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Abstract

Background: Recent studies have significantly expanded our knowledge of viral diversity and functions in the
environment. Exploring the ecological relationships between viruses, hosts, and the environment is a crucial first
step towards a deeper understanding of the complex and dynamic interplays among them.

Results: Here, we obtained extensive 16S rRNA gene amplicon, metagenomics sequencing, and geochemical
datasets from different depths of two highly stratified sulfidic mine tailings cores with steep geochemical gradients
especially pH, and explored how variations in viral community composition and functions were coupled to the co-
existing prokaryotic assemblages and the varying environmental conditions. Our data showed that many viruses in
the mine tailings represented novel genera, based on gene-sharing networks. Siphoviridae, Podoviridae, and
Myoviridae dominated the classified viruses in the surface tailings and deeper layers. Both viral richness and
normalized coverage increased with depth in the tailings cores and were significantly correlated with geochemical
properties, for example, pH. Viral richness was also coupled to prokaryotic richness (Pearson’s r = 0.65, P = 0.032).
The enrichment of prophages in the surface mine tailings suggested a preference of lysogenic viral lifestyle in more
acidic conditions. Community-wide comparative analyses clearly showed that viruses in the surface tailings
encoded genes mostly with unknown functions while viruses in the deeper layers contained genes mainly
annotated as conventional functions related to metabolism and structure. Notably, significantly abundant
assimilatory sulfate reduction genes were identified from the deeper tailings layers and they were widespread in
viruses predicted to infect diverse bacterial phyla.

Conclusions: Overall, our results revealed a depth-related distribution of viral populations in the extreme and
heterogeneous tailings system. The viruses may interact with diverse hosts and dynamic environmental conditions
and likely play a role in the functioning of microbial community and modulate sulfur cycles in situ.
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Background
Viruses are abundant and critical components of micro-
bial communities in the environment [1]. Historically,

studies of viral diversity have largely relied on culture-
dependent techniques with well-recognized limitations,
including especially the inconsistency between morpho-
logical and genetic taxon identification [2]. While
marker gene surveys have revolutionized our under-
standing of cellular systematics and diversity, such ap-
proaches cannot be adopted in viral ecology studies due
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to the absence of a phylogenetically informative univer-
sal marker owing to the mosaic nature of viral genome
organization [3]. To tackle these problems, recent works
have employed metagenomic sequencing to discover
viral sequences from a wide variety of habitats including
marine and freshwater environments [3–5], soils [6, 7],
and extreme environments [8–10]. These studies often
reveal the existence of diverse viral assemblages in na-
ture, whose members remain largely uncharacterized
(unknown virosphere), and significantly improve our un-
derstanding of the ecological roles of viruses in Earth’s
major ecosystems [4, 11]. A current challenge is to move
beyond the two basic questions, i.e., what is there and
what is it doing, to a more in-depth analysis of the dy-
namic interplay between viruses, microbes, and environ-
mental conditions [12].
Viruses can substantially affect the ecology, evolution,

and physiology of their hosts in natural settings by caus-
ing host mortality, facilitating horizontal gene transfer,
and influencing biogeochemical cycles via production of
dissolved organic matter through cell lysis or participat-
ing in host metabolisms with auxiliary metabolic genes
(AMGs) [13, 14]. In the meantime, viruses are intracellu-
lar obligatory parasites that repurpose the host cell ma-
chinery to replicate; thus, prokaryotic hosts play a key
role in regulating viral populations [9]. Population oscil-
lations of viruses and their hosts have been documented
[5] and reviewed [15] in natural and cultivated environ-
ments. Furthermore, geochemical conditions may also
have a significant influence on viral populations via dir-
ect or indirect mechanisms. Analyses of viruses in the
pelagic upper-ocean revealed that viral communities are
locally structured by environmental conditions that
affect host community structure [16]. Additionally, the
AMGs in viral genomes are obtained by horizontal gene
transfer from their hosts and exhibit parallel depth-
stratified host adaptations [14]. All these aspects imply a
complicated interaction between viruses, hosts, and
environments.
Acid mine drainage (AMD) is a worldwide environ-

mental problem that arises largely from microbially me-
diated oxidative dissolution of sulfidic ores exposed to
oxygen and water during mining activities [17]. These
environments are characterized by low pH and high con-
centrations of metals and sulfate, representing an ex-
treme environment for life. AMD environments are well
recognized as model systems for the study of microbial
community structure, functions, and evolution due to
their reduced complexity and have been studied exten-
sively by cultivation-independent molecular approaches
[18–20]. Meanwhile, several investigations with a spe-
cific focus on viruses in AMD systems have been re-
ported. These early works documented a major
influence of minerals (via attachment) on viral

abundance [21, 22], unveiled the coevolution relation-
ships between viruses and their specific hosts [23], and
uncovered viruses infecting cells of the archaeal lineages
of ARMAN and Thermoplasmatales [24]. In contrast,
while waste tailings dumps are an important source of
AMD around the globe [20], relatively little is known
about the microbial diversity and ecology in these harsh,
highly heterogeneous environments [25, 26], and the in-
digenous viral communities have never been investi-
gated. Mine tailings dumps are typically stratified into
distinct geochemical zones, reflecting progressive oxida-
tion of sulfide minerals in the tailings and indicating that
each of these zones is shaped by organisms with specific
metabolic traits [26]. Thus, mine tailings offer unique
possibilities to resolve complex biological interactions
and to explore the relationship between these dynamic
interactions and multivariate geochemistry.
Here, we report the analysis of two highly stratified

tailings cores sampled from a sulfidic tailings impound-
ment of a Pb/Zn mine where extremely low pH and
metal-rich drainage is a persistent feature. The compos-
ition of both the prokaryotic and viral populations in dif-
ferent sections of the cores was resolved by 16S rRNA
gene high-throughput sequencing and recovering viral
sequences from metagenomic datasets, respectively. We
assessed how prokaryotic and viral communities varied
along the tailings depth profiles and examined how the
down-core stratification of viral diversity and functions
were related to the co-existing prokaryotic assemblages
and tailings geochemistry.

Results
Physicochemical stratification of mine tailings
Both tailings cores showed steep vertical gradients of
physicochemical properties (Fig. 1). pH values shifted
from extremely acidic at the surface layers to near neu-
tral at the deeper layers, while electronic conductivity
(EC) declined with depth along the vertical profiles. Both
total organic carbon (TOC) and total phosphorus (TP)
exhibited an increase with depth. The ratio of Fe2+ to
total Fe increased dramatically with depth, contrasting
to the decrease in the ratio of SO4

2− to total sulfur (TS).
This indicated a shift from an oxidative environment at
the surface tailings to a reductive condition at the deeper
layers. Additionally, differences in geochemistry between
the two mine tailings cores were also evidenced. For de-
tailed physicochemical parameters of the tailings sam-
ples, see Additional file 1: Table S1 in the Supplemental
material.

Diversity and distribution of viral and prokaryotic
communities
Application of viral protein family-based pipeline [27]
and VirSorter software [28] to predict viral sequences in
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the two cross-assembled metagenomic assemblies led
to the identification of 844 putative DNA metage-
nomic viral scaffolds. Of these, 631 were identified by
only one tool and 213 identified by both tools (Add-
itional file 1: Table S2). All viral scaffolds were
grouped at approximately the species level into 750
viral operational taxonomic units (vOTUs), of which
116 could be taxonomically affiliated and corre-
sponded to double-stranded DNA (dsDNA) and
single-stranded DNA (ssDNA) viruses (Additional file
1: Table S3). The number of vOTUs in each tailings
layer ranged from 74 to 527 and generally increased

with depth (Fig. 1 and Additional file 1: Table S1).
Examination of relative abundance of viruses in each
tailings layer (calculated as the cumulative normalized
coverage of its members divided by the total normal-
ized coverage of viruses in that community) showed
that the classified viruses accounted for 2.56~50.2% of
all viral communities, most of which were assigned to
one of the three families (Myoviridae, Siphoviridae,
and Podoviridae) in the Caudovirales order (Fig. 2a
and Additional file 1: Table S3).
The barcoded 16S rRNA gene sequencing generated 1,

742,197 quality sequences from the 11 tailings samples,

Fig. 1 Vertical profiles of physicochemical and biodiversity data for the two tailings cores from the Fankou Pb/Zn mine located in Guangdong Province,
P.R. China. The intermediate depth of each layer is taken as the depth of each sample. EC, electronic conductivity; TOC, total organic carbon; TP, total
phosphorus; TS, total sulfur; vOTUs, the number of viral operational taxonomic units; OTUs, the number of prokaryotic operational taxonomic units

Fig. 2 Relative abundance of a viruses (family level) and b prokaryotes (phylum level) in the 11 depth-stratified mine tailings layers revealed by
metagenomics and 16S rRNA gene amplicon sequencing, respectively
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with a range of 43,424 to 134,565 sequences per commu-
nity (Additional file 1: Table S4). A total of 3371 phylotypes
were defined at a 97% sequence similarity cutoff; most
(99%) of which could be assigned to a taxonomic group
(phylum) by the RDP classifier (80% threshold). The pro-
karyotic phylotype richness generally increased with depth
(ranging from 398 to 2321 in each sample), coincident with
the vertical distribution of viral diversity. Examination of
the relative abundance of the dominant lineages showed
contrasting patterns: while archaeal phylotypes were most
abundant in the surface tailings layers, those of bacteria
were most frequently detected in the deeper layers. Specif-
ically, Euryarchaeota represented 67% and 80% of the total
sequences of the surface tailings (A1 and B1, respectively),
whereas Proteobacteria, Nitrospirae, and Firmicutes collect-
ively accounted for 77% and 90% of the total communities
in the deeper layers (A6 and B5, respectively) (Fig. 2b).

Correlations between viral communities, prokaryotic
communities, and geochemical data
Significant correlations were observed between viral
community composition, prokaryotic community com-
position, and geochemical data (Additional file 2: Fig.

S1). Specifically, the two tailings cores exhibited similar
increases in the number of vOTUs with increasing pro-
karyotic richness along the depth profiles as expected
(Fig. 1 and Fig. 3a). Meanwhile, the number of vOTUs
and the overall normalized coverage of viruses were also
significantly correlated with measured geochemical pa-
rameters, for example, pH (Fig. 3b, c).
Euclidean distance-based principal component analysis

(PCA) and Bray–Curtis distance-based principle coord-
inate analysis (PCoA) were applied to further reveal the
clustering patterns of physicochemical properties (Fig.
3d), and prokaryotic communities (Fig. 3e), and viral
communities (Fig. 3f) of the tailings, respectively. Results
showed that physicochemical properties and prokaryotic
and viral communities (OTU level) of samples from the
vertical profiles of the tailings cores were apparently sep-
arated between surface and deeper layers, indicating a
significant depth-related variability in the biotic and abi-
otic signals and the potential correlations between them.
In support of this, Mantel test analysis revealed that viral
community dissimilarity (estimated between all pairwise
combinations of samples) increased with an increasing
difference in the prokaryotic community (Mantel’s r =

Fig. 3 a–c Significant Pearson correlations between prokaryotic community, viral community, and pH. d Principal component analysis (PCA) of
geochemical data as derived from Euclidean dissimilarities, and principle coordinate analysis (PCoA) of e prokaryotic communities and f viral
communities as derived from Bray–Curtis dissimilarities. The analysis of similarity (ANOSIM) statistics considers samples grouped by depth (inside
and outside the dashed ellipses)
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0.47, P = 0.004) and geochemical characteristics (Man-
tel’s r = 0.43, P = 0.005). Meanwhile, both prokaryotic
and viral community dissimilarities were most signifi-
cantly related to EC (Additional file 2: Fig. S2). Notably,
viral communities were also apparently separated be-
tween the two tailings cores (ANOSIM R2 = 0.24, P <
0.01) (Fig. 3f), mirroring the between-core differences in
geochemical properties (Fig. 1).
Next, we performed extensive genome reconstruction

for the bacteria and archaea present in the tailings cores
to resolve putative hosts of the identified viruses. This
resulted in a total of 435 draft prokaryotic genomes.
These genomes were then screened for genomic features
linking viruses to potential hosts. Protospacers were
identified in 4 predicted viral scaffolds, and 22 prophages
were matched to their putative hosts (Additional file 1:
Table S5). Together, putative hosts from 11 bacterial
and archaeal phyla were predicted for 26 viral scaffolds
(Additional file 1: Table S5). Notably, the total relative
abundance of prophages exhibited a depth-related distri-
bution in the two cores and correlated with pH signifi-
cantly (Pearson’s r = − 0.76, P = 0.007) (Fig. 4).

Community-wide comparative gene profiles
To explore the metabolic capabilities and functional di-
versity of viral communities associated with different
depths, cluster of orthologous group (COG) annotation
of viral genomes was performed by comparing the

predicted viral proteins against the eggNOG database
(5.0.0) (Additional file 1: Table S6) [29], and the normal-
ized coverage of each COG was calculated. Bray–Curtis
distance-based PCoA again revealed strong primary clus-
tering of viral COGs by depth (Fig. 5a). Further analysis
indicated that 60 out of 2002 COGs displayed signifi-
cantly (P < 0.05) different normalized coverage between
the surface tailings and deeper layers (Additional file 1:
Table S7). We defined a COG with a significantly higher
or lower normalized coverage in the surface tailings than
that in the deeper layer viral communities as an indica-
tor COG. Accordingly, 20 indicator COGs on 49 viral
sequences and 40 indicator COGs on 426 viral se-
quences were identified for the surface communities and
deeper layer communities, respectively (Additional file 1:
Table S7). Meanwhile, virus-specific genes (defined in
the “Methods” section) and short genes (< 1 kb) were
found on most of these viral sequences (Additional file
1: Table S8). Interestingly, most of the indicator COGs
in the surface tailings could not be assigned to any
known functions (Fig. 5b and Additional file 1: Table
S7). Additionally, two indicator COGs were assigned as
virus-specific functions that are mainly involved in the
synthesis of phage portal protein (33PZW) and archaeal
phage integrase (arCOG01244) (Fig. 5b and Additional
file 1: Table S7). In contrast, the deeper layer viral com-
munities harbored a large proportion of higher indicator
COGs related to assimilatory sulfate reduction (ASR)

Fig. 4 Significant Pearson correlations between pH and the relative abundance of prophages in the 11 mine tailings layers
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(COG0175), transposase (COG0675), DNA replication
(initiation and elongation, COG0305), DNA synthesis
(COG3723), phage integrase (COG4974), and recombin-
ase (COG1961) (Fig. 5b and Additional file 1: Table S7).
To further examine potential links between viral func-
tions and community structure, we analyzed the relative
abundance and composition of viral genomes that
encoded the indicator COGs in each tailings layer. These
viruses accounted for a significant proportion of the
total viral communities in the surface and deeper layers
(37.6% and 72.1% in the B2 and A6 communities, re-
spectively) (Additional file 2: Fig. S3). Taxonomic classi-
fication of these viral genomes further revealed that
families of Caudovirales order, which constitute largely
the classifiable viruses in the mine tailings, primarily
encoded the indicator COGs in all layers (Additional file
1: Table S8).

Case study of AMGs
Having illustrated the community-wide functional pro-
files, we next sought to identify the putative virus-
encoded AMGs that could modify host metabolism dur-
ing infection. Given the observed lower ratio of SO4

2

−/TS (Fig. 1) and higher abundance of ASR (COG0175)
genes in the deeper tailings layers (Fig. 4b), genes related
to ASR were selected for subsequent analysis. We found
seven predicted viral scaffolds that harbored genes par-
ticipating in ASR (COG0175) (Fig. 6a and Additional file
1: Table S9), which are important for the reduction of

3′-phosphoadenosine 5′-phosphosulfate (PAPS) and the
conversion of sulfate to sulfite [30]. All these predicted
viral scaffolds were longer than 10 kb and contained one
or more virus-specific genes (Fig. 6a). One of them
(CoreA_NODE_507) was predicted as prophage with its
ASR gene flanked by viral-specific genes (Fig. 6a).
To further explore the origin of these predicted

viral genes, 99 homologs from 11 prokaryotic phyla
were recruited and combined to build a phylogenen-
tic tree (Fig. 6b and Additional file 1: Table S10),
and their putative hosts were predicted as nearest
neighbors. The phylogenetic analysis showed that the
sulfate reduction genes in the viral genomes
“CoreA_NODE_22178” and “CoreA_NODE_4680”
clustered with their counterparts from Firmicutes, in-
dicating that these AMGs might be acquired from
this widely distributed bacterial lineage. This result
was in agreement with our prediction of Firmicutes
as the putative host of the viral genome “CoreA_
NODE_22178” (Additional file 1: Table S5). How-
ever, the hosts of other ASR genes were uncertain,
as they clustered with homologous genes from differ-
ent phyla (Fig. 6b). Nonetheless, reads mapping to
the seven predicted viral genomes and their pre-
dicted ASR genes showed that both these genomes
and genes were significantly (Wilcoxon t test, P <
0.01) enriched in the deeper layers of the tailings
cores (Fig. 6c), implying a potential impact of viral
ASR on the sulfur cycles in situ.

Fig. 5 Overview of functional profiles of viral communities. a PCoA of viral COGs based on their relative abundance in each community. The
analysis of similarity (ANOSIM) statistics considers samples grouped by depth (inside and outside the dashed ellipse). b Hierarchical clustering of
the top ten abundant indicator COGs in the surface and the deeper layers, respectively. Relative abundances were log transformed and
normalized with a z-score method

Gao et al. Microbiome            (2020) 8:89 Page 6 of 13



Discussion
The highly stratified physicochemical and biological pro-
file in the Fankou Pb/Zn sulfidic mine tailings has en-
abled an in-depth exploration of the variation of viral
communities in the context of geochemical changes.
While many viral ecology studies have employed size-
based enrichment of viral particles from environmental
(especially aqueous) samples to generate the metagen-
omes (viral metagenomes or viromes) [3–5], such strat-
egies are particularly challenging when it comes to soil
and sediments due to the difficulties in isolating soil vi-
ruses and the distinct properties between sites that pre-
vent generalization [31]. Thus, we performed
metagenomic sequencing on total genomic DNA ex-
tracted directly from the mine tailings, which would
allow recovery of sequences from not only temperate vi-
ruses that are either integrated into host genomes or
present as episomal elements in the host cells, but also
free virus particles present in the original samples [32].
Consequently, without enrichment of free viruses

adsorbed to soil and breaking open viral capsids, the
predicted viral sequences in our study are likely biased
towards intracellular viruses [31, 32]. While metage-
nomics has brought new opportunities to the rapidly
progressing field of viral ecology, identification of puta-
tive viral sequences in the sequence datasets remains a
major challenge. Previous studies have employed viral
protein families and VirSorter software [1, 33]. However,
benchmarking of the two computational approaches
demonstrated that the viral protein family-based pipeline
had a better precision whereas the recall rate was higher
with VirSorter in a synthetic metagenome [1]. These
rarely behave in a similar way to metagenomes from nat-
ural communities. Thus, we employed separately these
methods in our study and merged the identified viral
scaffolds data, uncovering a large proportion of unclassi-
fied viral genomes in the Fankou mine tailings (Fig. 2a).
Unknown virospheres have recently been discovered in
many other habitats such as marine environments, acidic
hot springs, and permafrost soils [4, 8, 9]. Given that the

Fig. 6 Genomic analysis of viral sulfate reduction genes. a Genome map of seven viral scaffolds containing assimilatory sulfate reduction genes.
Genes related to replication, recombination, and repair are shown in light purple; genes related to metabolism are shown in dark blue; genes
related to cellular processes and signaling are shown in green; viral hallmark genes are in orange; and assimilatory sulfur reduction genes
(COG0175) are in dark purple and unknown genes are in grey. Detailed function descriptions of the seven viral scaffolds are listed in Additional
file 1: Table S9. b Maximum-likelihood phylogenetic tree with assimilatory sulfate reduction genes from mine tailings viral genomes (indicated by
stars) compared to genes found in bacterial reference sequences (the “Methods” section). The scale bar represents 1 amino acid substitution per
site. c Total relative abundance of COG0175 and genomes containing COG0175 in each tailings layer viral genome
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reticulate classification method of viral sequences uses
shared gene content information [2, 34] and that cur-
rently the isolated archaeal viruses are largely outnum-
bered by bacteriophages [35, 36], it is likely that archaeal
viruses may account for a substantial fraction of the un-
classified viral scaffolds in our study, especially in the
archaea-predominating surface tailings.
Samples from both cores share a common depth-

stratified pattern in the overall composition of geochem-
istry, prokaryotic communities, and viral communities
(Fig. 3d-f). While it is unclear whether variations in viral
communities were directly driven by their hosts or by
geochemical changes along the tailings profiles, our re-
sults provided quantitative evidence that viral diversity
increases with depth in the highly stratified mine tailings
at this site (Fig. 1). Noteworthy, previous 16S rRNA gene
surveys have identified pH as major driver of prokaryotic
community composition at local or large scales in the
extreme AMD and associated environments [37, 38].
Our current metagenomics analysis demonstrated that
pH is also one of the major factors shaping the relatively
under-studied viral world (Fig. 3b and c). That viral rich-
ness and normalized coverage increased with increasing
pH along the depth profiles is somewhat expected be-
cause both viruses and their prokaryotic hosts tend to be
sensitive to acidic pH [21, 22]. This would also explain
the observed lower variability of both prokaryotic and
viral populations at lower pH values (Fig. 3a and b).
Viruses depend on their prokaryotic hosts to success-

fully replicate. We hypothesized that viruses tend to be
more temperate and symbiotic with hosts in extreme en-
vironmental conditions. This was supported by the sig-
nificant negative correlations between the relative
abundance of prophages and pH (Fig. 4). Our results are
also consistent with previous studies which suggested
that the lysogenic state should be favored under extreme
conditions (for example, low nutrients, low productivity,
or heat) [39]. This is a readily comprehensible pattern as
lysogeny can enhance phage and host survival, particu-
larly under adverse conditions [40]. Thus, the enrich-
ment of prophages in the surface layers of the mine
tailings not only might enable the detection of virus-host
links, but also provides evidence for the potential prefer-
ence of lysogenic viral lifestyle in more extreme
environments.
Viral communities with diverse taxa in natural envi-

ronments may exhibit distinct functional profiles in re-
sponse to the varying biotic and abiotic factors [14, 41].
Comparative analysis of viral community gene profiles
showed that metabolic patterns were significantly differ-
ent between surface tailings and deeper layers (Fig. 5a)
and, although found in all tailings layers, many indicator
COGs had distinct, depth-related distribution (Add-
itional file 1: Table S7). Archaeal viruses may be

abundant in the surface tailings due to predominance of
their potential hosts (archaea) in those layers (Fig. 2b).
This speculation is supported by the finding that ar-
chaeal phage integrase (arCOG01244) were significantly
abundant in the surface tailings (Additional file 1: Table
S7). Thus, it is reasonable that viral indicator COGs in
the surface tailings are more difficult to annotate due to
the small number of isolated archaeal viruses [35, 36].
Compared with the more unidentifiable viral functions
in the surface extreme environments, the category of
functions in the deeper layers showed strong consistency
with conventional metabolism and structure functions
(Fig. 5b), suggesting that viruses in the less extreme dee-
per tailings layers are more similar to currently known
viruses, which are isolated largely from non-extreme
environments.
The role of viruses in regulating the sulfur cycle was

recently described in deep ocean viral communities [4,
42]. Interestingly, our analyses showed that viral genes
participating in the ASR process (COG0175) were sig-
nificantly abundant in the deeper tailings layers (Fig. 5b
and Fig. 6a), which were characterized by lower ratio of
SO4

2−/TS. In this process, sulfate is incorporated into
adenosine-5′-phosphosulfate (APS), which is then acti-
vated by ATP to form PAPS that can be reduced to sul-
fite by PAPS reductase (COG0175), and further
participated in the formation of many essential biomole-
cules like iron-sulfur (Fe–S) clusters, sulfur-containing
amino acids, and cofactors [43]. Notably, previous study
has reported ASR in members of Acidithiobacillus, an
acidophilic Gammaproteobacteria genus often dominat-
ing AMD and associated environments [30]. The abun-
dant viral ASR AMGs in the deeper layers possibly may
facilitate their hosts to utilize sulfate in the oxygen-
depleting environment, which in turn benefit the replica-
tion and reproduction of associated viruses. As AMD
typically contains elevated levels of sulfate and metals
due to oxidative dissolution of sulfide minerals, our find-
ings of a potential contribution of viruses to the sulfate
reduction process in the deeper part of the tailings im-
poundment have practical implications for AMD
bioremediation.

Conclusions
Although the field of viral ecology is rapidly evolving
owing to recent developments of sequencing and bio-
informatics methods, the viral communities populating
various extreme environments remain relatively under-
explored. Our comprehensive analysis of the mine tail-
ings cores has revealed a largely novel, depth-stratified
viral community that shows strong correlations with co-
occurring prokaryotic assemblages and geochemical gra-
dients. The environmental conditions associated with
different oxidation stages of mine tailings (deep layers of
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the cores represent unaltered, pH-neutral tailings mater-
ial whereas top layers represent highly oxidized and
acidified tailings) apparently have a profound impact on
the viral populations and their functions. Future simu-
lated experiments of oxidative dissolution of sulfidic
mine tailings or sulfide minerals, coupled with extensive
time-series sampling and analysis, will provide more de-
tailed insights into viral dynamics and their interplay
with prokaryotic populations and geochemical condi-
tions during the process of acid generation.

Methods
Study site, sampling, and physicochemical analyses
The Fankou Pb/Zn sulfidic mine tailings site (25° 2′
56.5″ N, 113° 39′ 48.5″ E) is located in Shaoguan,
Guangdong province, China. Extremely acidic, heavy
metal-rich drainage is a persistent feature due to micro-
bially mediated dissolution of sulfide minerals in the tail-
ings at this site. Previous 16S rRNA gene surveys have
documented vertical stratification of geochemistry and
prokaryotic populations, with acidophilic archaea, mostly
Ferroplasma spp. in the Thermoplasmatales predomin-
ant in the upper layers of tailings (oxidized zones and
the oxidation front) [26]. Two tailings cores (inner diam-
eter, 8 cm; length, 60 cm) were sampled from an area
covered with AMD using a sampling collector in Octo-
ber 2017. After retrieval, the cores were immediately
sectioned into distinct layers based on their physical fea-
ture and appearance (e.g., colors), yielding six layers for
core A and five layers for core B (Additional file 2: Fig.
S4). Each of the 11 tailings layers was collected in 50-ml
sterile tubes, kept in an icebox and transported to the la-
boratory, where the samples were stored at 4 °C prior to
subsequent analyses.
Air-dried subsamples were analyzed with standard

methods for the determination of TOC (TOC-VCPH;
Shimadzu, Columbia, MD) and TP (SmartChem; Westco
Scientific Instruments Inc., Brookfield, CT). The pH and
EC were measured in a 1:2.5 (w/v) aqueous solution
using a pH meter and an EC meter. HCl-extractable fer-
rous iron was determined by the 1, 10-phenanthroline
method at 530 nm [44], and sulfate (SO4

2−) was mea-
sured by a BaSO4-based turbidimetric method [45].
Total concentrations of heavy metals (including Pb, Zn,
Cu, Cr, Mn, and As) and TS were determined by induct-
ively coupled plasma optical emission spectrometry
(ICP-OES; Optima 2100DV, PerkinElmer, Wellesley,
MA) and an elemental analyzer (Vario EL, Elementar,
Germany), respectively.

DNA extraction and 16S rRNA amplicon and
metagenomic sequencing
Total community genomic DNA was extracted using the
FastDNA Spin kit (MP Biomedicals, Irvine, CA)

according to the manufacturer’s instructions. The V4 re-
gion of bacterial and archaeal 16S rRNA genes was amp-
lified with prokaryotic universal primers F515 (5′-
GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-
GGACTACVSGGGTATCTAAT-3′) [46]. A sample-
specific 8-bp error-correcting barcode was added to the
reverse primer. PCR amplification was conducted in
triplicate in 50-μl reaction mixtures following the ther-
mal cycling procedure described previously [47, 48].
Replicate PCR reactions from each sample were pooled
and concentrated and purified using a QIAquick Gel Ex-
traction Kit (Qiagen, Chatsworth, CA). A single compos-
ite sample was prepared by combining an approximately
equimolar amount of PCR product from each tailings
sample and then sequenced on an Illumina MiSeq plat-
form (Illumina, San Diego, CA) (250 bp, paired end
reads). To obtain metagenomic data, extracted DNA was
purified using a QIAquick Gel Extraction Kit (Qiagen,
Chatsworth, CA), quantified with Qubit (Thermo Fisher
Scientific, Australia). The total community DNA was
used for library preparation with NEBNext Ultra II DNA
Prep Kit (New England Biolabs, Ipswich, MA) and se-
quenced with MiSeq Reagent Kit v3 on an Illumina
MiSeq platform (150 bp, paired end reads). Finally, 50-
GB sequence data was obtained for each of the samples.

Processing of 16S rRNA genes and metagenomic
sequence data
Raw data of 16S rRNA genes were processed and an-
alyzed with the Mothur software package (version
1.38.1) and QIIME (1.9.0) [49, 50]. Briefly, obtained
short reads were noise reduced to minimize sequen-
cing error by using the commands of “shhh.flows”
and “pre.cluster” in Mothur [49]. Then, putative
chimeric sequences were identified and removed by
using Chimeric Uchime [51]. Pair-end reads were as-
sembled via the “make.contigs” command, and the
primers and barcodes in assembled sequences were
removed using the “trim.seqs” commond [49]. Oper-
ational taxonomic units (OTUs) were identified by
clustering assembled sequences at the 97% similarity
level using UCLUST algorithm [51]. Taxonomic clas-
sification of the phylotypes was determined based on
the Ribosomal Database Project at a default threshold
of 80% [52]. Finally, the non-rarified OTU table (table
of counts of OTUs on a per-sample basis with single-
ton OTUs excluded) and OTU taxonomy were con-
verted to a “biom” format to obtain prokaryotic
community composition at different taxonomic levels
by using the script of “summarize_taxa_through_plot-
s.py” in QIIME [50, 53, 54].
Metagenomic reads were quality filtered and trimmed

using in-house Perl scripts “(https://github.com/eco-
gaoshaom/in-house-scripts)”. A trim quality threshold of
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20 was used and reads containing more than 5 “N” were
discarded. All quality-controlled reads from a tailings
core were cross-assembled using SPAdes 3.9.0 and
kmers of 21, 33, 55, 77, 99, and 127 under the “--meta”
mode [55]. Genes were predicted by Prodigal 2.6.3 (with
the parameters set as “-p meta -g 11 -f gff -q -m -c”)
[56], and functional annotation was performed through
assignment of predicted proteins to the Pfam 32.0 [57],
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [58], and Non-supervised Orthologous Groups
(eggNOG v5.0.0) [29]. Briefly, predicted proteins were
compared to Pfam database by using the InterProscan
5.0 software with settings of “-appl Pfam -irplookup”
and the lowest E value as the best hits. Additionally,
blastp was used to assign viral proteins to KEGG and
eggNOG database to get KO and COG terms (E value
10−5).
To access the dynamics of individual scaffolds and

genes, sequencing reads from each library were mapped
onto sequences using Bowtie2 with default parameters
[59]. The normalized coverage for a given scaffold or
gene was computed as the average scaffold or gene
coverage (that is, the number of nucleotides mapped to
the scaffold or gene divided by the scaffold or gene
length) divided by the number of reads in a given library
and multiplied by the mean value of the number of reads
in the 11 libraries [5].

Identification and clustering of viral scaffolds
Two methods were applied to identify viral scaffolds in
the metagenomic assemblies: viral protein families gen-
erated with isolate reference viruses and viral scaffolds
identified from a collection of geographically and eco-
logically diverse samples according to metadata from the
Integrated Microbial Genomes with Microbiome (IMG/
M) system [27], and VirSorter software based on the
identification of viral hallmark genes, enrichment in
hypothetical proteins, and other viral signatures [28].
First, viral protein family models were used as a bait to
screen metagenomic scaffolds longer than 5 kb and then
filtered by inspecting the number of genes covered with
viral protein families, Pfams and KO terms, as previously
described [27]. Next, metagenomic scaffolds longer than
3 kb were processed with VirSorter using the Viromes
database [28]. The resulting scaffolds in the categories 1
and 2 were then manually curated as described previ-
ously [33]. For scaffolds in the categories 4 and 5, only
predicted prophage regions were retained [9] and further
manually curated to adjust the boundaries by removing
annotated genes on scaffold edges beyond the first or
last virus-specific gene (i.e., gene annotated with “capsid,
” “phage,” “terminase,” “baseplate,” “base plate,” “pro-
head,” “virion,” “holing,” “virus,” “viral,” “tape measure,”
“tapemeasure,” “neck,” “tail,” “p22,” “head,” “T4,”

“prophage”) or integrase (eggNOG v5.0.0 database) [40].
Then, if the scaffolds predicted by viral protein families
contain a prophage prediction, these scaffolds were re-
moved from the predicted sequence pools identified by
this method. Finally, to further avoid putative false posi-
tives, predicted scaffolds were considered viral if they
satisfied one of the following: (1) contained virus-
specific genes as defined above and (2) the total number
of genes assigned as “unknown” (annotated with egg-
NOG v5.0.0 database) accounted for ≥ 80% of the total
number of genes on the scaffold [27, 28].
All predicted viral scaffolds were clustered into viral

OTUs (vOTUs) at approximately the species level using
the parameters of 95% average nucleotide identity and
85% alignment fraction of the smallest scaffolds [32]. To
place the viral scaffolds in the context of known viruses,
a gene content-based network analysis was used to clus-
ter viral scaffolds into viral clusters (VCs) at approxi-
mately the genus level [34]. Briefly, predicted proteins
from viral scaffolds were clustered with predicted pro-
teins from isolate reference viruses in the NCBI database
(dsDNA viruses, ssDNA viruses, and retroviruses com-
bined) [60] based on all versus-all blastp search with an
E value of 10−3, and protein clusters were defined with
the Markov clustering algorithm and processed using
vConTACT v.2.0 [33, 61].

Reconstruction of prokaryotic genomes and host
prediction of viral scaffolds
All cross-assembled scaffolds longer than 2.5 kb were
binned using MetaBAT v2.12.1 [62], MaxBin v2.2.2 [63],
Abawaca v1.00 (https://github.com/CK7/abawaca), and
Concoct v0.4.0 [64] with default parameters, considering
tetranucleotide frequencies, scaffold coverage, and GC
content, and then, the results were combined using
DASTool [65]. Bins were further manually curated to
obtain high-quality genomes using RefineM v0.0.24 [66].
In detail, the automatic binning methods may separate a
“true” genome bin into two or more smaller, separate
bins. Bins that shared a similar coverage range, GC con-
tent, and identical taxonomic classifications as deter-
mined by CheckM v1.0.7 [67] were grouped into a single
bin. Additionally, scaffolds with incongruent taxonomic
classification and incongruent 16S rRNA genes were re-
moved as implemented in RefineM v0.0.24 [66]. The
completeness and contamination of genome bins were
assessed using CheckM v1.0.7 [67], and genomes esti-
mated to be more than 50% complete and less than 10%
contaminated were classified using the genome tax-
onomy database (GTDB-Tk v0.3.0) [68].
Viral scaffolds were putatively linked to their hosts in

silico [69]. Briefly, these linkages were based on (1)
shared genomic content between viral scaffolds and host
genomes, (2) prophages identified in host genomes, and
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(3) sequence similarity between spacers in microbial
CRISPR regions and in the viral scaffolds. All viral scaf-
folds were compared to the recovered host genomes (E
value ≤ 10−3, bit score ≥ 50, alignment length ≥ 2.5 kb,
and identity ≥ 70%) using blastn [4]. Viral sequences
identified as prophage were matched to their corre-
sponding host genomes. CRISPR spacers were recovered
from metagenomic scaffolds using metaCRT with default
parameters [70]. Extracted spacers were compared to
viral scaffolds using blastn with thresholds of no mis-
matches over the whole spacer length and an E value ≤
10−10 [1, 4].

Analysis of AMGs
Viral genes predicted by Prodigal [56] were assigned to
eggNOG v5.0.0 database [29] using blastp (threshold of
50 for bit score and 10−5 for E value). Viral AMGs
assigned as COG0175 (PAPS reductase) were identified
in the viral genomes [30] and then compared to the pro-
tein sequences in eggNOG v5.0.0 database [29] (blastp,
threshold of 50 for bit score and 10−3 for E value) to re-
cruit relevant reference sequences (up to 20 for each
viral AMG sequence) [4]. These sets of viral AMGs and
related protein sequences were then aligned with Muscle
v3.8.31 [71] and filtered by TrimAL 1.2rev59 [72] to re-
move columns comprised of more than 95% gaps. Phylo-
genetic trees were reconstructed using RAxML (version
8.2.8 with the parameters set as “-f a -m GTRGAMMA
-n boot -c 25 -p 12345 -x 12345”) [73]. The resulting
newick file with the best tree topology determined as
with the best likelihood score was uploaded to iTOL v4
for visualization and formatting [74].

Statistical analyses
All statistical analyses were implemented with various
packages within the statistical program R. Pearson corre-
lations were performed using “rcorr” function (Hmisc
package) to assess the relationships between the diversity
of viruses, prokaryotes, and environmental variables in
all samples. Bray–Curtis distances were used to con-
struct the dissimilarity matrices for prokaryotic and viral
community structure and function profiles, whereas Eu-
clidean distances were calculated using standardized en-
vironmental variables (vegan 2.5-4). Permutational
multivariate analysis of variance (“Adonis” function; 999
permutations) was used to test for significant differences
between classified groups of samples (vegan 2.5-4). Man-
tel tests were performed to reveal the correlations be-
tween the dissimilarity matrices (vegan 2.5-4). Statistical
significance of differences in normalized coverage of a
given gene or COG between two datasets was deter-
mined using non-parametric Wilcoxon t test (unpaired),
with confidence intervals at 99% significance and Benja-
mini–Hochberg correction (P < 0.05).
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Additional file 1: Table S1 Biotic and abiotic data for the tailings
samples from the Fankou Pb/Zn Mine located in Guangdong Province,
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affiliation of the viral OTUs (vOTUs) identified in the tailings samples.
Table S4 16S rRNA gene OTU table and taxonomy of the prokaryotes in
the tailings samples. Table S5 Virus-host linkages predicted by pro-
phages and shared genomic matches with host genomes and by
protospacer-spacer matches. Table S6 Detailed functional and taxo-
nomic descriptions of viral genes predicted with viral sequences identi-
fied in the tailings samples. Indicator COGs in the surface and deeper
mine tailings are shown in red and blue, respectively. Table S7 Normal-
ized coverage and functional description of indicator COGs in the surface
tailings (red) and deeper layers (blue). Table S8 Detailed information of
predicted viral sequences encoding indicator COGs in the surface tailings
(red), deeper layers (blue), and both communities (black). Table S9 De-
tailed functional description and sequence information of the seven viral
genomes containing genes involved in assimilatory sulfate reduction
(COG0175). Table S10 Homologs of assimilatory sulfate reduction genes
(COG0175) and corresponding taxonomy recruited from eggNOG v5.0.0
database.

Additional file 2: Fig. S1 Pearson’s correlations between the biotic and
abiotic factors with a color gradient denoting Pearson’s correlation
coefficients and the number of asterisk corresponds to the Pearson’s
statistic for the corresponding correlations (* 0.01 ≤ P < 0.05, ** 0.001 ≤ P
< 0.01, and ***P < 0.001). Fig. S2 Environmental drivers of prokaryotic
and viral community composition. Pairwise comparisons of
environmental factors are shown with a color gradient denoting
Pearson’s correlation coefficients. Viral and prokaryotic taxonomic
community composition was related to each environmental factor by
Mantel tests. Edge width corresponds to the Mantel’s r statistic for the
corresponding distance correlations, and edge color denotes the
statistical significance. EC, electronic conductivity; TOC, total organic
carbon; TP, total phosphorus; TS, total sulfur. Fig. S3 Bar graphs showing
the relative abundance of viruses encoding the indicator COGs in surface
tailings (orange) and deeper layers (blue) and pie charts showing percent
composition of viruses that encode the indicator COGs in each layers.
Fig. S4 Photos of the two tailings cores from the Fankou Pb/Zn Mine
located in Guangdong Province.
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