Functional
analysis identified associations between levels of PAHs and abundance of microbial genes of metabolic and other
pathways with potential importance in host-microbe interactions as well as degradation of aromatic compounds.

Conclusions: The results in this study demonstrated the changes in composition and functional capacities of the
cutaneous microbiota associated with chronic exposure levels of PAHs. Findings from this study will aid the
development of strategies to harness the microbiota in protecting the skin against pollutants.
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Background
The human skin hosts a diverse community of com-
mensal bacteria, fungi, viruses, and parasites, which
collectively constitute the skin microbiota. The skin
microbiota is indispensable for host skin health, as
dermatological conditions have been linked to the
alteration of the cutaneous microbiota [1–3]. Recent
developments in the field have provided insights into
how the cutaneous microbiota is influenced by physio-
logical, anthropogenic, and environmental factors [4–6].
In particular, the proximity of the cutaneous microbiota
to the external environment raises questions about the
degree to which the environmental exposome can modify
these microbes, and how such modifications may affect
skin health.
Environmental pollution is now a global concern, as

the World Health Organization (WHO) estimates that
over seven million people die annually due to illnesses
attributable to both ambient and indoor air pollution
exposure [7]. Atmospheric pollution is a particularly dire
issue in China, where rapid industrialization has led to
alarming levels of pollutants across cities. Clinical stud-
ies have correlated daily exposure to particulate matter
(PM) with increased skin pigmentation spots and wrin-
kles [8–10]. Among the constituents of harmful atmos-
pheric pollution, polycyclic aromatic hydrocarbons
(PAHs), a class of organic pollutants in ambient air
commonly associated with PM, may enter the human
body and bloodstream via inhalation, ingestion, and der-
mal absorption [11–13]. While chronic dermal exposure
to PAHs may be associated with premature skin aging,
pigmentary disorder, acne, and skin cancer [10, 14, 15],
the exact mechanisms by which PAH pollution harms

the skin remain poorly understood and are likely to be
complex and multifaceted.
Recently, bacterial skin commensals have been demon-

strated to degrade different PAHs and related xenobiotic
compounds [16, 17]. Such reports demonstrate a poten-
tial ecological connection between PAH exposure and
the microbiota in skin disorders. Given the health-
related risks of PAH exposure, the importance of the
skin microbiota and the ability of skin commensals to
metabolize PAHs, the roles PAHs have in the cutaneous
microbiota deserve to be comprehensively examined.
Therefore, using amplicon- and metagenomics-based
sequencing, cheek and scalp microbiota of 204 individ-
uals residing in two cities in China with different levels
of exposures to PAHs and related pollutants, one heavily
polluted (Baoding) and the other less so (Dalian) (Fig. 1),
were characterized with a focus on the potential roles of
pollutant exposure on shaping the skin microbiota. The
results from this study demonstrate that differences in
pollutant exposure levels have profound effects on the
skin microbial community composition in a dose–effect
manner, and on their functional potentials that may be
important for microbiota-skin homeostasis.

Results
Skin site and city as main drivers of microbiome variation
in study population
Participants living in the two cities were evaluated for
their facial signs and exposure to PAHs in 12-cm hair
samples (reflecting the extent of exposure during a 1-
year period) [10, 11]. An increased severity was observed
in almost all facial signs, including wrinkles and pigmen-
tation disorders, in individuals living in Baoding [10].

Fig. 1 Cohort city characteristics. a Skin microbiota from individuals living in the cities of Baoding and Dalian in China were characterized. City
population figures obtained from Palazzi et al. [11]. b Annual mean concentrations of PM10 and PM2.5 in outdoor air for cities of selected
countries for the years 2013 to 2016. Concentration measurements for Baoding and Dalian are highlighted. PM10 and PM2.5 data acquired from
the WHO (http://www.who.int/airpollution/data/cities/en/, accessed 5th November 2018)
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Furthermore, biomonitoring of PAHs showed quantita-
tive differences in the exposure levels between the two
populations [11]. Specifically, of the parent PAHs and
metabolites detected, 14 out of 15 and 14 out of 56 pre-
sented significantly higher concentrations in the hair
samples of subjects from Baoding compared to Dalian,
respectively. In Baoding, the median concentration was
1.5 to 2.8 times higher for parent PAHs and 1.1 to 2.3
times higher for metabolites than in Dalian. Among the
parent PAHs quantified, higher levels were observed for
phenanthrene, fluoranthene, pyrene, fluorene, acenaph-
thylene, and anthracene, while for metabolites, 9-OH
fluorene, 2-OH-naphtalene, and 1-OH-anthracene were
higher [11].
Amplicon sequencing provided an overview of the cheek

and scalp microbiota profiles of individuals residing in Bao-
ding and Dalian (Fig. 2a, b). The skin site was a major
driver of taxonomic variation. Greater relative abundances
of Propionibacterium (false discovery rate (FDR)-adjusted p
= 8.8×10−16), Staphylococcus (FDR-adjusted p = 8.8×10−16),
and Malassezia (FDR-adjusted p = 6.6×10−16) were
detected on scalps than on cheeks (Fig. 2c). Enhydrobacter,

a bacterial genus thought to be enriched in Chinese individ-
uals [18–20], was ten times more abundant on cheek sites
(FDR-adjusted p = 8.8×10−16) compared to the scalp. Other
top genera included skin colonizers with presumptive hu-
man and environmental origins (Fig. 2d). Here, we show
that city was an additional main driver of taxonomic varia-
tions. Communities from Dalian showed a higher abun-
dance of Propionibacterium and a greater diversity of sub-
genus oligotypes (OGTs) within Propionibacterium, namely
an increased relative abundance of OGT02 (relative abun-
dance of 2.0% and 24.0% in Baoding and Dalian,
respectively, Additional file 1: Figure S1a, FDR-adjusted p =
8.8×10−16). In contrast, distributions of Staphylococcus and
Corynebacterium OGTs appeared to be body site-specific,
with Staphylococcus OGT01 more abundant on scalps
(19.4% and 72.2% on cheeks and scalps, respectively,
Additional file 1: Figure S1b, FDR-adjusted p = 8.8×10−16),
and Corynebacterium OGT01 more abundant on cheeks
(21.4% and 12.8% on cheeks and scalps, respectively,
Additional file 1: Figure S1c, FDR-adjusted p = 2.8×10−10).
Differential abundance analysis was performed to high-

light city differences in the enrichment of operational

Fig. 2 Taxonomic overview of the skin microbiota. Major (a) bacterial and (b) fungal genera detected on skin and scalp sites in Baoding and
Dalian. c Relative abundances of common colonizers Propionibacterium, Staphylococcus, and Malassezia across cities and sites. d Relative
abundances of other common human-associated and environmental genera detected across cities and sites
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taxonomic units (OTUs) or taxa, associated with adverse
skin phenotypes (healthy vs. acne on the cheek and
healthy vs. dandruff on the scalp, Additional file 2: Figure
S2). Taxa of the same genera were found differentially
abundant in the two cities (e.g., OTU_B5 and B10 of Cor-
ynebacterium, OTU_B11095 and B2738 of Staphylococcus,
and OTU_F4802 and other OTUs of Malassezia were
over-represented in Baoding and Dalian, respectively).
Micrococcus, Paracoccus, Ralstonia, Novosphingobium,
and Aestuariimicrobium (Additional file 2: Figure S2),
genera that have been documented to break down PAHs
and related compounds [16, 21–24], were among the taxa
enriched in Baoding independent of the skin or scalp type.
The majority of the differentially abundant fungal taxa
were enriched in Dalian.
Microbial diversity (i.e., alpha-diversity) analysis showed

that cheeks were more diverse than scalps for both bac-
teria and fungi (Additional file 3: Figure S3a), and there
was a higher diversity in the cheek samples from Baoding
compared to Dalian samples (FDR-adjusted p = 0.0002 for
both bacteria and fungi). In terms of skin type, individuals
from Baoding with acne presented a slightly lower
bacterial diversity on cheek compared to healthy indi-
viduals, while acne had no association with bacterial
diversity in Dalian individuals nor an association with
lower fungal diversity in either city (Additional file 3: Figure
S3b). Scalp samples did not differ in diversity between
healthy or dandruff-affected individuals (Additional file 3:
Figure S3c).
As the microbial community compositions (i.e., beta-

diversity) were significantly different between skin sites
(Additional file 4: Table S1), community dissimilarity
was analyzed for each site and skin type. For cheeks, the
city was a significant clustering factor for both bacterial
and fungal communities regardless of the metric used
(Additional file 4: Table S1), whereas for the scalp, the
bacterial composition (weighted UniFrac distance) was
not different between cities (Additional file 4: Table S1).
In Baoding only, individuals with acne presented differ-
ent bacterial community compositions on cheeks, as com-
pared to healthy subjects (Additional file 4: Table S1).
Similarly, bacterial community composition on dandruff-
affected scalps in Baoding clustered away from healthy
scalps (Additional file 4: Table S1) and was marginally
significant when classified according to dandruff severity
(Additional file 4: Table S1). The age of the participants was
a significant factor when explaining fungal communities on
cheeks in Baoding but not in Dalian. Scalp fungal commu-
nity memberships and compositions within each city did
not appear to be influenced by age or dandruff symptoms.
No significant effect of age was observed on the bacterial
community. Overall, these results suggest complex inter-
plays between how skin site, cohort location, and skin type
potentially affect the skin microbial community structure.

Acne and dandruff were associated with reduced
integration and stability in their cross-domain association
networks in Baoding and Dalian
Recent optimization of correlation network algorithms
has enabled the analysis of inter-domain associations
[25]. Here, using bacterial and fungal data of the 204
subjects, we applied correlation networks to explore
whether (1) the microbial association network structural
properties differed between cheek and scalp sites of the
two cities, and (2) the microbiota of acne and dandruff
sites showed changes in network stability compared to
healthy sites in Baoding and Dalian.
The majority of the inter-domain associations detected

here were positive regardless of city, site, or site pheno-
type (acne/dandruff vs. healthy, Fig. 3a, Additional file 5:
Figure S4, and Additional file 6: Table S2). Central nodes
were not necessarily the most abundant OTUs, suggest-
ing that the roles of taxa in network associations were
independent of abundance. Some of the strongest positive
correlations were observed between a wide range of bac-
teria and fungi, while the majority of negative correlations
involved Malassezia (Additional file 6: Table S2). Import-
antly, taxa of Malassezia and those of Propionibacterium
and Staphylococcus were involved in both positive and
negative cross-domain correlations (Additional file 6:
Table S2). For both cities, microbiota networks on cheeks
with acne and scalps with dandruff were less integrated
than their healthy counterparts, with lower average node
degree (Fig. 3b) and decreased network stability upon
node attack removal (Fig. 3c), reminiscent of a previous
work documenting the network collapse of dandruff-
affected sites [2]. This shift in average node degree was
lower in Baoding than in Dalian in both skin and scalp
conditions. Nonetheless, our observations here show that
microbial network fragility may be a general phenomenon
associated with adverse skin conditions.

Bacterial and fungal taxa showed significant associations
with exposure levels of PAHs and skin parameters
independent of skin site and city of origin
In addition to city differences, the analysis of PAHs in the
hair samples by Palazzi et al. [11] revealed that each person
had a PAH pollution profile composed of diverse PAHs (par-
ent and metabolites) at various concentrations averaged over
a 1-year exposure period. Therefore, instead of using one sin-
gle PAH as a biomarker, we defined an index of the pollution
exposure intensity using a principal component analysis
(PCA)-based approach to delineate eight groups of subjects
with an increasing score of pollution in order to further
investigate the PAHs dose-response [26] (Additional file 7:
Figure S5a-b and Additional file 8: Table S3). When cheek
samples were considered, we observed negative and positive
correlations between PAH exposures and relative abun-
dances of OTUs classified as Propionibacterium (Spearman’s
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rho = −0.162, p = 0.022) and Malassezia (Spearman’s rho =
0.148, p = 0.035) respectively, suggesting a dose-dependent
response between the PAH exposure levels and the abun-
dances of these two major skin colonizers. Scalp sites showed
a similar trend for Malassezia (Spearman’s rho = 0.143, p =
0.0041) but not Propionibacterium (Spearman’s rho =
0.0479, p = 0.50). A shift in overall taxonomic composition
was also observed along with the different pollution exposure
groups (Additional file 7: Figure S5c-d). In addition, samples
from individuals with increasing levels of PAHs presented
greater Shannon bacterial diversity on check and scalp (Add-
itional file 7: Figure S5e-f), whereas positive correlations of
fungal diversity across the exposure groups was significant
only on scalp (Additional file 7: Figure S5g-h).
Sparse canonical correlation analysis (sCCA) was per-

formed to explore global associations between relative
abundances of OTUs and overall PAH pollutant expos-
ure. Significant correlations were observed between ex-
posure levels of PAHs and 23 bacterial (Additional file 9:
Figure S6a and Additional file 10: Table S4) and 21 fun-
gal (Additional file 9: Figure S6b and Additional file 10:
Table S4) OTUs. In order to obtain a representation of
the subjects in a common consensus space (compromise
space of latent components that integrated either bacter-
ial and PAH modalities or fungal and PAH modalities), a

hierarchical multi-block analysis (MAXVAR-A) based
on variables selected from the sCCA was carried out
(Additional file 9: Figure S6c-d). The consensus represen-
tation exhibited clear grouping between samples from the
two cities, even though the city of origin was not included
in the analyses, suggesting correlations between the pres-
ence of pollutants and microbial taxa on the skin.
Multivariate association with linear models (MaA-

sLin2) was performed to further assess the relationships
between OTUs and host factors including exposure
levels to specific PAHs and related pollutants while ac-
counting for the effects of covariates. Various bacterial
and fungal OTUs were significantly associated with
host’s age, city, and presence of acne or pigmentary dis-
order frequency for cheek and dandruff severity for scalp
samples (Additional file 11: Table S5). Interestingly, the
majority of the significant associations detected (~60%)
were those between the relative abundances of particular
OTUs and exposure of specific PAHs and related com-
pounds (Additional file 11: Table S5). Among the signifi-
cant correlations, dandruff severity was correlated to 5
Malassezia OTUs in scalp samples, which is similar to a
previous study [27], while in cheek samples, a few bac-
terial and fungal OTUs were correlated to acne (n = 2),
age (n = 7), and pigmentary disorder frequency (n = 5).

Fig. 3 SPIEC-EASI cross-domain correlation network analysis of the skin microbiota. a Overall cross-domain network structure for the cheek and
scalp sites (city combined) and skin condition. Taxa are represented by nodes and shaded by their domain (bacteria in orange, fungi in brown).
Blue and red edges represent positive and negative correlations, respectively. Node size and edge thickness refer to OTU abundance and
correlation strength, respectively. b Node degree distribution of networks for cheek and scalp microbiota, grouped by city and skin condition.
Arrows indicate the decrease in peak degree distribution from healthy to affected skin sites for the respective cities. c Structure stability for
microbial networks of cheek and scalp sites of different cities and skin phenotypes. Decrease in network stability is represented by percentage
reduction of natural connectivity upon betweenness-ranked node attack removal
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Majority of pollutant-associated signature taxa deviated
from the neutral assembly process
A recent study demonstrated that the degree of
urbanization in a city may be associated with differences
in the accuracy of the Sloan neutral model in predicting
the microbial assembly process on cheeks [28]. Here, we
tested whether both the cheek and scalp microbiota in
our cohort can also be explained by the neutral model.
As demonstrated by the lower Akaike information criter-
ion (AIC) score, the neutral model was more suitable in
predicting the assembly of the skin microbiota in our
cohort compared to the binomial and the Poisson
models (Fig. 4a). For both bacteria and fungi, cheek sites
from the more urbanized city of Dalian showed a greater
tendency for niche-based assembly compared to the
more industrial city of Baoding (as indicated by the
lower goodness-of-fit R2 values and migration rates m
on cheeks in Dalian, Fig. 4b). In contrast, the scalp sites
showed the opposite trend, where Baoding showed a
greater tendency for niche-based assembly (Fig. 4c),
suggesting that both city and skin site contribute to the
ability of the neutral model to predict skin microbial
assembly.
The majority of the OTUs fell within the 95% confi-

dence interval of the neutral model prediction (Fig. 4d
and Additional file 12: Table S6). Skin colonizers includ-
ing Propionibacterium, Staphylococcus, and Malassezia
had greater proportions of their OTUs presenting above

the prediction model compared to the overall bacterial
and fungal communities (Fig. 4d), indicating that these
genera contained higher proportions of their OTUs at a
greater prevalence than expected by the model given
their abundance. Conversely, for both cities, Paracoccus
and Corynebacterium had greater proportions of their
OTUs presenting below the model prediction, indicating
that these genera contained higher proportions of their taxa
detected in fewer samples than expected. Different bacterial
and fungal OTUs of common skin genera (Propionibacter-
ium, Corynebacterium, Staphylococcus, Malassezia) could
be consistently detected above or below the prediction
model regardless of city and site (Additional file 13:
Table S7). Also, a large number of OTUs of unknown
genus deviated from the model prediction in Baoding
regardless of site or within scalp sites regardless of the
city (Additional file 13: Table S7). The OTUs showing
significant associations with exposure levels according
to MaAsLin2, in the majority, deviated from the neutral
model prediction (Additional file 11: Table S5).

Associations between exposure levels of PAHs and
commensal bacteria on skin revealed by pilot metagenomics
A pilot metagenomics analysis involving samples from
representative individuals of the lowest and highest PAH
exposure groups (Additional file 7: Figure S5a) was
undertaken to further evaluate the species-level taxo-
nomic and functional relationships of the skin microbial

Fig. 4 Sloan neutral model predictions of skin microbiota. a AIC score comparing the ability of the neutral, binomial, and Poisson models in
explaining the skin microbiota assembly process. b, c Sloan neutral model prediction of (b) cheek and (c) scalp microbiota grouped by city. OTUs
are represented by data point and colored according to whether the taxon fitted above (green), within (purple), or below (orange) the 95%
confidence interval (dotted lines). R2 values (measurement of fit to neutral assembly process) and m values (estimated migration rate) are
indicated for each prediction. d Proportion of OTUs within each of the main skin-associated microbial genera according to their Sloan neutral
model prediction. Bars labeled “bacteria” and “fungi” represent the overall proportion of all taxa within the respective domains
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communities upon PAH exposure, which could not be
assessed by amplicon sequencing. From the 32 samples
included in the analysis (n = 13 samples for lowest PAH
exposure group, n = 19 samples for highest PAH ex-
posure group), the majority of reads were assigned to
bacteria (average relative abundance 88.5%), followed
by virus (10.2%), fungi (1.25%), and archaea (0.005%)
(Additional file 14: Figure S7). Detection of species
within the genera Propionibacterium, Corynebacter-
ium, Staphylococcus, Paracoccus, and Enhydrobacter,
which were among the most prevalent and abundant
genera in amplicon analysis, was confirmed by meta-
genomics (Fig. 5a). Propionibacterium acnes (recently
classified as Cutibacterium acnes [29]) phage P101A/
P101D and Betapapillomavirus type 3 were the most
common DNA viruses detected (Fig. 5a), in line with
previous reports showing the dominance of viruses in-
cluding P. acnes-phages on the skin [30]. The cheek
site of one individual (50C) had a high relative abundance
of Betapapillomavirus type 3 (86.6% of the entire micro-
bial community detected). Multiple species of Malassezia,
including M. restricta and M. globosa, were some of the
most abundant fungi detected (Fig. 5a).
MaAsLin2 analysis on metagenomics taxonomic

data revealed an association between specific levels of
PAHs on cheeks with skin commensals Micrococcus
luteus, Acinetobacter johnsonii, Enhydrobacter aerosac-
cus, as well as an unclassified Kocuria species (Fig. 5b
and Additional file 15: Table S8). In particular, sig-
nificant negative correlations were observed between
M. luteus and fluoranthene and benzo[b]fluoranthene,
while a significant negative correlation was detected
between A. johnsonii and phenanthrene, suggesting that
exposure to these PAHs may result in a reduction of com-
mensal colonizers and any potential protective effects pro-
vided by these commensals against pathogen colonization.
In addition, benzo[k]fluoranthene and acenaphthylene
showed significant positive associations with abundances
of oral bacteria Actinomyces viscosus (average relative
abundance 0.006%).

Exposure to specific PAHs associated with different
functions involved in microbial-host interactions
Functional potential profiling of the skin microbiota
identified 721,709 UniRef50 gene families grouped into
6969 KEGG Orthology (KO) families. Within these fam-
ilies, nearly 1746 KOs were identified by MaAsLin2 as
showing significant associations with skin site (25 associ-
ations), city (139 associations), and/or exposure levels to
particular PAHs (1582 associations), encompassing
genes involved in a variety of microbial metabolic, sig-
naling, and information processing functions (Fig. 5c, d
and Additional file 16: Table S9). The number of KOs
associated with each PAH quantified did not appear to

be governed by the molecular weight and structure of
the PAHs. Exposures to some PAHs (e.g., phenanthrene,
benzo[k]fluoranthene, acenaphthylene, fluorene, pyrene,
etc.) were mainly positively associated with the relative
abundances of multiple KOs, while exposures to other
PAHs (fluoranthene, benzo[b]flouranthene, and ace-
naphthene) resulted in an overall negative correlation
with the relative abundances of multiple KOs (Fig. 5c,
d), suggesting that exposures to different PAHs may be
linked to differential microbial functional responses.
KOs associated with exposure levels of PAHs, accord-

ing to MaAsLin2 analysis, included mainly those be-
longing to microbial metabolic pathways linked to (i)
host physiology including biosynthesis of amino acids
and biotin metabolism, (ii) microbial virulence includ-
ing bacterial secretion systems, glycerophospholipid,
and lipopolysaccharide biosynthesis, and (iii) aromatic
compounds degradation (Fig. 5d). For amino acid me-
tabolism, pathways involved in tryptophan metabolism
(K00274 monoamine oxidase and K00128 aldehyde de-
hydrogenase) were negatively correlated to PAHs, while
those related to biosynthesis (K00766 trpD, K01609
trpC, K01695 trpA, K01696 and K06001 trpB) of trypto-
phan were both positively and negatively associated
with exposures to different PAHs. Similar tryptophan
biosynthesis pattern has been reported in S. aureus iso-
lates and metagenomes from atopic dermatitis lesions
[31, 32]. Other amino acid metabolism pathways (histi-
dine, cysteine, and methionine metabolism), which have
been previously related to dandruff scalp [33], were also
associated with exposure levels of certain PAHs.
Abundances of KOs encoding virulence factors such as

secretion systems (K03197 VirB2 and K03194 VirB1
[34]) and peptidoglycan biosynthesis (K00790 murA,
K01924 murC, K01929 murF, K05364 pbpA, K12556
pbp2X, and K00687 pbp2B [35]) were also observed to
be correlated with exposure levels of some PAHs. Specif-
ically, KOs related to lipopolysaccharide synthesis path-
ways, which are crucial for bacterial virulence [36], were
significantly associated with exposure to benzo[a]pyrene.
Genes belonging to pathways related to PAHs deg-

radation such as gyrA (K00015) and fdhA (K00148)
[37] were significantly associated with exposure levels
of acenaphthylene, benz[k]fluoranthene, and fluorene,
in addition to KOs of pathways important for the
degradation of aromatic and xenobiotic compounds
such as benzoate and toluene (Additional file 16:
Table S9). KOs related to phenylalanine metabolism
(K02610 paaB, K02611 paaC, K02612 paaD, K00074
paaH, K02614 paaI, and K02618 paaZ), reported to
be involved in the aerobic strategy of aromatic com-
pounds degradation by bacteria [38], were also associ-
ated with increased exposure levels to multiple PAHs
(Fig. 5d and Additional file 16: Table S9).
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Discussion
Among the constituents of atmospheric pollution, hu-
man exposure to PAHs and related pollutants in ambi-
ent air represents a universal public health issue, partly
because of its association with undesirable effects on

human skin [10, 14, 15]. This study highlighted the
potential roles pollutant exposure have on various
aspects of the skin microbiota, including changes in
diversity and abundances of taxa and alteration of the
functional potentials that may be important for the

Fig. 5 Species-level taxonomic and KO analysis of potential functions fof the skin microbiota based on metagenomics sequencing. a Bacterial,
viral, and fungal species distribution of 32 individuals. In cases where bars were not present, the corresponding domains were not detected in
the samples according to the classification methods employed. Sample names on x-axis are colored based on whether they come from
individuals from the lowest (Group 1, turquoise) or highest (Group 8, brown) of PAH exposure groups. b Correlation network depicting significant
associations between city, skin site and/or PAH exposure levels to the relative abundance of species. Blue and red edges represent positive and
negative correlations, respectively. Species in red indicate those considered to be part of the commensal skin flora. The thickness of edges
represent the magnitude of correlation. Additional file 15: Table S8 shows the correlation magnitude and q values for all significant taxonomic
associations, including those with additional host factors not shown here. c Number of KO gene families showing significant correlations with
exposure to different PAHs. d Correlation network showing significant correlations between city, skin site and/or PAH exposure levels to the
relative abundance of KOs of selected pathways. Blue and red edges represent positive and negative correlations, respectively. The thickness of
edges represent the magnitude of correlation. Additional file 16: Table S9 shows the correlation magnitude and q values for all significant
functional associations, including those with additional host factors not shown here. For both taxonomic and functional analyses, FDR-adjusted p
value (q value) ≤ 0.25 is considered significant as determined by MaAsLin2

Leung et al. Microbiome           (2020) 8:100 Page 8 of 17



commensal microbiota to protect the host against patho-
gens and maintain skin homeostasis. Given the clinical
relevance of pollutant exposure to the skin conditions,
and the PAH biodegradation properties of resident skin
microbes [16, 17], examinations of the interplay between
PAH exposure and skin microbiota enable a first under-
standing of the impacts PAHs and related pollutants
have on cutaneous health.
Consistent with previous works [4–6, 28], this study

showed that skin site and the cohort residing city played
major roles in shaping bacterial and fungal cutaneous com-
munities. In particular, a diversification of the microbiota
was observed along with a reduction in Propionibacterium.
The diversification also included the enrichment of taxa
belonging to genera with biodegradation potentials in the
more polluted city of Baoding. While some of these genera
were detected as rare members of the skin microbiota in
this study and in previous reports [39–41], their ability to
degrade PAHs [21, 42] warrants further attention.
Our network analysis provided a representative estima-

tion of potential ecological relationships by incorporating
cross-domain data [25]. Reduced network structure con-
nectivity and stability on scalp sites affected with dandruff
are consistent with a previous study comparing network
structures between healthy and dandruff-affected scalps
[2]. Here, we showed that acne-affected cheeks also
showed reduced network structural stability, suggesting
that reduced microbial network integrity is a general prop-
erty associated with skin disorders, or conversely that a
robust and stable network may be protective of cutaneous
health. While our study was not able to compare network
features between individuals with varying exposure levels
of different pollutants, future studies focusing on the roles
of PAHs in potentially altering microbial network charac-
teristics may provide solutions for alleviating any adverse
effects of PAHs on skin physiology.
Skin sites and geography influenced how well the neutral

model fitted bacterial and fungal community assemblies. As
demonstrated by Kim et al. [28], cheek microbiota of indi-
viduals from urban centers were better fitted to a niche-
based assembly model. Our observations on cheek sites
were consistent with this notion. In contrast, the scalp data
showed that the assembly process of the microbiota in the
less urbanized city of Baoding was better fitted to the
niche-based model. Taken together, the cheek and scalp
data suggest that assemblies of the bacterial and fungal
communities may be governed by both the environment
and skin site (and possibly additional factors not examined).
This is perhaps expected, as the microbial assembly is a
dynamic process likely to be dependent on both the envir-
onment and host physiology, with the latter known to differ
by skin sites [4]. Different taxa within common skin genera
(i.e., Propionibacterium, Staphylococcus, Corynebacterium,
and Malassezia) can both fit and deviate from the neutral

model prediction, suggesting within-genera differences in
colonization potential and extending previous findings of
varying cutaneous colonization and pathogenic capabilities
between related species and strains [3, 43]. While most of
the taxa in the community fit the neutral model prediction,
the majority of the taxa associated with pollutant exposure
levels deviated from the prediction, indicating that these
microbes may be selected (for or against) among the
populations.
City-associated differences in community composition,

assembly, and network structures described above cannot
be fully attributed to city-based differences in PAH expos-
ure. However, multivariate analyses directly identified as-
sociations between levels of PAHs and microbial members
and their functional profiles. Based on the observations
presented, we propose a conceptual mechanism of the po-
tential roles that PAHs have on the skin microbiota and
cutaneous health (Fig. 6). PAHs are brought to the skin
either by direct contact and exposure or via systemic
bloodstream following inhalation or ingestion (Fig. 6a)
[11–13]. Regardless of the delivery mode, our results dem-
onstrate that detected levels of PAHs were associated with
shifts in abundances of commensal species (Fig. 6b).
Specifically, we detected negative correlations between
fluoranthene and benzo[b]fluoranthene and relative
abundance of the skin commensal M. luteus. Given the
potential protective effects of M. luteus against ultraviolet
(UV)-induced DNA damage on the skin [44], our observa-
tions raise the possibility that PAH-associated DNA
damage [45] could be partially be mediated by changes in
the skin microbiota. The pilot study described here on a
relatively small set of skin microbiota metagenomes
did not detect significant relationships between PAH
exposure and the abundance of another commensal
Staphylococcus epidermidis. S. epidermidis protects
the host against the colonization by external species
and the development of pathogenic traits in hosts
[46], in addition to facilitating wound healing in hosts
[47] and protecting against the growth of skin tumors
[48]. Given the number of protective effects, this
commensal exerts on skin physiology, a more thor-
ough and expanded investigation will allow us to
examine whether PAH exposure is also linked to the
abundance of this protective commensal.
Besides changes in exposure levels of different PAHs

associating with variations in abundances of commensals
skin colonizers, there is also a positive relationship with
the cutaneous abundance of oral bacteria potentially
linked to atopic dermatitis (Fig. 6c) [1]. More signifi-
cantly, oral bacteria have been implicated in skin aging
in Asians over the age of 60 [49], and the observed posi-
tive correlation between exposure levels of PAHs and
abundance of oral bacteria, therefore, highlights one
potential mechanism by which PAHs contribute to skin
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disorders and aging via the accumulation of oral bacteria
on the skin. It is worth noting that the current study in-
volved subjects ≤ 45 years old, which were younger than
the cohort in Shibagaki et al. [49]. Therefore, whether
the accumulation of oral bacteria on the skin in younger
individuals leads to premature skin aging deserves
further attention in the future.
Detected levels of PAHs were associated with changes

in abundances of microbial genes encoding various
metabolic functions (Fig. 6d), consistent with a recent
study demonstrating alterations in the proteome of soil
microbiota following pollutant exposure [50]. Interest-
ingly, genes involved in the metabolism of amino acids
and vitamins, which may be important in the mainten-
ance of healthy scalps [33], showed negative correlations
with exposure levels of some PAHs. This is consistent
with the potential effects PAH exposure have on in-
creased susceptibility to skin conditions (e.g., dandruff
formation) via reducing the microbiota’s potential to
process amino acids and vitamins [33]. Also, exposure
levels to some PAHs were significantly correlated with
genes encoding tryptophan metabolism, which has been
shown to be important for modulating host-microbial
cross-talk [51]. It must be noted that, unlike as demon-
strated in the human gut [51], there is scarce informa-
tion on whether metabolites of these microbial pathways
that appeared to be associated with levels of PAHs play

roles in host skin physiology [52]. However, given that
differences in abundances of microbial genes of the tryp-
tophan pathway are associated with AD [1], our observa-
tions pave the way for future studies in exploring the
potential roles PAH exposure have in affecting potential
interactions between host and the skin microbiota.
Positive correlations between exposure levels of PAHs

and abundances of species detected in our pilot study
are consistent with PAHs being carbon and energy
sources for these taxa [17] (Fig. 6d). While degradation
of PAHs to benign products by skin microbiota can po-
tentially eliminate the detrimental effects of PAHs on
the skin [16], partial metabolism of PAHs may yield a
wide variety of intermediate metabolites that may be
toxic to host tissues and DNA [17]. Given that the cu-
taneous microbiota is strongly governed by the physio-
chemical properties of the skin surface [4], greater
insights into the chemical makeup of the skin following
complete or partial degradation of PAHs and other pollut-
ants will be beneficial in understanding how PAH metabol-
ism affects skin health through modulating microbial
compositions and functions. Specifically, whether changes in
abundances of these functional genes by PAHs are due to
shifts in the microbial community, and/or an adaptive re-
sponse of the existing microbiota, remain to be elucidated.
Following the pilot shotgun metagenomics assessment

in this study, future works involving a larger sample size

Fig. 6 Schematic diagram showing potential roles of PAH exposure on skin microbiota and skin phenotype. a Exposure of PAHs from environmental
and anthropogenic sources. b PAH exposure levels are associated with changes in abundances of skin colonizers, which may change their protective
abilities against potential skin pathogens, as well as host DNA damage. c PAHs can also affect the levels of oral species, which may play roles in altered
skin phenotypes including wrinkle formation and psoriasis. d Changes in PAH levels are also associated with changes in abundances of functional
genes of the microbiota, which may render the skin prone to changes in epidermal physiology and its ability to degrade pollutants
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will undoubtedly provide a more in-depth account of the
potential roles PAH exposure have on the compositional
and functional potential of the cutaneous microbiota. In
addition, while a preliminary assessment was attempted
in determining the viral community of the dataset, and
some reads from the sebaceous cheek and scalp sites
were classified as Propionibacterium phages, our DNA-
based approach did not allow assessment of the RNA-
viral populations. Subsequent works with laboratory and
analytical methodologies specialized for virome analyses
[53] will undoubtedly provide a more comprehensive ac-
count of the skin viral population, which is a crucial part
of the cutaneous microbiota that links to host skin
physiology [4] and acne [54]. Furthermore, metabolic
functions of the skin microbiota working in a consor-
tium to degrade PAHs, as seen in other ecosystems [37],
can be linked to species-level taxonomical information
via future metagenome-assembled genomic analyses.

Conclusions
This study revealed a profound modification of the skin
microbiota under chronic exposure to PAHs, in a dose–
effect manner. Our data further found a reduced network
structure connectivity and stability on affected skin and
scalp sites with acne and dandruff respectively in the con-
text of higher pollution exposure. This shift in the micro-
biota also resulted in modification of the microbiome
functional potential linked to carbohydrates/lipids/amino
acids metabolism, augmented pathogenic potential, and
aromatic compounds degradation, which could be in-
volved in the exacerbation of skin disorders observed in
cities with air pollution. The findings presented here pro-
vide a first step towards a comprehensive understanding
of the skin microbiota of individuals from cities with
different ambient levels of PAHs. Given the continuous
increased exposure of PAHs in almost all citizens in urban
cities, future works adopting multidisciplinary approaches
are required to elucidate the chemical, microbiological,
physiological, and clinical repercussions of PAH exposures
on the skin, thereby safeguarding our cutaneous health.

Materials and methods
Characteristics of the subjects and cities and sample
collection
The research protocol was approved by the Sino-German
Cosmetics Institute Ethics Review Board (Protocol 2015-
033-DY-024) and was conducted according to the princi-
ples expressed in the World Medical Association Declar-
ation of Helsinki. Informed written consent was obtained
from all participants prior to any study-related procedure.
The cohort included in this study was part of a larger
series of works comparing the levels of PAHs in hair [11]
as well as the association of PAH exposure with aging-
associated facial signs [10] between the two cities. All

participants provided information regarding health status,
medical history, and daily habits. The participants had
been living in the respective cities for at least 15 years,
were non-smokers, did not receive antibiotics or systemic
antifungals 1month prior to sampling, did not have acute
cutaneous disorders, nor had used depigmenting/whiten-
ing topical or systemic treatments 3months prior to sam-
pling, or exfoliating products 1 month prior to sampling.
All volunteers had natural hairs from root to tip. In order
to standardize the scalp condition, the participants were
asked to wash their hair and scalp with the provided
shampoo without anti-bacterial compounds for 2 weeks
(three times per week) prior to sampling, and not to
shampoo or apply any hair care or hair-styling product
before sampling. Similarly, they were asked to wash their
face with the provided neutral soap without anti-bacterial
compounds for 3 days (once per day) prior to sampling.
Last shampoo and soap were applied 48 and 24 h respect-
ively before sampling. No other products were allowed on
the scalp, hair, and face until sampling was performed.
All subjects of each city visited on a single occasion the

facilities in Baoding and Dalian at different times in the
morning during two successive weeks (Monday to Friday,
approximately 20 visits per day). Cheek and scalp samples
were collected from 204 healthy Chinese women, aged
between 25 and 45 years, with 102 subjects residing in the
relatively rural and industrial city of Baoding, a northern
Chinese city in Hebei province recording high levels of at-
mospheric pollution, and 102 subjects residing in Dalian,
an urbanized and modern northern Chinese city in
Liaoning province with a lower degree of registered atmos-
pheric pollution (Fig. 1a, b). The cities are located at the
same latitude, share a similar climate and equivalent
UV exposure (UV Index) over the last 15 years. Meta-
data for individuals and samples collected are pro-
vided in Additional file 17: Table S10.
Microbiota sampling was conducted in a climate-

controlled room at 22 °C and 60% humidity. The sam-
ples for microbiome analysis were collected by using
sterile cotton-tipped dry swabs that had been heated
to 150 °C and pre-moistened with ST solution (0.15M
NaCl with 0.1% Tween 20). For cheek samples, swabs
were rubbed firmly on the cheek for 60 s to cover a
surface area of 2 cm2. For scalp samples, swabs were
rubbed firmly on the scalp surface along a line by
making four passages, then the swab was moved to
another line by using a comb. These steps were per-
formed six times to cover a total surface area of 4
cm2. After sampling, each cotton swab was placed
into a microfuge tube and immediately flash-frozen in
liquid nitrogen, and stored at −80 °C prior to genomic
DNA (gDNA) extraction.
For skin physiological data collection, self-assessment

questionnaire, clinical assessment, and skin measurements
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by dermatologists were conducted as described previously
[10]. Scoring of skin signs and phenotypes was graded
by dermatologists based on images as described previ-
ously [10, 55].

Analysis of PAHs in hair samples
Exposure levels of PAHs can be determined through dif-
ferent approaches, such as assessment of pollutants con-
centration in environmental matrices (e.g., air, soil, dust)
or in biological matrices (e.g., blood, urine, hair) [12, 13].
In this study, pollutant exposure levels were assessed via
hair samples, providing results that are representative of
the body exposure due to chemicals incorporated
through biological pathways [11]. Briefly, hair samples
were cut on the occipital area of each volunteer, as close
as possible to the skin, and stored until pollutant meas-
urement. For each subject, only the first 12 cm (starting
from the skin) were analyzed. Considering a hair growth
rate of 1 cm per month for most humans [56], the re-
sults thus correspond to 1 year of exposure prior to the
time of hair sampling. The hair samples went through a
decontamination procedure prior to analysis [57]. After
hair pulverization, hydrolysis, and extraction, the extract
was analyzed by GC-MS/MS or LC-MS/MS as described
previously [11, 58–60]. The limits of detection for PAHs
and metabolites of PAHs quantified were assessed as
described previously [11]. PAH exposure levels for
individuals included in the study are indicated in
Additional file 17: Table S10.

Grouping of subjects according to total PAH exposure
levels
To investigate the relationships between exposure level to
the collection of PAHs and the Shannon diversity index
estimated on the cheek and scalp of individuals, the PAH
measurements of all subjects were represented by a single
score. This score was calculated by performing a principal
component analysis (PCA) on log-normalized PAH mea-
surements and keeping the first principle component
(representing 36% of the total explained variance, PC1) as
the new score variable. The score variable was then discre-
tized into eight categories according to the distribution of
the score variable to obtain eight balanced groups each
containing a similar number of individuals, and with a dis-
tinct level of concentrations of PAHs between groups
(Additional file 7: Figure S5a-b).

Amplicon sample preparation for 16S rRNA gene and ITS
sequencing
gDNA was extracted using the PowerSoil DNA isolation
kit (MO BIO Laboratories, Carlsbad, CA, USA) follow-
ing the manufacturer’s instructions with modifications
as described previously [61]. In addition, following C6
elution, the elute passed through the same column filter

an additional time to enhance yield. Negative controls of
DNA-free water were extracted in parallel. Each gDNA
sample was subjected to triplicate PCR by primers
targeting the bacterial 16S rRNA gene V1-3 region,
which is more accurate for depicting the skin bacterial
community [62], and the ITS1 region as performed pre-
viously [5]. For both 16S rRNA gene and ITS1 analysis,
amplicon-PCR and indexing-PCR were conducted on
the 7500 Fast Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA), and amplicons were puri-
fied with the DNA/RNA Purification Beads (SeqMatic,
Fremont, CA, USA). Library preparation and bacterial
paired-end 300-bp and fungal paired-end 250-bp
sequencing on the Illumina Miseq platform were per-
formed by SeqMatic LLC (Fremont, CA, USA).

16S rRNA gene and ITS sequence processing and
bioinformatics analysis
A total of 28,903,483 and 28,532,432 paired bacterial
and fungal reads respectively in .fastq format were
merged using the “-fastq_mergepairs” command in
USEARCH (v9.2.64). Merged reads were filtered for
quality control using the “-fastq_filter” command in
USEARCH, with a maximum expected error rate of 0.01.
Merged reads were trimmed to 450 bp and shorter reads
were discarded. Filtered reads were subjected to OTU
clustering at 97% sequence identity using the UPARSE
[63] algorithm within USEARCH, and taxonomic infor-
mation was provided for representative sequences of
bacterial OTUs using the “assign_taxonomy.py” com-
mand in QIIME (v1.9) against the SILVA database (128
release). Fungal OTUs were interrogated against a previ-
ously curated fungal database designed for skin micro-
biome surveying [64]. Chimera detection was performed
using UCHIME2 [65] within USEARCH under high-
confidence mode. OTUs in taxonomic lineages present
in greater than 5% of negative controls were deemed
potential contaminants [19] and were removed from the
dataset. In addition, chimeric, chloroplast, and mito-
chondria OTUs were also removed. Following quality
control and removing undesirable reads, a total of 9,656,
916 and 14,649,172 bacterial and fungal reads were
retained, respectively. We verified that there was no bias
in our experimental procedures by sequencing gDNA of
artificial mixes of 10 bacterial and two fungal species
(ZymoBIOMICS Microbial Community Standard, Zymo
Research, Irvine, CA, USA), as well as in-house whole-
cell controls containing mixture of varying proportions
of known bacterial or fungal species (six different bacter-
ial and five different fungal mixture controls were
tested). The expected relative abundances were obtained
in all the controls (data not shown).
Unless specified, the bioinformatics tools and methods

employed applied to both bacterial and fungal sequences.
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Differential abundance analysis was performed using
DeSeq2 available as the QIIME (v1.9) script “differen-
tial_abundance.py.” OTUs with fewer than 100 reads
and present in < 25% of samples in each city (when
comparing between sites within a city) or each skin
site (when the comparison between cities within a
site) were not included in analysis. Taxa with DeSeq2
log2 fold change ≥ |2| and false discovery rate (FDR)-
adjusted p ≤ 0.05 were deemed significantly and dif-
ferentially abundant. Oligotype analysis (pipeline v2.1)
was performed for OTUs classified as Propionibacter-
ium, Staphylococcus, and Corynebacterium. Specific-
ally, all quality-filtered reads (not only representative
reads) clustered into OTUs of the three genera were
subjected to entropy analysis and oligotyping, with
minimum substantive abundance criteria (-M) of
1000, 100, and 500 for Propionibacterium, Staphylo-
coccus, and Corynebacterium, respectively.
Within-sample Shannon diversity was estimated

using the breakaway (v4.0) package in R v3.5.1 [66].
The Good’s estimator of coverage was > 90% for all
but one sample for both bacterial and fungal com-
munities (Additional file 18: Table S11), indicating
that the sequencing depth adopted was sufficient to
capture the microbial diversity and richness. Beta-
diversity analyses were performed to assess the com-
munity membership (unweighted UniFrac and Binary
Jaccard distances for bacterial and normalized fungal
datasets, respectively) and community composition
(weighted UniFrac distance and Bray-Curtis dissimi-
larity for bacterial and normalized fungal datasets,
respectively). Samples with total read counts below
the normalized depth were excluded for alpha- and
beta-diversity analyses.
To identify correlations between PAH exposure levels

and bacterial and fungal taxa, pre-filtering was per-
formed on OTUs based on relative abundance. OTUs
with relative abundance < 0.1% across all individuals
were removed. In addition, a cumulative sum scaling
standardization (CSS) that corrects bias in the evalu-
ation of differential abundance was applied. The CSS
normalization method is an adaptive extension of the
quantile normalization where raw counts are divided by
the cumulative sum of counts up to a percentile deter-
mined using a data-driven approach. This approach
proved to be more robust than the more commonly
used total-sum scaling (TSS) normalization that has
been shown to incorrectly bias differential abundance
estimates in RNA-Seq data derived through high-
throughput technologies [67]. Among the OTUs, 74
bacterial and 69 fungal taxa were selected after filtering
for relative abundance. The PAH measurements were
log-transformed to fit the Gaussian distribution. A total
of 202 individuals with PAH and OTU data were

included in the analyses. sCCA (a regularized version of
the canonical correlation analysis used to study the re-
lationship between two datasets while selecting only
significant correlations [68]) was performed to select
the OTU (bacteria or fungi) and PAH descriptors that
were active in the between blocks relationships. The
sparsity parameters of sCCA were selected with a per-
mutation scheme using the CCA.permute function
from the PMA (v1.0.9) package in R [68, 69]. The
cross-correlation between selected PAHs and OTU
relative abundance (bacteria or fungi) was visualized
using a heatmap representation. Last, in order to obtain
a common representation of individuals of the two
blocks, a hierarchical multi-blocks analysis (MAXVAR-
A) was performed using the RGCCA (v2.1.2) package in
R [70].
To identify specific correlations between OTU

relative abundances and PAH exposure levels while
controlling for host covariates, MaAsLin2 [71] was
performed separately on cheek and scalp samples. For
both skin sites, age group, cohort city, and exposure
levels to PAHs were included as covariates. In
addition, for cheek analysis, host clinical parameters
including acne onset, pore severity, clinical assessment
of wrinkle grade, oiliness, and shininess on foreheads
and cheeks, facial spot intensity, and frequency of pig-
ment spots were also included as covariates. For scalp
sites, scalp oiliness, hair volume, hair root dryness and
greasiness, adherent dandruff scores, consumption of
tap and purified water, and clinical assessment of dan-
druff status were included in analysis. Associations
were considered significant if the FDR-corrected p
value (q value) was ≤ 0.25.

Cross-domain network analysis
SPIEC-EASI (SParse InversE Covariance Estimation for
Ecological Association Inference, v1.0.4), modified for
cross-domain analysis, was performed as described pre-
viously [25]. Networks were generated separately for
Baoding and Dalian individuals with or without acne
(for the cheek), and with or without dandruff (for the
scalp). OTUs present in < 25% of the samples consid-
ered in each network analysis were excluded. SPIEC-
EASI correlations ≤ |0.15| were excluded. The overall
structure for each of the networks was assessed via
degree distribution and natural connectivity in response
to directed node removal based on decreasing node be-
tweenness centrality.

Sloan neutral model prediction
To assess whether the cheek and scalp communities
for both cities exhibit either a neutral or a niche-
based community assembly process, the Sloan neutral
model analysis [72] was performed for each city and
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site as a group (i.e., total four groups) as described
previously for the skin microbiota [28], with bacterial
and fungal reads rarefied to 10,452 and 8,194 reads,
respectively. Groups with a higher R2 value is consist-
ent with the neutral microbial community assembly
process, and the estimated migration rate (m) is a
proxy of dispersal limitation. The fit of the neutral
model was compared with the binomial and Poisson
models based on their AIC scores. The Sloan model
prediction and statistics were performed in R [28].

Metagenomics sequencing library preparation and analysis
Thirty-two cheek and scalp samples were selected for
metagenomics sequencing analysis. Samples from indi-
viduals in pollutant exposure groups one (lowest PAHs
score group, n = 13) and eight (highest PAHs score
group, n = 19) were selected (pollution exposure group-
ing set up as described above, Additional file 7: Figure
S5a and Additional file 17: Table S10). gDNA of each
sample was normalized to 10 ng/μL prior to library
preparation. Library preparation was performed using
standard Illumina protocol, and the final library was
quantified with the 2200 TapeStation (Agilent, Santa
Clara, CA, USA) and sequenced with the Illumina
MiSeq platform by SeqMatic LLC (Fremont, CA, USA)
to generate 150-bp pair-end reads.
Raw reads were subjected to adapter removal using

AdapterRemoval (v2.2.2) [73], quality control and
human DNA read removal using KneadData v0.6.1
(http://huttenhower.sph.harvard.edu/kneaddata), with
reads shorter than 50 bp and reads mapping to the
human reference genome hg38 discarded. Sequence
quality information is provided in Additional file 19:
Table S12. Taxonomic assignments of the filtered reads
were performed using MetaPhlAn2 (v2.6.0, for bacterial
and viral classification) [74] and FindFungi (v0.23.3, for
fungal classification) [75]. Comparison of taxonomic
classification between shotgun metagenomics and
amplicon sequencing showed concordance (Additional
file 20: Figure S8), consistent with previous works
suggesting that the V1-3 region of 16S rRNA gene is
appropriate for skin microbiota analyses [62]. Func-
tional assignments were performed using HUMAnN2
(v0.11.1), with outputs expressed as reads per kilobase
per million reads (RPKM). HUMAnN2 outputs were
converted to KEGG Orthology (KO) gene families for
heatmap representation and multivariate analyses of
functional genes. MaAsLin2 was performed to associate
PAH exposure to MetaPhlAn2 and HUMAnN2 data,
with FDR-corrected p value (q value) ≤ 0.25 considered
as significant as previously reported [76, 77]. Graphical
network representations of significant MaAsLin2 corre-
lations were designed using Cytoscape (v3.7.2) [78].

Statistical analysis
Non-parametric Mann-Whitney test was performed to
test for significance between two groups, while
Kruskal-Wallis test was performed to test for signifi-
cance between three or more groups. FDR-correction
was performed using the “p.adjust” command in R.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00874-1.

Additional File 1: Figure S1. Oligotype distribution of (a) Propionibacterium,
(b) Staphylococcus, and (c) Corynebacterium grouped by city and body site.

Additional File 2: Figure S2. Differential abundance analysis of taxa
significantly associated with city differences within cheek or scalp
phenotype (healthy or acne/dandruff). Taxa with DeSeq2 log2 fold
change > |2| are presented. Taxa in red are fungi, black are bacteria, and
green are OTUs within genera known to have biodegradation potentials.

Additional File 3: Figure S3. Bacterial and fungal alpha-diversity (a) be-
tween cities and sites, as well as between skin phenotype within (b)
cheeks (i.e. healthy vs. acne) and (c) scalps (i.e. healthy or dandruff). Statis-
tical significance was tested using the Mann-Whitney test, and FDR-
corrected p-value <0.05 is considered significant (in bold and underlined).

Additional File 4: Table S1. Bacterial and fungal community
membership and composition analyses between different sample groups.

Additional File 5: Figure S4. Density plots of intra-bacterial (orange),
intra-fungal (purple), and inter-domain (green) correlations for (a) healthy
and acne-affected cheeks and (b) healthy and dandruff-affected scalps.

Additional File 6: Table S2. Significant cross-domain correlations across
sample groups based on skin site, city, and skin phenotype.

Additional File 7: Figure S5. Association between PAH exposure and
microbial diversity. (a) Boxplot depicting position of samples along the first
axis of PCA to allocate individuals into groups based on PAH exposure levels
as described in Materials and Methods. (b) Histogram showing the number of
individuals belonging to one of eight pollutant exposure groups determined
as described in Materials and Methods. (c-d) Taxonomic plots showing shifts
in overall taxonomic compositions between different PAH exposure level
groups for (c) bacteria and (d) fungi. (e-f) Association between pollutant
exposure and Shannon diversity for (e-f) bacteria and (g-h) fungi.

Additional File 8: Table S3. PAH exposure grouping of individuals.

Additional File 9: Figure S6. Sparse canonical correlation analysis (sCCA)
of relationships between OTUs and overall PAH exposure levels. (a-b)
Heatmaps representing correlations between PAHs and (a) bacterial and (b)
fungal OTUs. (c-d) Principal component analysis (PCA) of sample clustering
of (c) bacterial and (d) fungal OTUs based on PAH exposure levels. (c) and
(d) depict the projection of the subjects in the consensus space.

Additional File 10: Table S4. Bacterial and fungal OTUs selected by
sparse canonical correlation analysis.

Additional File 11: Table S5. Significant relationships between PAH
exposure and relative abundance of OTUs, and Sloan model prediction
for significant OTUs.

Additional File 12: Table S6. Percentage of OTUs fitted within the
Sloan model neutral prediction.

Additional File 13: Table S7. Taxonomic information of OTUs that
deviated from the Sloan neutral model prediction.

Additional File 14: Figure S7. Domain-level taxonomic classification of
pilot shotgun metagenomics samples. A total of 32 samples were included
in the analysis. Taxonomic classification was performed using MetaPhlAn2.

Additional File 15: Table S8. Significant associations between city
and/or PAH exposure levels and species relative abundance.

Additional File 16: Table S9. Significant associations between city, skin site,
and/or PAH exposure levels and relative abundance of KEGG orthology genes.
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Additional File 17: Table S10. Individual and sample metadata
including PAH exposure levels.

Additional File 18: Table S11. Good's coverage of the bacterial and
fungal communities.

Additional File 19: Table S12. Metagenomics sequencing quality
control information of samples.

Additional File 20: Figure S8. Comparison of taxonomic classifications
between amplicon sequencing and shotgun metagenomics. Bar plots of
the mean relative abundances of the top genera in the 32 samples
obtained using amplicon sequencing of the 16S rRNA gene V1-3 region
and shotgun metagenomics sequencing.
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