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Abstract

Background: Viruses are central to microbial community structure in all environments. The ability to generate large
metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to tease apart complex
microbiome dynamics, but these analyses are currently limited by the tools available for analyses of viral genomes
and assessing their metabolic impacts on microbiomes.

Design: Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein similarity
approach that is not reliant on sequence features for automated recovery and annotation of viruses, determination
of genome quality and completeness, and characterization of viral community function from metagenomic assemblies.
VIBRANT uses neural networks of protein signatures and a newly developed v-score metric that circumvents traditional
boundaries to maximize identification of Iytic viral genomes and integrated proviruses, including highly diverse viruses.
VIBRANT highlights viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly platform
for evaluating viral community function. VIBRANT was trained and validated on reference virus datasets as well as
microbiome and virome data.

Results: VIBRANT showed superior performance in recovering higher quality viruses and concurrently reduced the false
identification of non-viral genome fragments in comparison to other virus identification programs, specifically VirSorter,
VirFinder, and MARVEL. When applied to 120,834 metagenome-derived viral sequences representing several human
and natural environments, VIBRANT recovered an average of 94% of the viruses, whereas VirFinder, VirSorter, and
MARVEL achieved less powerful performance, averaging 48%, 87%, and 71%, respectively. Similarly, VIBRANT identified
more total viral sequence and proteins when applied to real metagenomes. When compared to PHASTER, Prophage
Hunter, and VirSorter for the ability to extract integrated provirus regions from host scaffolds, VIBRANT performed
comparably and even identified proviruses that the other programs did not. To demonstrate applications of VIBRANT,
we studied viromes associated with Crohn's disease to show that specific viral groups, namely Enterobacteriales-like
viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to healthy individuals,
providing a possible viral link to maintenance of diseased states.
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Conclusions: The ability to accurately recover viruses and explore viral impacts on microbial community metabolism
will greatly advance our understanding of microbiomes, host-microbe interactions, and ecosystem dynamics.

Keywords: Virome, Virus, Bacteriophage, Metagenome, Machine learning, Auxiliary metabolism, Software

Background

Viruses that infect bacteria and archaea are globally abun-
dant and outnumber their hosts in most environments
[1-3]. Viruses are obligate intracellular pathogenic genetic
elements capable of reprogramming host cellular meta-
bolic states during infection and can cause the lysis of 20—
40% of microorganisms in diverse environments every day
[4, 5]. Due to their abundance and widespread activity, vi-
ruses are key facets in microbial communities as they con-
tribute to cycling of essential nutrients such as carbon,
nitrogen, phosphorus, and sulfur [6—10]. In human sys-
tems, viruses have been implicated in contributing to
dysbiosis that can lead to various diseases, such as inflam-
matory bowel diseases, or even have a symbiotic role with
the immune system [11-13].

Viruses harbor vast potential for diverse genetic con-
tent, arrangement, and encoded functions [14—17]. Rec-
ognizing their genetic diversity, there has been
substantial interest in “mining” these viral sequences for
novel anti-microbial drug candidates, enzymes for bio-
technological applications, and for bioremediation [18—
22]. Recently, it has been appreciated that viruses may
directly link biogeochemical cycling of nutrients by spe-
cifically driving metabolic processes [23-27]. For ex-
ample, during infection, viruses can acquire 40-90% of
their required nutrients from the surrounding environ-
ment by taking over and subsequently directing host me-
tabolism [28-30]. To manipulate host metabolic
frameworks, some viruses selectively “steal” metabolic
genes from their host. These host-derived genes, collect-
ively termed auxiliary metabolic genes (AMGs), can be
actively expressed during infection to provide viruses
with fitness advantages [31-34]. Due to the need to
study the role of viruses in microbiomes and integrate
viruses into models of ecosystem function, it has become
of great interest to determine which sequences within
whole microbial communities are derived from viruses.
These sequences can include free virions, active intracel-
lular infections (which may be the case for as many as
30% of all bacteria at any given time [35]), particle or
host-attached virions [36], and host-integrated or epi-
somal viral genomes (i.e., proviruses).

Multiple tools exist for the identification of viruses
from mixed metagenomic assemblies. For several years,
VirSorter [37], which succeeded tools such as VIROME
[38] and Metavir [39], has been the most widely used for

its ability to identify viral metagenomic fragments (scaf-
folds) from large metagenomic assemblies. VirSorter
predominantly relies on database searches of predicted
proteins, using both reference homology as well as prob-
abilistic similarity, to compile metrics of enrichment of
virus-like proteins and simultaneous depletion of other
proteins. To do this, it uses a virus-specific curated data-
base as well as Pfam [40] for non-virus annotations,
though it does not fully differentiate viral from non-viral
Pfam annotations. It also incorporates sequence signa-
tures of viral genomes, such as encoding short genes or
having low levels of strand switching between genes.
VirSorter is also unique in its ability to use these annota-
tions and sequence metrics to identify and extract inte-
grated provirus regions from host scaffolds.

More recent tools have been developed as alternatives
or supplements of VirSorter. VirFinder [41] was the first
tool to implement machine learning and be completely
independent of annotation databases for predicting vi-
ruses, which was a platform later implemented in PPR-
Meta [42]. VirFinder was built with the consideration
that viruses tend to display distinctive patterns of 8-
nucleotide frequencies (otherwise known as 8-mers),
which was proposed despite the knowledge that viruses
can share remarkably similar nucleotide patterns with
their host [43]. These 8-mer patterns are used to quickly
classify sequences as short as 500bp and generate
model-derived scores, though it is up to the user to de-
fine the score cutoffs. VirFinder was shown to greatly
improve the ability to recover viruses compared to Vir-
Sorter, but it also demonstrated substantial host and
source environment biases in predicting diverse viruses,
likely due to reference database-associated biases while
training the machine learning model [41]. Moreover,
under-recovery of viruses from certain environments
was identified [44].

Additional recent tools have been developed that
utilize slightly different methods for identifying viruses.
MARVEL [45], for example, leverages annotation,
sequence signatures, and machine learning to identify vi-
ruses from metagenomic bins. MARVEL differs from
VirSorter in that it only utilizes a single virus-specific
database for annotation. However, MARVEL provides
no consideration for integrated proviruses and is only
suitable for identifying bacterial dsDNA viruses from the
order Caudovirales which substantially limits its ability
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to discover novel viruses. Another recently developed
tool, VirMiner [46], is unique in that it functions to use
metagenomic reads and associated assembly data to
identify viruses and performs best for highly abundant
viruses. VirMiner is a web-based server that utilizes a
hybrid approach of employing both homology-based
searches to a virus-specific database as well as machine
learning. VirMiner was found to have improved ability
to recover viruses compared to both VirSorter and Vir-
Finder but was concurrently much less accurate.

Thus far, VirSorter remains the most efficient tool for
identifying integrated proviruses within metagenomic as-
semblies. Other tools, predominantly PHASTER [47]
and Prophage Hunter [48], are specialized in identifying
integrated proviruses from whole genomes rather than
scaffolds generated by metagenomic assemblies. Similar
to VirSorter, these two provirus predictors rely on refer-
ence homology and viral sequence signatures with slid-
ing windows to identify regions of a host genome that
belong to a virus. Although they are useful for whole ge-
nomes, they lack the capability of identifying scaffolds
belonging to lytic (i.e, non-integrated) viruses and per-
form slower for large datasets. In addition, both PHA-
STER and Prophage Hunter are exclusively available as
web-based servers and offer no stand-alone command
line tools.

Here we developed VIBRANT (Virus Identification By
iteRative ANnoTation), a tool for automated recovery,
annotation, and curation of both free and integrated vi-
ruses from metagenomic assemblies and genome se-
quences. VIBRANT is capable of identifying diverse
dsDNA, ssDNA, and RNA viruses infecting both bacteria
and archaea, and to our knowledge has no evident envir-
onmental biases. VIBRANT uses neural networks of pro-
tein annotation signatures from non-reference-based
similarity searches with Hidden Markov Models
(HMMs) as well as a unique “v-score” metric to
maximize identification of diverse and novel viruses.
After identifying viruses, VIBRANT implements curation
steps to validate predictions. VIBRANT additionally
characterizes viral community function by highlighting
AMGs and assesses the metabolic pathways present in
viral communities. All viral genomes, proteins, annota-
tions, and metabolic profiles are compiled into formats
for user-friendly downstream analyses and visualization.
When applied to reference viruses, non-reference virus
datasets, and various assembled metagenomes, VI-
BRANT outperformed VirFinder, VirSorter, and MAR-
VEL in the ability to maximize virus recovery and
minimize false discovery. When compared to PHASTER,
Prophage Hunter, and VirSorter for the ability to extract
integrated provirus regions from host scaffolds, VI-
BRANT performed comparably. VIBRANT was also
used to identify differences in metabolic capabilities
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between viruses originating from various environments.
When applied to three separate cohorts of individuals
with Crohn’s disease, VIBRANT was able to identify
both differentially abundant viral groups compared to
healthy controls as well as virally encoded genes puta-
tively influencing a diseased state. VIBRANT is freely
available for download at https://github.com/Ananthara-
manLab/VIBRANT. VIBRANT is also available as a
user-friendly, web-based application through the
CyVerse Discovery Environment at https://de.cyverse.
org/de [49].

Methods

Dataset for generation and comparison of metrics

To generate training and testing datasets, sequences
representing bacteria, archaea, plasmids, and viruses
were downloaded from the National Center for Biotech-
nology Information (NCBI) RefSeq and Genbank data-
bases (accessed July 2019) (Additional File 1: Table S1).
For bacteria/archaea, 181 genomes were chosen by
selecting from diverse phylogenetic groups. Likewise, a
total of 1452 bacterial plasmids were chosen. For viruses,
NCBI taxids associated with viruses that infect bacteria
or archaea were used to download reference virus ge-
nomes, which were then limited to only sequences above
3 kb. This included viruses with both DNA and RNA ge-
nomes, though RNA genomes must first be converted to
complementary DNA. Sequences not associated with ge-
nomes, such as partial genomic regions, were identified
according to sequence headers and removed. This
resulted in 15,238 total viral partial and complete ge-
nomes. To be consistent between all sequences acquired
from NCBI, proteins and genes were predicted using
Prodigal (-p meta, v2.6.3) [50]. All sequences were split
into non-overlapping, non-redundant fragments between
3 and 15kb to simulate metagenome-assembled scaf-
folds. These simulated scaffolds are hereafter called frag-
ments and were used throughout training and testing
VIBRANT. For RNA virus detection, 33 viral (bacterio-
phage) genomes from NCBI RefSeq and 37 from Krish-
namurthy et al. were used [51], and for archaeal virus
detection, all genomes were acquired from NCBI RefSeq.
The RNA and archaeal viral genomes were represented
in both the training and testing datasets as genomic frag-
ments, and recall evaluation was performed on whole
genomes. These were the only datasets in which training
and evaluation datasets were semi-redundant. See Sup-
plemental Methods (Additional File 16) for additional
datasets and sequences used.

Integrated viruses are common in both bacteria and
archaea. To address this for generating a dataset devoid
of viruses, PHASTER (accessed July 2019) was used to
predict putative integrated viruses in the 181 bacteria/ar-
chaea genomes. Using BLASTn [52], any fragments that
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had significant similarity (at least 95% identity, at least 3
kb coverage, and e-value < 1le-10) to the PHASTER pre-
dictions were removed as contaminant virus sequence.
The new bacteria/archaea dataset was considered de-
pleted of proviruses but not entirely devoid of contamin-
ation. Next, the datasets for bacteria/archaea and
plasmids were annotated with KEGG, Pfam, and VOG
HMMs (hmmsearch (v3.1), e-value < 1le-5) [53] to fur-
ther remove contaminant virus sequence (see next sec-
tion for details of HMMs). Plasmids were included
because it was noted that the dataset appeared to con-
tain virus sequences, possibly due to misclassification of
episomal proviruses as plasmids. Using manual inspec-
tion of the KEGG, Pfam, and VOG annotations, any se-
quence that clearly belonged to a virus was removed.
Manual inspection was guided first by the number of
KEGG, Pfam, and VOG annotations and then by the an-
notations themselves. For example, sequences with more
VOG than KEGG or Pfam annotations were inspected
and removed if multiple viral hallmark genes were found
or if the majority of annotations represented viral-like
genes. The final datasets consisted of 400,291 fragments
for bacteria/archaea, 14,739 for plasmids, and 111,963
for viruses. Total number of fragments for all datasets
used can be found in Additional File 2: Table S2.

Databases used by VIBRANT

VIBRANT uses HMM profiles from three different data-
bases: Kyoto Encyclopedia of Genes and Genomes
(KEGG) KoFam (March 2019 release) [54, 55], Pfam
(v32) [40], and Virus Orthologous Groups (VOG) (re-
lease 94, vogdb.org). For Pfam, all HMM profiles were
used. To increase speed, KEGG and VOG HMM data-
bases were reduced in size to contain only profiles likely
to annotate the viruses of interest. For KEGG, this was
done by only retaining profiles considered to be relevant
to “prokaryotes” as determined by KEGG documenta-
tion. For VOG, this was done by only retaining profiles
that had at least one significant hit to any of the 15,238
NCBI-acquired viruses using BLASTp. The resulting da-
tabases consisted of 10,033 HMM profiles for KEGG; 17,
929 for Pfam; and 19,182 for VOG (Additional File 3:
Table S3).

V-score generation

Predicted proteins from reference viral genomes from
NCBI and VOG database viral proteins were combined
to generate v-scores, which resulted in a total of 633,194
proteins. Redundancy was removed from the viral pro-
tein dataset using CD-HIT (v4.6) [56] with an identity
cutoff of 95%, which resulted in a total of 240,728 viral
proteins. This was the final dataset used to generate v-
scores. All KEGG HMM profiles were used to annotate
the viral proteins. A v-score for each KEGG HMM
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profile was determined by the number of significant (e-
value < le-5) hits by hmmsearch, divided by 100, and a
maximum value was set at 10 after division. The same v-
score generation was done for Pfam and VOG databases.
Any HMM profile with no significant hits to the virus
dataset was given a v-score of zero. For KEGG and Pfam
databases, any annotation that was given a v-score above
zero and contained the keyword “phage” was given a
minimum v-score of 1. To highlight viral hallmark
genes, any annotation within all three databases with the
keyword portal, terminase, spike, capsid, sheath, tail,
coat, virion, lysin, holin, base plate, lysozyme, head, or
structural was given a minimum v-score of 1. Non-
prokaryotic virus annotations (e.g., reovirus core-spike
protein) were not considered. Each HMM is assigned a
v-score and represents a metric of virus association (i.e.,
do not take into account virus specificity or association
with non-viruses) and are manually tuned to put greater
weight on viral hallmark genes (Additional File 4: Table
S4). Overall, annotations that are likely non-viral will
have a low v-score whereas annotations that are com-
monly associated with viruses will have a high v-score.
Raw HMM table outputs for v-score generation can be
found in Additional Files 5, 6, and 7 for KEGG, Pfam,
and VOG, respectively (Additional File 5: Table S5, Add-
itional File 6: Table S6, and Additional File 7: Table S7).

Training and testing VIBRANT

The bacteria/archaea genomic, plasmid, and virus data-
sets described above were used to train and test the ma-
chine learning model. Scikit-Learn (v0.21.3) [57] libraries
were used to assess various machine learning strategies
to identify the best performing algorithm. Among sup-
port vector machines, neural networks, and random for-
ests, we found that neural networks lead to the most
accurate and comprehensive identification of viruses.
Therefore, Scikit-Learn’s supervised neural network
multi-layer perceptron classifier (hereafter called neural
network) was used. The portion of VIBRANT’s workflow
up until the neural network classifier (i.e., KEGG, Pfam,
and VOG annotation) was used to compile the 27 anno-
tation metrics for each scaffold. To account for differ-
ences in scaffold sizes, all metrics are normalized (ie.,
divided by) to the total number of proteins encoded by
the scaffold. The first metric, for total proteins, was nor-
malized to log base 10 of itself. Each metric was
weighted equally, though it is worth noting that the re-
moval of several metrics did not significantly impact the
accuracy of model’s prediction. The normalized results
were randomized, and non-redundant portions of these
results were taken for training or testing the neural net-
work. In total, 93,913 fragments were used for training,
and 9000 different fragments were used for testing the
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neural network specifically (Additional File 8: Table S8
and Additional File 9: Table S9).

To test the performance of VIBRANT in its entirety, a
new testing dataset was generated consisting of frag-
ments from the neural network testing set as well as
additional fragments non-redundant to the previous
training dataset (hereafter called comprehensive test
dataset). This new comprehensive test dataset was com-
prised of 256,713 genomic fragments from bacteria/ar-
chaea, 29,926 from viruses, and 8968 from plasmids.
Each met the minimum protein number requirement of
VIBRANT: at least four open reading frames.

Calculation of evaluation metrics and benchmarking of
VIBRANT

For comparison of VIBRANT (v1.2.0) to VirFinder
(v1.1), VirSorter (v1.0.3), and MARVEL (v0.2), the com-
prehensive test dataset was used. Two intervals for Vir-
Finder and VirSorter were used for comparison. For
VirSorter, the intervals selected were (1) category 1 and
2 predictions, and (2) category 1 and 2 predictions using
the virome decontamination mode. Categories 1 and 2
are generally considered trustworthy, but category 3 pre-
dictions are more likely to contain false identifications.
VirSorter was ran using the “Virome” database. For Vir-
Finder, the intervals were (1) scores greater than or
equal to 0.90 (approximately equivalent to a p value of
0.013) and (2) scores greater than or equal to 0.75 (ap-
proximately equivalent to a p value of 0.037). Since
MARVEL was built for the identification of viral bins,
each scaffold was evaluated separately as a single “bin.”
To ensure proper identification by MARVEL and VI-
BRANT, different versions of Scikit-Learn were used for
each (v0.19.1 and v0.21.3, respectively).

Several metrics were used to compare performance of
all four programs: recall, precision, accuracy, specificity,
Mathews Correlation Coefficient (MCC), and F1 score.
When calculating metrics, the larger bacteria/archaea
and plasmid dataset was normalized to the size of the
smaller viral dataset in order to make accurate calcula-
tions. All equations used can be found in Additional File
10: Table S10 and the results of each calculation can be
found in Additional File 11: Table S11. Comparison met-
rics were visualized using R (v3.5.2) package “ggplot2.”

It is worth noting that although VIBRANT was tested
using sequences that were not used for training, biases may
still be associated with reported metrics due to the reliance
of KEGG, Pfam, and VOG HMMs on NCBI databases. That
is, NCBI databases in part were used to construct the HMMs
and therefore are well suited at annotating NCBI-derived se-
quences. This same type of bias will be seen in the evaluation
of VirSorter and MARVEL, both of which rely on NCBI-
reliant databases. Although VirFinder does not use annota-
tion databases, the machine-learning algorithm it employs
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was trained on NCBI-derived sequences. Similarly, biases
with comparisons to VirFinder, VirSorter, and MARVEL will
arise when using NCBI databases. Sequences from NCBI
were used for training each of the three programs and there-
fore will likely contain redundancy to VIBRANT’S compre-
hensive test dataset. This redundancy will cause artificially
enhanced performance. To address these biases, we further
compared all four programs to non-NCBI datasets (see
below).

AMG identification

KEGG annotations were used to classify potential AMGs
(Additional File 12: Table S12). KEGG annotations fall-
ing under the “metabolic pathways” category as well as
“sulfur relay system” were considered. Manual inspection
was used to remove non-AMG annotations, such as
nrdAB and thyAX. Other annotations not considered
were associated with direct nucleotide to nucleotide con-
versions. All AMGs were associated with a KEGG meta-
bolic pathway map.

Completeness estimation

Scaffold completeness is determined based on four met-
rics: circularization of scaffold sequence, VOG annota-
tions, total VOG nucleotide replication proteins, and
total VOG viral hallmark proteins (Additional File 13:
Table S13). In order to be considered a complete gen-
ome, a sequence must be identified as likely circular. A
kmer-based approach is used to do this. Specifically, the
first 20 nucleotides are compared to 20-mer sliding win-
dows within the last 900bp of the sequence. If a
complete match is identified, the sequence is considered
a circular template. Scaffolds can also be considered a
low-, medium-, or high-quality draft. To benchmark
completeness, 2466 NCBI RefSeq viruses identified as
Caudovirales, limited to 10kb in length, were used to
estimate completeness by stepwise removing 10% viral
sequence at a time. VIBRANT was found to identify
2465 of the 2466 viruses. This set of viruses was add-
itionally used to assess the error rate of cutting provirus
regions. Viral genome diagrams to depict genome quality
and completeness, provirus predictions, and novel virus
identification were made using Geneious Prime 2019.0.3.

Analysis of Crohn’s disease metagenomes

Metagenomic reads from He et al. [58] were assembled by
Pasolli et al. [59] and used for analysis. VIBRANT (-1 5000)
was used to predict viruses from 49 metagenomes originat-
ing from individuals with Crohn’s disease and 53 from
healthy individuals (102 total samples). A total of 14,121 vi-
ruses were identified. Viral sequences were dereplicated
using Mash [60] and Nucmer [61] to 95% nucleotide iden-
tity and 70% sequence coverage. The longest sequence was
kept as the representative for a total of 8822 dereplicated



Kieft et al. Microbiome (2020) 8:90

viruses. A total of 96 read sets were used (59 Crohn’s dis-
ease and 37 healthy), trimmed using Sickle and aligned to
the dereplicated viruses using Bowtie2 (-N 1, v2.3.4.1) [62],
and the resulting coverages were normalized to total reads.
The normalized relative coverage of each virus for all 96
samples were compared using DESeq2 [63] (Additional File
14: Table S14). Viruses that displayed significantly different
abundance between Crohn’s disease and control samples
were determined by a p value cutoff of 0.05. iRep (default
parameters) [64] was used to estimate replication activity of
two highly abundant Crohn’s-associated viruses. EasyFig
(v2.2.2) [65] was used to generate genome alignments of
Escherichia phage Lambda (NCBI accession number NC_
001416.1) and three Crohn’s-associated viruses. vCon-
TACT2 (v0.9.8) was run using default parameters on the
CyVerse Discovery Environment platform. Putative hosts of
Crohn’s-associated and healthy-associated were estimated
using proximity of vConTACT2 protein clustering and
BLASTp identity (NCBI non-redundant protein database,
assessed October 2019). Two additional read sets from
Gevers et al. [66] and Ijaz et al. [67] were likewise assem-
bled by Pasolli et al. VIBRANT (-1 5000 -o 10) was used to
predict viruses from 43 metagenomes originating from in-
dividuals with Crohn’s disease and 21 from healthy individ-
uals (64 total samples). In contrast to the discovery, dataset
viral genomes were not dereplicated, and differential abun-
dance was not determined. Instead, viruses from each
group were directly clustered using vConTACT2. Abun-
dances of dysbiosis-associated genes in the validation set
were normalized to total viruses. Validation of dysbiosis-
associated genes’ presence on viral genomes, rather than
microbial contamination, was done by identifying viral hall-
mark genes on the viral scaffold (Additional File 15: Table
S15). Protein networks were visualized using Cytoscape
(v3.7.2) [68].

Results

VIBRANT was built to extract and analyze bacterial and ar-
chaeal viruses from assembled metagenomic and genome se-
quences, as well as provide a platform for characterizing
metabolic proteins and functions in a comprehensive man-
ner. The concept behind VIBRANT’s mechanism of virus
identification stems from the understanding that arduous
manual inspection of annotated genomic sequences pro-
duces the most dependable results. As such, the primary
metrics used to inform validated curation standards and to
train VIBRANT’s machine learning based neural network to
identify viruses reflects human-guided intuition, though in a
high-throughput automated fashion.

Determination of v-score

We developed a unique “v-score” metric as an approach
for providing quantitative information to VIBRANT’s al-
gorithm in order to assess the qualitative nature of
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annotation information. A v-score is a value assigned to
each possible protein annotation that scores its associ-
ation to known viral genomes (see “Methods” section).
V-score differs from the previously used “virus quotient”
metric [69, 70] in that it does not take into account the
annotation’s relatedness to bacteria or archaea. Not in-
cluding significant similarity to non-viral genomes in the
calculation of v-scores has important implications for
this metric’s utility. Foremost is that annotations shared
between viruses and their hosts, such as ribonucleotide
reductases, will be assigned a v-score reflecting its asso-
ciation to viruses, not necessarily virus-specificity. Many
genes are commonly associated with viruses and host or-
ganisms but when encoded on viral genomes can be
central to virus replication efficiency (e.g., ribonucleotide
reductases [71]). Therefore, a metric representing virus-
association rather than virus-specificity would be more
appropriate in identifying if an unknown scaffold is viral
or not. Secondly, this approach takes into account wide-
spread horizontal gene transfer of host genes by viruses
as well as the presence of AMGs.

VIBRANT workflow

VIBRANT utilizes several annotation metrics in order to
guide removal of non-viral scaffolds before curation of
reliable viral scaffolds. The annotation metrics used are
derived from HMM-based probabilistic searches of pro-
tein families from the KEGG, Pfam, and VOG databases.
VIBRANT is not reliant on reference-based similarity
and therefore accounts for the large diversity of viruses
on Earth and their respective proteins. Consequently,
widespread horizontal gene transfer, rapid mutation, and
the vast amount of novel sequences do not hinder VI-
BRANT’s ability to identify known and novel viruses. VI-
BRANT does not rely on non-annotation features, such
as rates of open reading frame strand switching, because
these features were not as well conserved in genomic
scaffolds in contrast to whole genomes.

VIBRANT’s workflow consists of four main steps (Fig. 1a).
Briefly, proteins (predicted or user input) are used by VI-
BRANT to first eliminate non-viral sequences by assessing
non-viral annotation signatures derived from KEGG and
Pfam HMM annotations. At this step, potential host scaffolds
are fragmented using sliding windows of KEGG annotation
v-scores in order to extract integrated provirus sequences.
Following the elimination of most non-viral scaffolds and
rough excision of provirus regions, proteins are annotated by
VOG HMMs. Before analysis by the neural network machine
learning model, any extracted putative provirus is trimmed
to exclude any remaining non-viral sequences. Annotations
from KEGG, Pfam, and VOG are used to compile 27 metrics
that are utilized by the neural network to predict viral se-
quences (Additional File 16: Supplemental Methods). These
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Fig. 1 Representation of VIBRANT's method for virus identification and virome functional characterization. a Workflow of virome analysis. Annotations
from KEGG, Pfam, and VOG databases are used to construct signatures of viral and non-viral annotation signatures that are read into a neural network
machine learning model. b Visual representation (PCA plot) of the metrics used by the neural network to identify viruses, depicting viral, plasmid, and

bacterial/archaeal genomic sequences

27 metrics were found to be adequate for the separation of
viral and non-viral scaffolds (Fig. 1b).

After prediction by the neural network, a set of cur-
ation steps are used to filter the results. Curation is an
automated mechanism of verifying and/or altering the
neural network predictions in order to improve accuracy
and recovery of viruses. This concept, as previously
stated, originates from experiences with manual inspec-
tion of viral genomes that cannot be captured even
within machine-learning algorithms. For example, these
curation steps can (1) more accurately separate plasmid
sequences by discerning viral-like and plasmid-like inte-
grase annotations, (2) remove scaffolds that encode a
high density of bacterial-like (i.e., v-score of zero) pro-
teins, or (3) increase true positive identifications by
retaining otherwise missed scaffolds that are unique
(e.g., encode few but highly virus-related proteins).

Once viruses are identified VIBRANT automates the
analysis of viral community function by highlighting
AMGs and assigning them to KEGG metabolic path-
ways. The genome quality (i.e., proxy of completeness)
of identified viruses is estimated using a subset of the
annotation metrics, and viral sequences are used to iden-
tify circular templates (i.e., likely complete circular vi-
ruses). These quality analyses were determined to best
reflect established completeness metrics for both bac-
teria and viruses [72, 73]. Finally, VIBRANT compiles all
results into a user-friendly format for visualization and
downstream analysis. For a detailed description of VI-
BRANT’s workflow see “Methods” section.

Comparison of VIBRANT to other programs

VirSorter, VirFinder, and MARVEL, three commonly
used programs for identifying bacterial and archaeal vi-
ruses from metagenomes, were selected to compare
against VIBRANT for the ability to accurately identify
viruses. We evaluated all four programs’ performance on
the same viral, bacterial, and archaeal genomic and plas-
mid datasets. Given that both VirSorter and VirFinder
produce various confidence ranges of virus identifica-
tion, we selected certain parameters for each program
for comparison. For VirSorter, the parameters selected
were (1) category 1 and 2 predictions, and (2) category 1
and 2 predictions using the virome decontamination
mode. For VirFinder, the intervals were (1) scores greater
than or equal to 0.90 (approximately equivalent to a p
value of 0.013) and (2) scores greater than or equal to
0.75 (approximately equivalent to a p value of 0.037).

Hereafter, we provide two statistics for each VirSorter
and VirFinder run that reflects results according to the
two set confidence intervals, respectively. Both VI-
BRANT and MARVEL have set output predictions and
therefore will be reported with a single statistic.

VIBRANT vyields a single output of confident predic-
tions and therefore does not provide multiple output op-
tions. Since VIBRANT is only partially reliant on its
neural network machine learning model for making pre-
dictions, all comparisons are focused on VIBRANT’s full
workflow performance. VIBRANT does not consider
scaffolds shorter than 1000 bp or those that encode less
than four predicted open reading frames in order to
maintain a low false positive rate (FPR) and have suffi-
cient annotation information for identifying viruses.
Therefore, in comparison of performance metrics, only
scaffolds meeting VIBRANT’s minimum requirements
were analyzed. Inclusion of fragments encoding less than
four open reading frames in analyses, which are fre-
quently generated by metagenomic assemblies, is dis-
cussed below. We used the following statistics to
compare performance: recall, precision, accuracy, specifi-
city, MCC, and F1 score (Fig. 2).

First, we evaluated the true positive rate (TPR or re-
call) of viral genomic fragments as well as whole viral
genomes. Viral genomes were acquired from the NCBI
RefSeq and GenBank databases and split into various
non-redundant fragments between 3 and 15 kb to simu-
late genomic scaffolds (see “Methods” section). VI-
BRANT correctly identified 98.43% of the 29,926 viral
fragments, which was greater than VirSorter (40.03%
and 96.53%), VirFinder (76.23% and 89.03%), and MAR-
VEL (93.79%) at all scoring intervals. For VirSorter, it
was essential to set virome decontamination mode for
datasets consisting of mainly viruses, without which the
TPR was substantially inhibited.

Similar to TPR, we calculated FPR (or specificity)
using two different datasets: genomic fragments of bac-
teria and archaea (hereafter called genomic) and bacter-
ial plasmids (plasmid). Plasmids were evaluated
separately because they often encode for genes similar to
those on viral genomes, such as those for genome repli-
cation and mobilization. Genomic and plasmid se-
quences were acquired from NCBI RefSeq and GenBank
databases and split into various non-redundant frag-
ments between 3 and 15kb, and putative proviruses
were depleted from the datasets (see “Methods” section).
VIBRANT had high specificity against both genomic
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Fig. 2 Performance comparison of VIBRANT, VirFinder, VirSorter, and MARVEL on artificial scaffolds of 3-15 kb. Performance was evaluated using
datasets of reference viruses, bacterial plasmids, and bacterial/archaeal genomes. For VirFinder and VirSorter, two different confidence cutoffs
were used (VirFinder: score of at least 0.90 and score of at least 0.75, VirSorter: categories 1 and 2 predictions and categories 1 and 2 predictions
using virome decontamination mode). All four programs were compared using the following statistical metrics: F1 score, MCC, recall, precision,

accuracy, and specificity. To ensure equal comparison all scaffolds tested encoded at least four open reading frames

(99.90%) and plasmid fragments (98.90%). VirSorter had
similar specificity against both genomic (99.84% and
99.59%) and plasmid (99.33% and 97.55%) datasets, but
only VirFinder set to a score cutoff of 0.90 was fully
comparable (genomic 99.10%, plasmid 98.39%). VirFin-
der at a score cutoff of 0.75 (genomic 97.19%, plasmid
94.93%) along with MARVEL (genomic 92.92%, plasmid
85.54%) were slightly less specific. Although VirFinder
(set to a score cutoff of 0.90) and VIBRANT had a simi-
lar overall specificity, VirFinder identified 9.3 times more
genomic scaffolds as viruses (false discoveries) compared
to VIBRANT (2311 and 249, respectively). MARVEL
was even more pronounced, identifying 72.9 times more
genomic scaffolds as viruses (18,164 total) compared to
VIBRANT.

We used the results from TPR of viral fragments and
FPR of non-viral genomic or plasmid fragments to calcu-
late precision (i.e., proportion of true virus identifica-
tions out of all virus identifications) and accuracy (ie.,
proportion of correct predictions out of all predictions).
VIBRANT outperformed each other program at both
precision (VIBRANT 99.87%, VirFinder 98.80% and
96.85%, VirSorter 99.57% and 99.50%, and MARVEL
92.73%) and accuracy (VIBRANT 99.15%, VirFinder
87.67% and 93.08%, VirSorter 69.97% and 98.03%, and
MARVEL 93.23%). F1 and MCC are additional metrics

(maximum values of 1) accounting for both TPR and
FPR, and therefore acts as a comprehensive evaluation
of overall performance. Our calculation of F1 indicates
that VIBRANT (0.991) is able to better identify viruses
while subsequently reducing false identifications com-
pared to VirFinder (0.861 and 0.928), VirSorter (0.571
and 0.980), or MARVEL (0.933). MCC likewise indicated
that VIBRANT (0.983) was better suited at maximizing
the ratio of viruses to non-viruses compared to VirSorter
(0.498 and 0.961), VirFinder (0.774 and 0.864), and
MARVEL (0.865).

Although VIBRANT exhibits improved performance
with scaffolds at least 3 kb in length, it is worth noting
that performance drops considerably at the set mini-
mum length of 1kb. To display this, the TPR and FPR
of both 1k and 3 kb scaffolds were assessed (Additional
File 16: Figure S1A). For this analysis, VirSorter was
evaluated using virome decontamination mode and Vir-
Finder was set to a score cutoff of 0.90. MARVEL'’s
minimum length requirement is 2 kb and therefore was
not compared with 1kb scaffolds. For 1kb viral scaf-
folds, VIBRANT (1.95%) and VirSorter (1.12%) recov-
ered far fewer scaffolds compared to VirFinder (22.56%).
However, at a length of 3 kb, VIBRANT (43.54%) recov-
ered more viral fragments than VirSorter (25.43%), Vir-
Finder (34.42%), and MARVEL (37.82%). Even at the
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low resolution of short scaffolds, VIBRANT’s FPR is not
impacted. For 1kb genomic and 1kb plasmid scaffolds,
VIBRANT (< 0.00% and 0.07%) and VirSorter (<0.00%
and 0.10%) had fewer false positive discoveries than Vir-
Finder (2.61% and 3.70%). Similarly, for 3kb genomic
and 3 kb plasmid scaffolds, VIBRANT (0.10% and 2.69%)
and VirSorter (0.11% and 2.41%) falsely identified fewer
sequences than VirFinder (2.26% and 5.54%) or MAR-
VEL (6.08% and 16.30%). Overall, this suggests that Vir-
Finder is uniquely able to accurately recover short (e.g.,
1kb) viral scaffolds while maintaining a relatively low
EPR, but this ability is not maintained with longer scaf-
folds. Moreover, our current abilities to sequence and
assemble scaffolds of lengths over 3 kb will likely lead to
a greater focus on longer viral sequences that are more
amenable to downstream analysis, such as taxonomic
classification and functional analyses.

Next, we assessed the ability of VIBRANT to filter out
eukaryotic contamination rather than falsely identify
these sequences as viral since eukaryotes were not repre-
sented in the training or testing datasets. However, these
contaminants should be sparse because the majority of
eukaryotic KEGG and VOG HMMs were removed from
the annotation databases (see “Methods” section). Like-
wise, eukaryotic-like annotations should receive a low v-
score. A total of 8672 eukaryotic sequences ranging from
1 to 15kb were assessed. VIBRANT (0.62%), VirSorter
(0.05% and 0.05%), and MARVEL (0.44%) performed
well with recovering few sequences, whereas VirFinder
(4.92% and 15.44%) recovered contamination at a greater
rate (Additional File 16: Figure S1B).

Finally, viruses with RNA genomes as well as those
that infect archaea are rare in current culture systems
and sequence databases compared to bacterial dsDNA
viruses. However, the true abundance of RNA and ar-
chaeal viruses has yet to be explored mainly due to
biases towards dsDNA in genome extracting and se-
quencing methods [74] and the low abundance of ar-
chaea in most environments. VIBRANT was built to
identify all prokaryotic viruses in order to expand our
knowledge of understudied groups. A total of 70 RNA
viral genomes and 93 archaeal viral genomes were used
to evaluate recall. VIBRANT was able to recover 47% of
RNA viruses or 84% of those that encoded at least four
predicted open reading frames. In comparison, VirSorter
(7% and 70%), VirFinder (33% and 57%), and MARVEL
(68%) ranged from lower to higher recovery (Additional
File 16: Figure S1C). The high recovery of RNA viruses
by MARVEL is intriguing since the software was trained
exclusively on dsDNA Caudovirales but may be ex-
plained by the greater rate of false positive discovery.
For archaeal viruses, VIBRANT (96.77%) identified sig-
nificantly more viruses than VirSorter (70.97% and
93.55%), VirFinder (46.24% and 74.19%), and MARVEL
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(80.65%) (Additional File 16: Figure S1D). Taken to-
gether, VIBRANT has the potential to identify RNA and
archaeal viruses, though the significance of this differ-
ence is hard to distinguish due to the current dearth of
reference genomes with which to validate.

Identification of viruses in diverse environments
We next tested VIBRANT’s ability to successfully
identify viruses from a diversity of environments.
Using 120,834 viruses from the IMG/VR database, in
which the source environment of viruses is catego-
rized, we identified that VIBRANT is more robust in
identifying viruses from all tested environments com-
pared to VirFinder, VirSorter, and MARVEL (Fig. 3a).
The 12 environments were animal-associated, aquatic
sediment, city, marine A (coastal, gulf, inlet, intertidal,
neritic, oceanic, pelagic, and strait), marine B (hydro-
thermal vent, volcanic, and oil), deep subsurface,
freshwater, human-associated, plant-associated, soil,
wastewater, and wetlands. VIBRANT averaged 94.59%
recall, substantially greater than VirFinder (29.19%
and 48.13%), VirSorter (54.37% and 87.49%), and
MARVEL (71.23%). Between the 12 environments, VI-
BRANT recovered between 89.55% and 97.87% (total
range of 8.33%) of the viruses. Conversely, VirFinder
(score cutoff of 0.75) had a range of 53.65%, VirSorter
(categories 1 and 2, virome decontamination) had a
range of 27.48%, and MARVEL had a range of
42.75%. These results suggest that in comparison to
other software, VIBRANT has no evident environ-
mental biases and is fully capable of identifying vi-
ruses from a broad range of source environments. We
also used a dataset of 13,203 viruses from the Human
Gut Virome database for additional comparison. The
vast majority of viruses (~ 96%) in this dataset were
assumed to infect bacteria. Although recall was di-
minished compared to IMG/VR datasets, VIBRANT
(79.22%) nevertheless outperformed or matched Vir-
Finder (31.67% and 62.83%), VirSorter (41.93% and
79.97%), and MARVEL (66.49%) on this dataset.
Relatively few viruses from the IMG/VR dataset that
were not identified by VIBRANT were identified by
either VirFinder, VirSorter, or MARVEL at even the
most inclusive score cutoffs (Fig. 3b). Furthermore,
for most environments, VIBRANT displayed the lar-
gest proportion of unique identifications, suggesting
that VIBRANT has the propensity for discovery of
viruses. The differences in the overlap of identified vi-
ruses was not too distinctive in environments for
which many reference viruses are available, such as
marine, though for more understudied environments,
such as plants or wastewater, VIBRANT displayed
near-complete overlap with VirFinder, VirSorter, and
MARVEL predictions. This suggests that database bias
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Fig. 3 Effect of source environment on predictive abilities of VIBRANT, VirFinder, VirSorter, and MARVEL. Viral scaffolds from IMG/VR and HGV
database were used to test if VIBRANT displays biases associated with specific environments. a The recall (or recovery) of viral scaffolds from 12
environment groups was compared between VIBRANT and two confidence cutoffs for both VirFinder and VirSorter. Marine environments were
classified into two groups: marine A (coastal, gulf, inlet, intertidal, neritic, oceanic, pelagic, and strait) and marine B (hydrothermal vent, volcanic,
and oil). b Comparison of the overlap in the scaffolds identified as viruses by all three programs. Cutoffs for VirFinder (scores greater than or
equal to 0.75) and VirSorter (categories 1 and 2 using virome decontamination mode) were set to display each program’s ability to recover

7

may not affect VIBRANT’s performance to a signifi-
cant degree. Although VirFinder does not rely on an
annotation database, it still has been trained on a
dataset of reference viral genomes which can contrib-

ute to database dependency and recall bias.

Identification of viruses in mixed metagenomes

Metagenomes assembled using short read technology
contain many scaffolds that do not meet VIBRANT’s
minimum length requirements and therefore are not

considered during analysis. Despite this, VIBRANT’s
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predictions contain more annotation information and
greater total viral sequence length than tools built to
identify short sequences, such as scaffolds with less than
four open reading frames. VIBRANT, VirFinder (score
cutoff of 0.90), and VirSorter (categories 1 and 2) were
used to identify viruses from human gut, freshwater lake,
and thermophilic compost metagenome sequences
(Table 1). In addition, alternate program settings—VI-
BRANT virome mode, VirFinder at a score cutoff of
0.75, and VirSorter virome decontamination mode—
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were used to identify viruses from an estuary virome
dataset. MARVEL was not considered in this analysis
due to the inability to achieve comparable precision.
Each metagenomic assembly was limited to sequences of
at least 1000 bp but no minimum open reading frame
limit was set. For these metagenomes, 31 to 40% of the
scaffolds were of sufficient length (at least four open
reading frames) to be analyzed by VIBRANT; for the es-
tuary virome, 62% was of sufficient length. In compari-
son, 100% of scaffolds from each dataset was long

Table 1 Virus recovery of VIBRANT, VirFinder, and VirSorter from mixed metagenomes and a virome

Metagenome Seqs. total Seqs. 2 4 Metric VIBRANT VirFinder VIBRANT vs. VirSorter VIBRANT vs.
(= 1kb) ORFs (score = 0.90) VirFinder (cat. 1 and 2) VirSorter
Human gut: 34,883 11,360 Total putative 527 604 0.87 284 1.86
adenoma viruses
Total virus 5,234,242 1,696,118 3.09 3,982,292 1.31
length (bp)
Total virus 7,661 2,134 3.59 5484 1.40
proteins
Human gut: 53,946 18,669 Total putative 784 1,329 0.59 450 1.74
carcinoma viruses
Total virus 5611,953 3,500,838 1.60 4,182,862 1.34
length (bp)
Total virus 8401 4,644 1.81 5,945 1.41
proteins
Human gut: 42,739 17,079 Total putative 565 672 0.84 309 1.83
healthy viruses
Total virus 5,623,082 2,411,049 233 4,512,571 1.25
length (bp)
Total virus 8,202 3,230 2.54 6,127 1.34
proteins
Thermophilic 68,815 21,620 Total putative 1,047 878 1.19 383 273
compost viruses
Total virus 10,253,162 2,238,129 4.58 3,290,654 3.12
length (bp)
Total virus 9912 2,806 3.53 4,400 2.25
proteins
Freshwater 79,862 26,832 Total putative 5,626 7,567 0.74 1,503 3.74
lake (bog) viruses
Total virus 34,976,570 25,357,664 1.38 15,436,797 2.27
length (bp)
Total virus 56,120 37,537 1.50 21,280 2.64
proteins
*Estuary virome 5,247 3277 Total putative 3141 2,294 1.37 1,121 2.80
viruses
Total virus 6,591,285 6,478,804 1.02 5,163,674 1.28
length (bp)
Total virus 20,500 12,035 1.70 9,645 2.13
proteins

Mixed community assembled metagenomes from human gut, thermophilic compost, and freshwater, as well as an estuary virome, were used to compare virus
prediction ability between the three programs. For each assembly, the scaffolds were limited to a minimum length of 1000 bp. Only a subset of each dataset
contained scaffolds encoding at least four open reading frames. VIBRANT, VirFinder (score minimum of 0.90), and VirSorter (categories 1 and 2) were compared by
total viral predictions, total combined length of predicted viruses, and total combined proteins of predicted viruses. Comparison columns, denoted “VIBRANT vs.
VirFinder” and “VIBRANT vs. VirSorter”, display the comparison ratio of the given metric; bold indicates greater performance by VIBRANT. The asterisk represents
that VIBRANT, VirFinder and VirSorter were ran with alternate settings (see Methods)
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enough to be analyzed by VirFinder. The ability of Vir-
Finder to make a prediction with each scaffold is consid-
ered the major strength of the tool.

For all six assemblies, VirFinder averaged approxi-
mately 1.16 times more virus identifications than VI-
BRANT, though for both thermophilic compost and the
estuary virome VIBRANT identified a greater number.
Despite VirFinder averaging more total virus identifica-
tions, VIBRANT averaged 2.33 times more total viral se-
quence length and 2.44 times more total viral proteins.
This is the result of VIBRANT having the capability to
identify more viruses of higher quality and longer
sequence length. For example, among all six datasets,
VIBRANT identified 1320 total viruses at least 10kb in
length in comparison to VirFinder’s 479.

VIBRANT was also able to outperform VirSorter in all
metrics, averaging 2.45 times more virus identifications,
1.76 times more total viral sequence length, and 1.86
times more encoded viral proteins.

VIBRANT’s method of predicting viruses provides a
unique opportunity in comparison to similar tools in
that it yields sequences of higher quality which are more
amenable for analyzing protein function from virome
data. It is an important distinction that the total number
of viruses identified may not be correlated with the total
viruses identified or the total number of encoded pro-
teins. Even if VIBRANT identified fewer total viruses
compared to other tools in certain circumstances, more
data of higher quality was generated as viral sequences
of longer length were identified as compared to many
short fragments. This provides an important distinction
that the metric of total viral predictions is not necessar-
ily an accurate representation for the quality or quantity
of the data generated.

Integrated provirus prediction

In many environments, integrated proviruses can ac-
count for a substantial portion of the active viral com-
munity [75]. Despite this, few tools exist that are capable
of identifying both lytic viruses from metagenomic scaf-
folds as well as proviruses that are integrated into host
genomes. To account for this important group of vi-
ruses, VIBRANT identifies provirus regions within meta-
genomic scaffolds or whole genomes. VIBRANT is
unique from most provirus prediction tools in that it
does not rely on sequence motifs, such as integration
sites, and therefore is especially useful for partial meta-
genomic scaffolds in which neither the provirus nor host
region is complete. In addition, this functionality of VI-
BRANT provides the ability to trim non-viral (i.e., host
genome) ends from viral scaffolds. This results in a more
correct interpretation of genes that are encoded by the
virus and not those that are misidentified as being within
the viral genome region. Briefly, VIBRANT identifies

Page 13 of 23

proviruses by first identifying and isolating scaffolds and
genomes at regions spanning several annotations with
low v-scores. These regions were found to be almost
exclusive to host genomes. After cutting the original se-
quence at these regions, a refinement step trims the pu-
tative provirus fragment to the first instance of a virus-
like annotation to remove leftover host sequence (Fig.
4a). The final scaffold fragment is then analyzed by the
neural network similar to non-excised scaffolds.

To assess VIBRANT’s ability to accurately extract
provirus regions, we compared its performance to
PHASTER and Prophage Hunter, two programs expli-
citly built for this task, as well as VirSorter. We com-
pared the performance of these programs with
VIBRANT on four complete bacterial genomes. VI-
BRANT and PHASTER predicted an equal number of
proviruses, 17, while Prophage Hunter and VirSorter
identified slightly less with 13 and 16 identifications,
respectively (Fig. 4b). Only one putative provirus pre-
diction (Lactococcus lactis putative provirus 6) was
shared between all programs except VIBRANT. How-
ever, VIBRANT was able to identify two putative pro-
virus regions (Desulfovibrio vulgaris putative provirus
7 and Bacteroides vulgatus putative provirus 1) that
neither PHASTER nor Prophage Hunter identified,
though VirSorter identified these likely due to the
similar approach of extracting provirus regions. Man-
ual inspection of the putative Bacteroides vulgatus
provirus identified a number of virus hallmark and
virus-like proteins suggesting that it is an accurate
prediction (Fig. 4c). Our results suggest that VI-
BRANT has the ability to accurately identify provi-
ruses and, in some cases, can outperform other tools
in this task.

Both VIBRANT and VirSorter identify integrated
proviruses from metagenomic assemblies by cutting
host scaffolds at either end of a provirus region. By
employing this method, these programs generate a
more comprehensive understanding of a virome, but
errors in identified cut sites may occur due to the di-
versity of genomic arrangements in both virus and
host. This will result in fragmented viral genomes
that should have remained intact. We assessed the
error rate of VIBRANT and VirSorter (using virome
decontamination mode) for cutting viral genomes. A
total of 2466 Caudovirales complete genomes were
acquired from the NCBI RefSeq database, including
74 megaphages with genomes greater than 200 kb. In
total, VIBRANT fragmented 5 genomes whereas Vir-
Sorter fragmented 159 (categories 1 and 2) or 160
(categories 1, 2, and 3). Although relatively compar-
able, VirSorter incorrectly cut 6.2% more complete
viral genomes compared to VIBRANT (6.4% versus
0.2%, respectively).
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2,029,598 - 2,077,786
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Fig. 4 Prediction of integrated proviruses by VIBRANT and comparison to PHASTER, Prophage Hunter, and VirSorter. a Schematic representing the
method used by VIBRANT to identify and extract provirus regions from host scaffolds using annotations. Briefly, v-scores are used to cut scaffolds at
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The presence of viral hallmark protein, integrase and genome replication proteins strongly suggests this is an accurate prediction
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Evaluating quality and completeness of predicted viral
sequences

Determination of quality, in relation to completeness, of
a predicted viral sequence has been notoriously difficult
due to the absence of universally conserved viral genes.
To date, the most reliable metric of completeness for
metagenome- assembled viruses is to identify circular se-
quences (i.e., complete circular genomes). Therefore, the
remaining alternatives rely on estimation based on
encoded proteins that function in central viral processes:
replication of genomes and assembly of new viral
particles.

VIBRANT estimates the quality of predicted viral se-
quences, a relative proxy for completeness, and indicates
sequences that are circular. To do this, VIBRANT uses
annotation metrics of nucleotide replication and viral
hallmark proteins. Hallmark proteins are those typically
specific to viruses and those that are required for pro-
ductive infection, such as structural (e.g., capsid, tail,
baseplate), terminase, or viral holin/lysin proteins.
Nucleotide replication proteins are a variety of proteins
associated with either replication or metabolism, such as
nucleases, polymerases, and DNA/RNA binding pro-
teins. Viruses are categorized as low-, medium-, or high-
quality draft as determined by VOG annotations (Fig. 5a,
Additional File 17: Table S16). High-quality draft repre-
sents sequences that are likely to contain the majority of
a virus’s complete genome and will contain annotations
that are likely to aid in analysis of the virus, such as
phylogenetic relationships and true positive verification.
Medium draft quality represents the majority of a
complete viral genome but is more likely to be a smaller
portion in comparison to high quality. These sequences
may contain annotations useful for analysis but are
under less strict requirements compared to high quality.
Finally, low draft quality constitutes sequences that were
not found to be of high or medium quality. Many meta-
genomic scaffolds will likely be low-quality genome frag-
ments, but this quality category may still contain the
higher quality genomes of some highly divergent viruses.

We benchmarked VIBRANT’s viral genome quality es-
timation using a total of 2466 Caudovirales genomes
from NCBI RefSeq database. Genomes were evaluated
either as complete sequences or by removing 10% of the
sequence at a time stepwise between 100 and 10% com-
pleteness (Fig. 5b). The results of VIBRANT’s quality
analysis displayed a linear trend in indicating more
complete genomes as high quality and less complete ge-
nomes as lower quality. The transition from categorizing
genomes as high quality to medium quality ranged from
60 to 70% completeness. Although we acknowledge that
VIBRANT’s metrics are not perfect, we demonstrate the
first benchmarked approach to quantify and characterize
genome quality associated with completeness of viral
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sequences. Manual inspection and visual verification of
viral genomes that were characterized into each of these
genome quality categories showed that quality estima-
tions matched annotations (Fig. 5c).

Identifying function in viral communities: metabolic
analysis

Viruses are a dynamic and key facet in the metabolic
networks of microbial communities and can reprogram
the landscape of host and community metabolism dur-
ing infection. This can often be achieved by modulating
host metabolic networks through expression of AMGs
encoded on viral genomes. Identifying these AMGs and
their associated role in the function of communities is
imperative for understanding complex microbiome dy-
namics, or in some cases can be used to predict virus-
host relationships. VIBRANT is optimized for the evalu-
ation of viral community function by identifying and
classifying the metabolic capabilities encoded by a vir-
ome. To do this, VIBRANT identifies AMGs and assigns
them into specific metabolic pathways and broader cat-
egories as designated by KEGG annotations.

To highlight the utility of this feature, we compared
the metabolic function of IMG/VR viruses derived from
several diverse environments: freshwater, marine, soil,
human-associated, and city (Additional File 16: Figure
S2). We found natural environments (freshwater, mar-
ine, and soil) to display a different pattern of metabolic
capabilities compared to human environments (human-
associated and city). Viruses originating from natural en-
vironments tend to largely encode AMGs for amino acid
and cofactor/vitamin metabolism with a more secondary
focus on carbohydrate and glycan metabolism. On the
other hand, AMGs from city and human environments
are dominated by amino acid metabolism, and to some
extent cofactor/vitamin and sulfur relay metabolism. In
addition to this broad distinction, all five environments
appear slightly different from each other. Despite fresh-
water and marine environments appearing similar in the
ratio of AMGs by metabolic category, the overlap in spe-
cific AMGs is less extensive. The dissimilarity between
natural and human environments is likewise corrobo-
rated by the relatively low overlap in individual AMGs.

A useful observation provided by VIBRANT’s meta-
bolic analysis is that there appears to be globally con-
served AMGs (i.e., present within at least 10 of the 12
environments tested). These 14 genes—dcm, cysH, folE,
phnP, ubiG, ubiE, waaF, moeB, ahbD, cobS, mec, queE,
queD, queC—likely perform functions that are central to
viral replication regardless of host or environment. Not-
ably, folE, queD, queE, and queC constitute the entire 7-
cyano-7-deazaguanine (preQ) biosynthesis pathway, but
the remainder of queuosine biosynthesis are entirely ab-
sent with the exception of queF. Certain AMGs are
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Fig. 5 Estimation of genome quality of identified viral scaffolds. a Explanation of interpretation of quality categories: complete circular, high-quality
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unique in that they are the only common representatives
of a pathway among all AMGs identified, such as phnP
for methylphosphonate degradation. These AMGs may
indicate an evolutionary advantage for manipulating a
specific step of a pathway, such as overcoming a reaction
bottleneck, as opposed to modulating an entire pathway
as seen with preQq biosynthesis. However, it should be
noted that this list of 14 globally conserved AMGs may

not be entirely inclusive of the core set of AMGs in a
given environment.

VIBRANT was evaluated for its ability to provide new
insights into viral community function by highlighting
AMGs from mixed metagenomes. Using only data from
VIBRANT’s direct outputs, we compared the viral meta-
bolic profiles of 6 hydrothermal vent and 15 human gut
metagenomes (Fig. 6). As anticipated, based on IMG/VR
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Fig. 6 Comparison of AMG metabolic categories between

hydrothermal vents and human gut. Venn diagram depicts the

unique and shared non-redundant AMGs between 6 hydrothermal
vent and 15 human gut metagenomes. The graphs depict the
differential abundance of KEGG metabolic categories of respective

AMGs for hydrothermal vents (top) and human gut (bottom)

environment comparisons, the metabolic capabilities be-
tween the two environments were different even though
the number of unique AMGs was relatively equal (138
for hydrothermal vents and 151 for human gut). The
pattern displayed by metabolic categories for each meta-
genome was similar to that displayed by marine and hu-
man viromes. For hydrothermal vents, the dominant
AMGs were part of carbohydrate, amino acid, and cofac-
tor/vitamin metabolism, whereas human gut AMGs
were mostly components of amino acid and, to some ex-
tent, cofactor/vitamin metabolism. Although the ob-
served AMGs and metabolic pathways were overall
different, about a third (50 total AMGs) of all AMGs
from each environment was shared; between these meta-
genomes alone, all 14 globally conserved AMGs were
present.
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Observations of individual AMGs provided insights
into how viruses interact within different environments.
For example, tryptophan 7-halogenase (prnA) was iden-
tified in high abundance (45 total AMGs) within hydro-
thermal vent metagenomes but was absent from the
human gut. Verification using GOV2 (Global Ocean Vir-
omes 2.0) [76] and Human Gut Virome databases sup-
ported our finding that pruA appears to be constrained
to aquatic environments, which is further supported by
the gene’s presence on several marine cyanophages.
PrnA catalyzes the initial reaction for the formation of
pyrrolnitrin, a strong antifungal antibiotic. Identification
of this AMG only within aquatic environments suggests
a directed role in aquatic virus lifestyles. Similarly, cyst-
eine desulfhydrase (iscS) was abundant (14 total AMGs)
within the human gut metagenomes but not hydrother-
mal vents.

Application of VIBRANT: identification of viruses from
individuals with Crohn’s disease

We applied VIBRANT to identify viruses of at least 5 kb
in length from 102 human gut metagenomes (discovery
dataset): 49 from individuals with Crohn’s disease and
53 from healthy individuals [58, 59]. VIBRANT identi-
fied 14,121 viruses out of 511,977 total scaffolds. These
viral sequences were dereplicated to 8822 non-
redundant viral sequences using a cutoff of 95% nucleo-
tide identity over at least 70% of the sequence. We next
used read coverage of each virus sequence from all 102
metagenomes to calculate relative differential abundance
across Crohn’s disease and healthy individuals. In total,
we found 721 viral sequences to be more abundant in
the gut microbiomes associated with Crohn’s disease
(Crohn’s-associated) and 950 to be more abundant in
healthy individuals (healthy-associated).

Using these viruses identified by VIBRANT, we sought
to identify taxonomic or host-association relationships
to differentiate the viral communities of individuals with
Crohn’s disease. We used vConTACT2 to cluster the
721 Crohn’s- or 950 healthy-associated virus sequences
with reference genomes using protein similarity. The
majority of virus sequences (95.5%) were not clustered
with any reference genome at approximately the genus
level suggesting VIBRANT may have identified a large
pool of novel or unique viral genomes. Although fewer
total viruses were associated with Crohn’s disease, sig-
nificantly more were clustered to at least one representa-
tive at the genus level (72 for Crohn’s and 4 for healthy).
Interestingly, no differentially abundant viruses from
healthy individuals clustered with Enterobacterales-
infecting reference viruses (enteroviruses), yet the major-
ity (60/76) of Crohn’s-associated viruses were clustered
with known enteroviruses, such as Lambda- and
Shigella-related viruses. The remaining 16 viruses mainly
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clustered with Caudovirales infecting Lactococcus, Clos-
tridium, Riemerella, Klebsiella, and Salmonella species,
though Microviridae and a likely complete crAssphage
were also identified. A significant proportion of all
Crohn’s-associated viruses (250/721) and the majority of
genus-level clustered viruses (42/76) were found to be
integrated sequences within a microbial genomic scaf-
fold but were able to be identified due to VIBRANT’s
ability to excise proviruses.

We also generated a protein sharing network contain-
ing all 721 Crohn’s and 950 healthy-associated virus se-
quences, which corresponded to taxonomic and host

relatedness (Fig. 7a). This protein network identified two
different clustering patterns: (1) overlapping Crohn’s and
healthy-associated viral populations clustered with Fir-
micutes-like viruses which may be indicative of a stable
gut viral community; (2) Crohn’s-associated viruses clus-
tered with Enterobacterales-like and Fusobacterium-like
viruses which may be indicative of a state of dysbiosis.
The presence of a greater diversity and abundance of
Enterobacterales and Fusobacteria has previously been
linked to Crohn’s disease [77, 78], and therefore the
presence of viruses infecting these bacteria may provide
similar information.
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VIBRANT provides annotation information for all of
the identified viruses which can be used to infer func-
tional characteristics in conjunction with host associ-
ation. Comparison of Crohn’s-associated Lambda-like
virus genomic content and arrangement suggested a
possible role of virally encoded host-persistence and
virulence genes that are absent in the healthy-associated
virome (Fig. 7b). Among all Crohn’s-associated viruses,
17 total genes (bor, dicB, dicC, hokC, kilR, pagC, ydaS,
ydaT, yfdN, yfdP, yfdQ, yfdR, yfdS, yfdT, ymfL, ymfM,
and fonB) that have the potential to impact host survival
or virulence were identified. Importantly, no healthy-
associated viruses encoded such genes (Table 2). The
presence of these putative dysbiosis-associated genes
(DAGs) may contribute to the manifestation and/or per-
sistence of disease, similar to what has been proposed
for the bacterial microbiome [79-81]. For example, pagC
encodes an outer membrane virulence factor associated
with enhanced survival of the host bacterium within the
gut [82]. The identification of dicB encoded on a puta-
tive Escherichia virus is unique in that it may represent a
“cryptic” provirus that protects the host from lytic viral
infection, thus likely to enhance the ability of the host to
survive within the gut [83]. Finally, #0kC may indicate
mechanisms of virally encoded virulence [84].

To characterize the distribution and association of
DAGs with Crohn’s disease, we calculated differential
abundance for two highly abundant DAG-encoding vi-
ruses across all metagenome samples. The first virus
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encoded pagC and yfdN, and the second encoded dicB,
dicC, and hokC. Comparison of Crohn’s disease to
healthy metagenomes indicates that these viruses are
present within the gut metagenomes of multiple individ-
uals but more abundant in association with Crohn’s dis-
ease (Additional File 16: Figure S3A). This suggests an
association of disease with not only putative DAGs, but
also specific and potentially persistent, viral groups that
encode them. In order to correlate increased abundance
with biological activity, we calculated the index of repli-
cation (iRep) for each of the two viruses [64]. Briefly,
iRep is a function of differential read coverage which is
able to provide an estimate of active genome replication.
Seven metagenomes containing the greatest abundance
for each virus were selected for iRep analysis and indi-
cated that each virus was likely active at the time of col-
lection (Additional File 16: Figure S3B).

To validate these aforementioned findings, we applied
VIBRANT to two additional metagenomic datasets from
cohorts of individuals with Crohn’s disease and healthy in-
dividuals (validation dataset): 43 from individuals with
Crohn’s disease and 21 from healthy individuals [66, 67].
VIBRANT identified 3759 redundant viral genomes from
Crohn’s-associated metagenomes and 1444 from healthy-
associated metagenomes. Determination of protein net-
works and visualization similarly identified clustering of
Crohn’s-associated viruses with reference enteroviruses
(Additional File 16: Figure S4). Likewise, we were able to
identify 15 out of the 17 putative DAGs to be present in

Table 2 Identification of putative DAGs encoded by Crohn’s-associated viruses

D Gene Name Crohn'’s disease Healthy
PF06291.11 bor Bor protein 8 0
K22304 dicB Cell division inhibition protein 8 0
K22302 dicC Transcriptional repressor of cell division inhibition gene dicB 18 0
K18919 hokC Protein HokC/D 16 0
VOG11478 kilR Killing protein 15 0
K07804 pagC Putative virulence related protein 13 0
PF15943.5 ydaS Putative antitoxin of bacterial toxin-antitoxin system 22 0
PF06254.11 ydaT Putative bacterial toxin 18 0
VOG04806 yfdN Uncharacterized protein 19 0
VOG01357 yfdP Uncharacterized protein 11 0
VOG11472 yfdQ Uncharacterized protein 11 0
VOGO01639 yfdR Uncharacterized protein 17 0
VOG01103 yfdsS Uncharacterized protein 18 0
VOG16442 yfdT Uncharacterized protein 8 0
VOG00672 ymfL Uncharacterized protein 25 0
VOG21507 ymiM Uncharacterized protein 9 0
K03832 tonB periplasmic protein 3 0

The differential abundance between Crohn'’s disease and healthy metagenomes of 17 putative DAGs. Abundance of each gene represents non-redundant
annotations or total gene copy number, from Crohn’s-associated and healthy-associated viruses
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higher abundance in the Crohn’s disease microbiome
(Additional File 18: Table S17). This validates our findings
of the presence of unique viruses and proteins associated
with Crohn’s disease and suggests that Enterobacterales-
like viruses and putative DAGs may act as markers of
Crohn’s disease. Overall, our results suggest that VI-
BRANT provides a platform for characterizing these
relationships.

Discussion

Viruses that infect bacteria and archaea are key compo-
nents in the structure, dynamics, and interactions of mi-
crobial communities [2, 6, 10, 76, 85]. Tools that are
capable of efficient recovery of these viral genomes from
mixed metagenomic samples are likely to be fundamen-
tal to the growing applications of metagenomic sequen-
cing and analyses. Importantly, such tools would need to
reduce bias associated with specific viral groups (e.g.,
Caudovirales) and highly represented environments (e.g.,
marine). Moreover, viruses that exist as integrated provi-
ruses within host genomes should not be ignored as they
can represent a substantial fraction of infections in cer-
tain conditions and also persistent infections within a
community [75].

Here we have presented VIBRANT, a newly described
method for the automated recovery of both free and in-
tegrated viral genomes from metagenomes that hybrid-
izes neural network machine learning and protein
signatures. VIBRANT utilizes metrics of non-reference-
based protein similarity annotation from KEGG, Pfam,
and VOG databases in conjunction with a unique “v-
score” metric to recover viruses with little to no biases.
VIBRANT was built with the consideration of the hu-
man guided intuition used to manually inspect metage-
nomic scaffolds for viral genomes and packages these
ideas into an automated software. This platform origi-
nates from the notion that proteins generally considered
as non-viral, such as ribosomal proteins [86], may be de-
cidedly common among viruses and should be consid-
ered accordingly when viewing annotations. V-scores are
meant to provide a quantitative metric for the level of
virus-association for each annotation used by VIBRANT,
especially for Pfam and KEGG HMMs. That is, v-scores
provide a means for both highlighting common or hall-
mark viral proteins as well as differentiating viral from
non-viral annotations. In addition, v-scores give a quan-
tifiable value to viral hallmark genes instead of categoriz-
ing them in a binary fashion.

VIBRANT was not only built for the recovery of
viral genomes, but also to act as a platform for inves-
tigating the function of a viral community. VIBRANT
supports the analysis of viromes by assembling useful
annotation data and categorizing the metabolic path-
ways of viral AMGs. Using annotation signatures,
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VIBRANT furthermore is capable of estimating gen-
ome quality and distinguishing between lytic and lyso-
genic viruses. To our knowledge, VIBRANT is the
first software that integrates virus identification, anno-
tation, and estimation of genome completeness into a
stand-alone program.

Benchmarking and validation of VIBRANT indicated
improved performance compared to VirSorter [37], Vir-
Finder [41], and MARVEL [45], three commonly used
programs for identifying viruses from metagenomes.
This included a substantial increase in the relationship
between true virus identifications (recall, true positive
rate) and false non-virus identifications (specificity, false
positive rate). That is, VIBRANT recovered more viruses
with no discernable expense to false identifications. The
result was that VIBRANT was able to recover an average
of 2.3 and 1.7 more viral sequence from real metagen-
omes than VirFinder and VirSorter, respectively. When
tested on metagenome-assembled viral genomes from
IMG/VR [87] representing diverse environments, VI-
BRANT was found to have no perceivable environment
bias towards identifying viruses. In comparison to pro-
virus prediction tools, specifically PHASTER [47], Pro-
phage Hunter [48], and VirSorter, VIBRANT was shown
to be proficient in identifying viral regions within bacter-
ial genomes. This included the identification of a puta-
tive Bacteroides provirus that PHASTER and Prophage
Hunter were unable to identify. The importance of inte-
grated provirus prediction was underscored in the ana-
lysis of Crohn’s disease metagenomes since it was found
that a significant proportion of disease-related viruses
were temperate viruses existing as host-integrated
genomes.

VIBRANT’s method allows for the distinction between
scaffold size and coding capacity in designating the mini-
mum length of virus identifications. Traditionally, a cut-
off of 5000 bp has been used to filter for scaffolds of a
sufficient length for analysis. This is under the presump-
tion that a longer sequence will be likely to encode more
proteins. For example, this cutoff has been adopted by
IMG/VR. However, we suggest a total protein cutoff of
four open reading frames rather than sequence length
cutoff to be more suitable for comprehensive
characterization of the viral community. VIBRANT’s
method works as a strict function of total encoded pro-
teins and is completely agnostic to sequence length for
analysis. Therefore, the boundary of minimum encoded
proteins will support a more guided cutoff for quality
control of virus identifications. For example, increasing
the minimum sequence length to 5000 bp will have no
effect on accuracy or ability to recall viruses since VI-
BRANT will only be considerate of the minimum total
proteins, which is set to four. The result will be the loss
of all 1000 to 4999 bp viruses that still encode at least
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four proteins. To visualize this distinction, we applied
VIBRANT with various length cutoffs to the previously
used estuary virome (see Table 1). Input sequences were
stepwise limited from 1000 to 10,000 bp (1000 bp steps)
or four open reading frames to 13 open reading frames
(one open reading frame steps) in length. Limiting to
open reading frames indicated a reduced drop-off in
total virus identifications and total viral sequence com-
pared to a minimum sequence length limit (Additional
File 16: Figure S5).

The output data generated by VIBRANT—protein/gene
annotation information, protein/gene sequences, HMM
scores and e-values, viral sequences in FASTA and Gen-
Bank format, indication of AMGs, genome quality, etc.—
provides a platform for easily replicated pipeline analyses.
Application of VIBRANT to characterize the function of
Crohn’s-associated viruses emphasizes this utility. VI-
BRANT was not only able to identify a substantial number
of viral genomes, but also provided meaningful information
regarding putative DAGs, viral sequences for differential
abundance calculation and genome alignment, viral pro-
teins for clustering, and AMGs for metabolic comparisons.

Conclusions

Our construction of the VIBRANT platform expands the
current potential for virus identification and characterization
from metagenomic and genomic sequences. When com-
pared to two widely used software programs, VirFinder and
VirSorter, we show that VIBRANT improves total viral se-
quence and protein recovery from diverse human and nat-
ural environments. As sequencing technologies improve and
metagenomic datasets contain longer sequences, VIBRANT
will continue to outcompete programs built for short scaf-
folds (e.g., 500—-3000 bp) by identifying more higher quality
genomes. Our workflow, through the annotation of viral ge-
nomes, aids in the capacity to discover how viruses of bac-
teria and archaea may shape an environment, such as driving
specific metabolism during infection or dysbiosis in the hu-
man gut. Furthermore, VIBRANT is the first virus identifica-
tion software to incorporate annotation information into the
curation of predictions, estimation of genome quality, and in-
fection mechanism (i.e., lytic vs lysogenic). We anticipate that
the incorporation of VIBRANT into microbiome analyses
will provide easy interpretation of viral data, enabled by VI-
BRANT’s comprehensive functional analysis platform and
visualization of information.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540168-020-00867-0.
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