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Abstract

Human genome-wide association studies (GWASs) have recurrently estimated lower heritability estimates than
familial studies. Many explanations have been suggested to explain these lower estimates, including that a
substantial proportion of genetic variation and gene-by-environment interactions are unmeasured in typical GWASs.
The human microbiome is potentially related to both of these explanations, but it has been more commonly
considered as a source of unmeasured genetic variation. In particular, it has recently been argued that the genetic
variation within the human microbiome should be included when estimating trait heritability. We outline issues
with this argument, which in its strictest form depends on the holobiont model of human-microbiome interactions.
Instead, we argue that the microbiome could be leveraged to help control for environmental variation across a
population, although that remains to be determined. We discuss potential approaches that could be explored to
determine whether integrating microbiome sequencing data into GWASs is useful.
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Background

Genome-wide association studies (GWASs) aim to iden-
tify the genetic variants underlying trait heritability. The
genetic variance explained by these genetic variants, typ-
ically single-nucleotide polymorphisms (SNPs), in a
GWAS can be calculated as the combined effect size of
all significant genetic variants [1]. For virtually all com-
plex human diseases, this approach explains only a small
proportion of the heritability, the proportion of pheno-
typic variance accounted for by genetic variance in a
given population, as inferred from classical heritability
studies. For instance, using traditional approaches the
heritability of schizophrenia liability was estimated to be
81% [2], but only ~ 3% could be explained based on sig-
nificant SNPs in a GWAS [3]. Similarly, one traditional
estimate for Crohn’s disease liability was 75%, but only
26%, at most, could be explained based on significant
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SNPs in a GWAS [4]. These examples are two of many
recurrent observations that have famously been summa-
rized as “The Case of the Missing Heritability” [5]. Many
potential explanations for this missing heritability have
been proposed.

The most widely accepted explanation for missing her-
itability is that GWASs are not testing the majority of
relevant human genetic variation [6, 7]. This explanation
is supported by the observation that the majority of
missing heritability for several traits can be recovered by
integrating all genome-wide SNPs into a prediction
model [8-10], as compared to using only SNPs individu-
ally associated with the phenotype. Similarly, a recent
study of heritability for height and body mass index in
21,620 individuals of European ancestry reported that all
the expected heritability could be recovered by integrat-
ing extremely rare genetic variants in the analysis [11].
These findings suggest that missing heritability may be
resolved by accommodating genome-wide sampling of
sparsely distributed human genetic variants (largely rep-
resented by SNPs) within GWASs.
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However, there are other types of segregating genetic
variation that could improve GWAS-derived heritability
estimates. In particular, copy-number variation, variation
in the presence of large genomic regions containing genes,
is typically not assessed in GWASs. Ignoring these vari-
ants is a major limitation of current GWASs because they
represent a substantial proportion of genetic variation: at
least 5% of human genomes contain instances of copy-
number variation greater than 500 kb [12]. In addition, the
pan-genome of 910 individuals of African descent con-
tains ~ 10% more DNA than the human reference genome
[13]. Integrating such structural variation, and other un-
accounted sources of genetic variance, into GWASs could
improve heritability estimates [6].

A related explanation for missing heritability is that
many genetic variants have differential effects depending
on environmental variation, termed GxE interactions.
These interactions, in addition to independent genetic
and environmental effects, are known to contribute to
the liability of many human diseases [14]. For example, a
single nucleotide position in the promoter region of the
CD14 gene, which encodes a lipopolysaccharide recep-
tor, is known to interact with several environmental ex-
posures, such as microbial exposure [15, 16]. Different
SNPs at this position are associated with increased risk
of developing asthma depending on environmental expo-
sures [17]. Without taking these varying environmental
exposures into account, the association of each SNP with
asthma risk would be underestimated. This example
highlights an important limitation of GWASs in cases
where GXE interactions influence phenotypes: the gen-
etic variance underlying phenotype variance can be
underestimated.

Despite the importance of GxE interactions, genetic
and environmental factors are typically analyzed inde-
pendently. The independent treatment of these factors is
mainly due to the prohibitively large sample sizes re-
quired for systematically identifying GxE interactions
[18]. In addition, there are many challenges facing the
reliable estimation of GXE phenotypic effects, including
how to assess a representative set of environmental ex-
posures. It has previously been suggested that integrating
other “omics” datatypes when detecting GXE interactions
might help identify differential exposures across individ-
uals [19, 20]. However, how to best integrate these data-
types into GWASs remains a major challenge [21, 22].

Another explanation for missing heritability is that
heritability estimates from classical heritability studies
and GWASs may not be directly comparable. GWASs
typically estimate narrow-sense heritability, which corre-
sponds to the additive contribution of genetic variants to
heritability. In contrast, heritability estimates from clas-
sical familial and twin studies are more similar to broad-
sense heritability, because they can incorporate non-
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additive genetic effects [23]. In addition, classical herit-
ability estimates have been criticized due to invalid as-
sumptions regarding shared environmental variation,
particularly between monozygotic and dizygotic twins
[23, 24].

Despite these issues, a meta-analysis of 2748 twin
studies suggested that non-additive genetic effects are
unlikely to be substantial contributors to the heritability
of human traits [25]. This claim was based on the obser-
vation that trait correlations between monozygotic twins
were roughly twice as high compared to dizygotic twins,
for 84% of the traits analyzed. Importantly, this trend
was not true for all studies and traits, but the heritability
of human traits was consistent overall with a simple
additive genetic model.

It remains controversial whether genetic variants iden-
tified through GWASs are the sole contributors to addi-
tive genetic variation assessed in classical studies. For
instance, it has previously been argued that cultural
transmission could be inflating classical estimates of
additive genetic effects [26]. Similarly, vertical transmis-
sion of epigenetic signals also has been suggested to con-
tribute to classical estimates of additive genetic effects
[27, 28]. In this case, some argue that epigenetic signa-
tures should be integrated into GWAS heritability esti-
mates [28], analogously to integrating additional rare
genetic variants. Although this is still disputed [29], this
example highlights that traditional definitions for valid
contributors to additive genetic effects might be overly
restrictive [30].

Enter the human microbiome

The human microbiome refers to the microbes living on
and within the body and the functions they encode.
These microbial functions include roughly 100 times
more genes than the human genome [31]. Whether
these microbial genes should be viewed as an additional
source of human hereditary information remains con-
tentious [32—34]. This perspective heavily relies on the
holobiont model of human-microbiome interactions. A
holobiont refers to a host and its symbiotic microbes
acting as a single evolutionary unit, and the combined
pool of genetic material is referred to as the hologenome
[35]. Taking the hologenome model to be correct, it has
been implied that microbial genetic variation should be
integrated into host phenotype heritability estimates
[36—38].

An explicit proposal for this perspective was outlined
by Sandoval-Motta and colleagues [39] based on four
observations: (1) the microbiome is associated with
many traits and diseases, (2) the microbiome encodes a
high number of genes, (3) human genotypes interact
with the microbiome, but cannot account for most mi-
crobial variation, and (4) microbial genetic composition
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can be both horizontally and vertically transmitted. Based
on these observations, the authors argued that trait
heritability estimates inferred from classical heritability
studies may be based on both human and microbial gen-
etic variation. To address this issue, the authors suggested
that the narrow-sense heritability of human phenotypes
should be re-defined as the sum of the heritability derived
from the effect sizes of additive human SNPs (/%) and
the heritability estimated from microbial gene families
(Myrwas): 1* = Mypgas + Mgwas- Although there are many
technical challenges facing the implementation of this
proposal, as the authors acknowledge, this model none-
theless represents a common perspective regarding micro-
bial genetic variation [36-38] (Fig. 1). The four
observations motivating this model are correct, and the
first two observations are especially straight-forward. In
particular, microbial variation has indeed been associated
with myriad human traits and diseases [40]. In addition,
there is an enormous degree of genetic variation within
the microbiome, as described above.

Associations between the human genome and
microbiome composition have also been extensively
studied [41]. Several heritable taxa have been identi-
fied, meaning that a high proportion of the variability
in relative abundance of these taxa across individuals
is attributable to human genetic effects. One such
taxon is the bacterial family Christensenellaceae,
which has high heritability estimates ranging from
0.31 to 0.64, although its functional role within the
gut is largely uncharacterized [42-44]. One function-
ally important heritable group is the archaeal family
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Methanobacteriaceae [42, 45], which reduces CO,
with H, to methane in the gut.

Despite these examples of heritable microbial lineages,
a recent analysis of two independent cohorts showed
that variation in the overall composition of the gut
microbiome is largely determined by environmental fac-
tors [46]. Although the central role of the environment
in shaping the microbiome is widely appreciated [47],
prior to this study the narrow-sense heritability of over-
all composition had not been directly quantified. To esti-
mate this metric, the authors computed the heritability
of each significantly heritable taxon weighted by its rela-
tive abundance in the TwinsUK dataset [42, 46]. For-
mally, community-wide #* = Ztesrthf, where S is the
set of significant taxa and r; and 4 refer to the relative
abundance and heritability of significant taxon ¢, respect-
ively. The community-wide /4> was conservatively esti-
mated to be 1.9% (and 8.1% when not performing
multiple-test correcting while determining S). Import-
antly, this low estimate may change as additional data,
such as inter-strain level variation, is integrated into
community-wide /> for other cohorts. However, based
on the current data it appears that inter-individual vari-
ation in microbial composition is predominantly due to
environmental effects.

This observation implies that most microbial genetic
variation in the microbiome is a proxy for environmen-
tal, and not missing human genetic, variation. One pos-
sible counterargument might be that environmental
factors affecting microbiome composition are irrelevant
since this simply reflects the variable aspects of a
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Fig. 1 The key model that we argue against in this paper. Under this model, the genetic variations in both the human microbiome and genome
are used to calculate the additive genetic variance component of narrow-sense heritability. In the strictest form of the model, microbial genetic
variation can contribute to phenotype heritability even if it is horizontally transmitted (i.e, acquired from the environment). This is because the
focus should be on the holobiont, the supraorganism of both microbiome and host, and its associated hologenome (the combined DNA of all
constituents). The more lenient form of this model restricts the microbial genetic variation relevant to phenotype heritability to be the subset
acquired through vertical transmission. The dotted arrow represents lower levels of vertical transmission of the microbiome relative to
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holobiont’s identity. In this view, the holobiont is no less
an individual than a human, which undergoes its own
developmental and environmentally mediated changes
through time. However, under the strict hologenome
model, where the host and the microbiome act as a sin-
gle evolutionary unit, there must be collective
reproduction of the holobiont [33, 48]. Collective
reproduction has direct relevance to its status as the
“correct” level for assessing heritability, because that is
the mechanism by which any biologically encoded infor-
mation about phenotype is transmitted across genera-
tions. Because microbes are largely acquired horizontally
and are influenced by myriad environmental factors, the
pattern of vertical descent entailed by collective
reproduction is largely broken, and so this strict form of
the hologenome concept is invalid [33].

There are also operational difficulties with re-
expressing heritability in terms of a hologenome. For in-
stance, there is no single microbiome within humans:
there are drastically different communities spatially and
temporally [49, 50]. This is not analogous to the genetic
variation between human cells in the body. The variant
profiles used for GWASs are meant to approximate the
original zygote genome in each individual, which does
correspond to a single genome sequence. In contrast,
there is no rationale for a microbiome sample from a
single timepoint or body site to be specifically relevant
to heritability. It would be possible to identify (albeit
minor) variation in taxonomic and functional compos-
ition by profiling samples within 1 mm of each other.
Researchers could thus theoretically produce thousands
of microbiome profiles representing a single individual.
There is likely no biologically satisfying way of integrat-
ing these profiles into a single measure of microbial gen-
etic variance without additional information.

A stronger counterargument might be that a non-
negligible proportion of microbial genetic variation
should nonetheless be integrated into human trait herit-
ability estimates based on a less strict form of the holo-
genome concept. It has been argued that although the
hologenome model itself is flawed, the human holobiont
could be considered in terms of functional interactions
that can be performed by horizontally acquired microbes
[48]. Under this model, different processes affecting mi-
crobial community assembly and stability lead to vari-
ation in the construction of functional niches within the
human microbiome. These functional niches are filtered
by natural selection such that niches which confer
greater fitness are consistently re-constructed over evo-
lutionary time. This explanation could account for herit-
able taxa that consistently fill a functional niche. It
might be argued that the genomic variation of taxa fill-
ing a functional niche should be considered the same as
different alleles at a locus in the human genome.
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However, even under this more limited hologenome
concept re-expressing narrow-sense heritability in terms
of a hologenome remains problematic. While it may be
useful to re-consider the microbiome in terms of func-
tional niches that can be filled by different microbes
[48], collective reproduction of the human host and
members of each functional niche would nevertheless be
required. The current evidence suggests that which mi-
crobes fill these niches is largely dependent on the envir-
onment, as discussed above, and so these niches would
be highly sensitive to environmental contingencies. Due
to this issue, this partial hologenome concept is unlikely
to be relevant to human heritability. In addition, al-
though human genetic variants might predispose indi-
viduals to certain colonizing microbes in a particular
niche, this is subject to environmental exposure of those
microbes. Such predisposing human genetic variants
would already be included in heritability estimates, and
the relevant microbial genetic variation would likely be
represented by human GxE interactions (see next
section).

A separate counterargument is based on evidence that
certain microbes are transmitted between close relatives.
In particular, mother-offspring microbial transmission is
known to occur in humans during childbirth and early
life [51]. A recent analysis showed that 16.4% of strains
within infant microbiomes were shared with the respect-
ive mother, and these shared strains had higher gut
colonization efficacies [52]. In contrast, only 0.73% of
strains were shared between unrelated infants and
mothers. At evolutionary timescales, there is also evi-
dence of co-diversification of a small proportion of mi-
crobes across primate lineages [53], which on the
surface is consistent with a more limited hologenome
concept being relevant for human trait heritability calcu-
lations. These observations provide valuable biological
insights, and it remains an exciting area of research to
determine the degree to which vertically transmitted
strains affect human phenotypes.

Despite these observations, such strains are unlikely to
make a substantial contribution to the high heritability
estimates reported by classical studies. The majority of
classical trait heritability estimates are derived from twin
studies, which are based on comparing differences in
phenotypic similarity between monozygotic twins and
dizygotic twins [23, 54]. It is unclear what mechanism
would result in higher concordance in the vertical trans-
mission of strains between monozygotic twins compared
to dizygotic twins (Fig. 2). This would be required for
the microbiome to contribute to the high heritability es-
timates reported in classical studies. In contrast, there
are clearer rationales for why other controversial poten-
tial contributors to missing heritability would be more
similar in monozygotic twins. For example, epigenetic
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Fig. 2 There is currently no clear rationale for why monozygotic twins would acquire more similar strains through vertical transmission compared
to dizygotic twins in early life. This would be required for the vertical transmission of microbes to contribute to the problem of missing heritability,
because traditional heritability estimates have been based predominately on comparing differences in phenotype concordance between monozygotic
and dizygotic twins. A contrasting example is epigenetic signals (indicated by grey dots on DNA), which have also been suggested to be a partial
explanation for the issue of missing heritability. Although this point remains highly controversial, the rationale is nonetheless much clearer because
any such signals would be transmitted through the zygote genomes to each twin
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signals are physically linked to the human genome, and
thus monozygotic twins could potentially acquire identi-
cal epigenetic signatures. Without a similar rationale for
vertically transmitted strains, they are unlikely to be con-
tributors to missing heritability.

Nonetheless, if a sufficient physical mechanism was
identified, then vertically transmitted strains could con-
tribute to the issue of missing heritability to some de-
gree. The holobiont model would not be a requirement
for this scenario, because the contribution of the micro-
biome to missing heritability would be a statistical
phenomenon, rather than a missing source of human
genetic variation. We anticipate three different require-
ments for this model: (1) emergence of heritable vari-
ance in the interactions between microbial and host
genes, (2) emergence of interactions between the host
and vertically transmitted microbes that increases the
chance that children will resemble their parents, and (3)
some degree of robustness to disruption by competition
with horizontally acquired microbes. These require-
ments remain to be explored in the future to determine
the viability of this model. However, if this model was
shown to be reasonable, it would represent a distinct
case from the main perspectives we have argued against
in this work (Fig. 1). Indeed, such a model seems to cap-
ture a phenomenological effect similar to cases where
the requirement for shared environmental effects across
monozygotic and dizygotic twins is unmet [23, 24]. For
example, dizygotic twins may be more likely to strive to
differ from each other socially and cognitively compared
to monozygotic twins [24]. Such unaccounted environ-
mental and cultural factors do result in inflated

estimates of human genetic effects in twin studies [23].
Similarly, the hypothetical higher concordance in strain
transmission to monozygotic twins could result in in-
flated estimates of human genetic effects, and thus in-
flated heritability estimates. Therefore, such vertically
transmitted strains could conceivably be related to the
issue of missing heritability, although it would be incor-
rect to consider them a missing source of human genetic
variation in GWASs.

Leveraging the microbiome to detect gene-by-
environment interactions
Based on our previous arguments, treating total micro-
bial genetic variation as if it was a source of unmeasured
human genetic variation is unjustifiable. However,
microbiome sequencing data could nonetheless be a
valuable datatype to integrate into GWAS frameworks.
In the remainder of this paper, we describe several po-
tential approaches for integrating microbiome data into
such frameworks. Importantly, these approaches are not
recommendations, but instead represent potentially use-
ful additions to GWASs that remain to be evaluated.
Several recent studies have successfully integrated
complementary biological datatypes into GWAS frame-
works, which have focused on improving the functional
interpretation of GWASs. For instance, epigenomics and
chromosome conformation capture data were recently
leveraged with known gene networks to more accurately
identify candidate schizophrenia risk genes nearby sig-
nificant GWAS loci [55]. Similarly, several biological
datatypes, including tissue-specific transcriptomics, epi-
genomics, and genome-wide SNPs, were integrated to
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identify putative regulatory networks and pathways
underlying psoriasis genetic risk [56]. Integrating micro-
biome data into similar systems biology frameworks
might yield more interpretative insights from GWASs in
the future. However, in general this approach is likely
unfeasible currently due to the high variability and
relatively poor mechanistic characterization of the
microbiome.

A different approach to consider is to use microbiome
profiles (i.e., taxonomic and functional relative abun-
dances) as a proxy for how environmental factors differ
across individuals in a cohort to better control for GXE
interactions. Several “omics” datatypes have previously
been suggested as potential means of measuring envir-
onmental exposures, including the microbiome [19, 20].
However, which collection of datatypes would be opti-
mal and how to best integrate this information into
existing GWASs and GxE association frameworks re-
mains unclear.

Nonetheless, recent studies of the human microbiome
highlight that this datatype would be informative for
capturing environmental variation across cohorts. For
instance, it was recently shown that Thai immigrants to
the USA quickly acquire a microbial signature that be-
comes more pronounced with increased duration of stay
[57]. This signature includes an overall drop in alpha-
diversity as well as the loss of several taxa. The ratio of
Bacteroides to Prevotella relative abundances showed
particularly pronounced changes and was positively as-
sociated with duration of stay. Interestingly, dietary dif-
ferences could only partially account for these
differences, suggesting that other unmeasured environ-
mental factors are being captured by such microbial pro-
files. Nonetheless, diet is typically the most easily
attributable factor affecting microbiome variation. This
fact is reflected by the observation that dietary metrics,
such as the number of different plants consumed, were
identified as major drivers of microbiome variation in
the American Gut cohort [58].

These recent examples imply that the major axes of
variation in the microbiome partially represent cultural
variation, which itself partially represents differential ex-
posures to environmental factors. Stratifying a cohort by
these axes into discrete groups could be one approach to
leverage this information. For instance, if individuals
could be clearly clustered into groups based on their
microbiome profiles, it might be appropriate to test for
significant genetic variants for each group separately.
This approach would be analogous to stratifying popula-
tions by sex, which has resulted in uncovering genetic
variants of interest that were obscured when both sexes
were analyzed together [59]. A major drawback of un-
supervised clustering of a population into groups based
on the overall microbiome profile is that results could
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be difficult to generalize unless the involved microbiome
clusters just happened to be predictive of an environ-
mental covariate.

Another potential approach for integrating micro-
biome data into GWAS frameworks would be to correct
for environmental variation between individuals. This
approach would be similar to controlling for variation in
shared ancestry across a cohort. It is common to control
for population stratification among GWAS participants
by separately correcting for the major axes of variation
derived from a principal components analysis computed
based on the genetic distance between participants [60].
The major axes of variation derived from multidimen-
sional scaling of microbiome relative abundance data
could be used analogously to control for environmental
variation across individuals. The major drawback of this
approach would be that human genetic effects could be
obscured if variation in the microbiome was strongly as-
sociated with trait values. For instance, if antibiotic usage
were higher for disease cases than controls, then the
major axes of microbial variation would likely be directly
related to disease state. In addition, the above approach
could reduce statistical power in case-control studies by
reducing the precision of effect estimates for diseases
with low prevalence [61].

Fortunately, these are not novel issues for GWASs
since there are often clinical phenotypes measured that
are related to disease liability or other focal clinical phe-
notypes. For example, body mass index is an important
covariate of waist to hip ratio and waist circumference.
GWASs focused on these two waist phenotypes that in-
clude body mass index as a covariate can result in biased
genetic variant effect estimates [62]. For case-control
studies, one way to circumvent this problem is to condi-
tion on covariates in a liability model that incorporates
external information about the covariate [63]. This ap-
proach is called informed conditioning and enables dis-
ease liability to be modelled as a function of a covariate
and published prevalence data for the covariate. For in-
stance, age is an important covariate for prostate cancer
since prevalence is 2%, 8%, and 14% for men aged 60,
70, and 80, respectively [63]. Explicitly including this in-
formation in a liability model of prostate cancer was
shown to increase statistical power. Including reprodu-
cible microbiome signatures of environmental factors
(e.g., diet) in such models might similarly increase statis-
tical power. Although this approach seems promising,
several problems remain (1) the subjective and poten-
tially incomplete summary provided by microbial fea-
tures to represent an environmental factor, (2) the
potential for confounding among large numbers of en-
vironmental covariates, and (3) microbiomes can be ex-
tremely complex, and we often have little prior
knowledge of which features are associated with
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different aspects of the environment. Future work is
needed to address these problems and to assess the
feasibility of integrating microbiome sequencing data
into informed conditioning models and GWASs in
general.

Conclusions

There are multiple fundamental issues with considering
the microbiome as an extension of the human genome.
Accordingly, non-microbial explanations for missing
heritability, such as the presence of many low-effect hu-
man genetic variants, are more plausible than that mi-
crobial genetic variation is a missing source of human
genetic variation. Nonetheless, microbiome sequencing
data could still potentially be useful for addressing miss-
ing heritability by instead controlling for confounding
environmental variation in GWASs. Although several
approaches appear promising, the feasibility and benefits
of leveraging microbiome data as a proxy for environ-
mental variation in GWASs remain to be determined.
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