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dependent metagenomes reveal genetic
and enzymatic potential of microbial

community involved in the degradation of

a complex microbial polymer
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Abstract

Background: Cultivation-independent methods, including metagenomics, are tools for the exploration and
discovery of biotechnological compounds produced by microbes in natural environments. Glycoside hydrolases
(GHs) enzymes are extremely desired and important in the industry of production for goods and biofuel and
removal of problematic biofilms and exopolysaccharide (EPS). Biofilms and EPS are complex, requiring a wide range
of enzymes for a complete degradation. The aim of this study was to identify potential GH microbial producers and
GH genes with biotechnological potential, using EPS-complex structure (WH15EPS) of Acidobacteria Granulicella sp.
strain WH15 as an enrichment factor, in cultivation-independent and cultivation-dependent methods. We
performed stable isotope probing (SIP) combined with metagenomics on topsoil litter amended with WH15EPS
and coupled solid culture-EPS amended medium with metagenomics.
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Results: SIP metagenome analysis of the soil litter demonstrated that phyla Proteobacteria, Actinobacteria,
Acidobacteria, and Planctomycetes were the most abundant in WH15EPS amended and unamended treatments. The
enrichment cultures in solid culture medium coupled to metagenomics demonstrated an enrichment in
Proteobacteria, and the metagenome assembly of this enrichment cultures resulted in 4 metagenome-assembled
genomes (MAGs) of microbes with low identity (42-86%) to known microorganisms. Among all carbohydrate-active
enzymes (CAZymes) retrieved genes, glycoside transferase (GT) was the most abundant family, either in culture-
independent or culture-based metagenome datasets. Within the glycoside hydrolases (GHs), GH13 was the most
abundant family in both metagenome datasets. In the “heavy” fraction of the culture-independent metagenome SIP
dataset, GH109 (a-N-acetylgalactosaminidases), GH117 (agarases), GH50 (agarases), GH32 (invertases and inulinases),
GH17 (endoglucanases), and GH71 (mutanases) families were more abundant in comparison with the controls.
Those GH families are affiliated to microorganism that are probably capable to degrade WH15EPS and potentially
applicable for biofilm deconstruction. Subsequent in culture-based metagenome, the assembled 4 MAGs
(unclassified  Proteobacteria) also contained GH families of interest, involving mannosidases, lysozymes,
galactosidases, and chitinases.

Conclusions: We demonstrated that functional diversity induced by the presence of WH15EPS in both culture-

independent and culture-dependent approaches was enriched in GHs, such as amylases and endoglucanases that
could be applied in chemical, pharmaceutical, and food industrial sectors. Furthermore, WH15EPS may be used for
the investigation and isolation of yet unknown taxa, such as unclassified Proteobacteria and Planctomycetes,

increasing the number of current cultured bacterial representatives with potential biotechnological traits.

Background

Metagenomics approach allows the access to a microbial
genetic pool that is not reachable through classical
microbial cultivation techniques. Therefore, the
cultivation-independent methods have long been used as
a tool for the exploration and discovery of biotechno-
logical compounds produced by microbes in natural en-
vironments, in particular the detection of potential
enzymes and other products of economic significance
[1]. Culture-independent approaches allowed the clarifi-
cation of potential microbial roles; however, culture-
based studies are still needed for the comprehension of
microbial characteristics and phenotypes [2]. The use of
metagenomics has boosted industrial production systems
and enzyme bioprospecting [3], particularly in animal
guts [4], although other types of ecosystems, such as for-
est litter, remain underexplored.

Glycoside hydrolases (GHs) are among the industrially
important enzymes that are extensively searched
through metagenomics, as they are extremely desired
and important in food and other industrial sectors [4-7].
Those enzymes are employed for brewing, baking, pro-
duction of syrups, food processing, texture, flavoring, as
well as the production of dairy and fermented foods [8].
GHs are also necessary for the production of biofuels, by
converting cellulose and lignocellulosic biomass into
sugars that can be fermented by microorganisms into
bioethanol [9].

An alternative application of GHs is the degradation
of polysaccharides for the removal of biofilms.

Exopolysaccharides are the main and most studied
components of extracellular polymeric substances
(EPS), biopolymers synthesized by a wide range of
strains of microorganisms [10]. EPS are the constitu-
ents that preserve the tridimensional structure of bio-
films, maintaining internal cohesion and promoting
adhesion to surfaces [11]. The elimination of biofilms is
important for human health in general, because those
structures are implicated in several diseases, causing
problems for instance in hospitals and in food process-
ing industries [2]. Furthermore, enzymatic removal of
biofilms is superior to the use of conventional cleaning
agents, which are not eco-friendly, producing toxic
residues, and erosion of equipment [2]. Enzymes are an
environmentally friendly alternative due to their bio-
degradable nature [12]. EPS and biofilms are complex,
requiring a wide range of enzymes for a complete deg-
radation [11]; however, enzymes such as lysozyme, am-
ylases, dispersin B, and alginate lyase are already used
for biofilm removal or inhibition in food and pharma-
ceutical industries [2]. More than 50% of the current
industrial enzymes are produced by microorganisms,
such as strains of Bacillus and Aspergillus, while around
15% are derived from plants [12]. Furthermore, micro-
bial enzymes with potential applications were obtained
from habitats such as hydrothermal vents [13], arctic
tundra [14], cow rumen [15], and termite guts [16].

The main goal of our study was to use a microbial EPS
to target microbes and functions involved in EPS deg-
radation in microcosm experiment with temperate forest
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litter and in culture medium. Plant litter is mostly com-
posed of recalcitrant biopolymers, which are sources of
carbon, energy, and nutrients for microbial communities
living in litters layers [17]. Cellulose, hemicellulose, and
pectin are the major components of plant cell walls. Cel-
lulose is the most abundant plant cell wall component
(40-50% of the dry weight), composed of  (1—4) linear
chains of D-glucose residues. Hemicelluloses (20-30% of
plant dry weight) are mostly composed of xylan, xyloglu-
can, B-glucan, and mannan as well as other oligosaccha-
rides. Pectins (10-30% of plant dry weight) contain
homogalacturonan, xylogalacturonan, and rhamnogalac-
turonan [18]. Due to their complexity, the breakdown of
plant cell wall components requires a wide range of
enzymes, produced by the microorganisms during litter
decomposition process [19]. Therefore, it is an interest-
ing environment for the retrieval of complex
polysaccharide-degrading enzymes. On the other hand,
the microbial community in forest ecosystems is domi-
nated by Acidobacteria [20], which phylum members are
linked to carbon degradation [21]. Acidobacteria isolates
belonging to Granulicella sp. from forest litter are de-
scribed to produce large amounts of EPS [19]. The genus
Granulicella is not a human pathogen [22], and the
unique composition of its EPS is interesting for the re-
trieval of a wide range of glycoside hydrolase genes that
could be applied in the industry for several processes
[23]. The EPS of the Acidobacteria Granulicella sp.
strain WH15 (WH15EPS) has a more complex compos-
ition than most commercially available microbial poly-
mers. It is composed of 7 monosaccharides (mannose,
glucose, galactose, xylose, rhamnose, glucuronic, and
galacturonic acids) [23], while other known EPS are
composed of maximum 4 different monosaccharides
[24]. The degradation of WHI5EPS would require a
broader range of enzymes than other EPS; therefore, the
application of WHI15EPS to topsoil-litter samples would
promote the enrichment of a wider range of GHs. The
use of EPS as a carbon source by active microorganisms
can be investigated with stable isotope probing (SIP).
SIP is a robust technique that evaluates the incorpor-
ation of compounds labeled with heavy isotopes, for in-
stance *C, 'O, and "N, into the cell components of
microorganisms metabolizing a specific substrate [25].
Hence, SIP identifies the active microorganisms involved
in the metabolism of a specific labeled compound. It has
been successfully applied for the study of microorgan-
isms incorporating several compounds, such as metha-
nol, phenol [26, 27], and others [28].

The aim of this study was to identify potential GH
microbial producers and GH genes with biotechnological
potential, using EPS of Acidobacteria Granulicella sp.
strain WH15 (WHI5EPS) as an enrichment factor, in
cultivation-independent  and  cultivation-dependent

Page 3 of 19

methods. We performed stable isotope probing (SIP)
combined with metagenomics on topsoil litter amended
with WHI15EPS and coupled solid culture-EPS amended
medium with metagenomics.

Results

Overview of the metagenome data

SIP metagenome

After quality control filtering, a total of 18,762,958 reads
were maintained for further analysis, with an average of
1,563,580 reads per sample. A total of 1,209,745 ORFs
were predicted for functional annotation, and approxi-
mately 50% of these ORFs were classified using KEGG
and COG databases. The sequencing statistics are in
Table 1.

Community composition SIP metagenome based on SSU
rRNA and ORF classification

Taxonomic annotation based on SSU rRNA annotation
demonstrated that bacteria, fungi, and archaea
accounted for approximately 84%, 4%, and 2% of the se-
quences, respectively. At phylum level, 17 bacterial
groups, 5 fungal groups, and 3 archaeal groups were ob-
served in all the samples. The most abundant groups at
phylum level belonged to domain Bacteria (Additional
file 1: Supplementary Figure Sla). Proteobacteria was the
most abundant phylum in all treatments (26.4—28% of
the sequences), followed by Actinobacteria (14.5-17.5%
of the sequences). In both unamended and '*C-EPS-
amended control treatments, Acidobacteria was the third
most abundant group (14.5-15.8% of the sequences),
while in the “heavy” fraction samples, Planctomycetes
was the third most abundant phylum (16.45% of the se-
quences) (Additional file 1: Supplementary Figure Sla).
At genus level, we observed 167 groups in all samples, of
which 110 were unclassified groups. “Unclassified
Bacteria” was the most abundant group in the un-
amended control (3.5% of the sequences), while “unclas-
sified Acidobacteriaceae” (2.6% of the sequences) was
the most abundant in the '>C-EPS-amended control
(Fig. 1a). In labeled samples, the predominant group was
“unclassified Planctomycetes” (3.2% of the sequences)
(Fig. 1a). Among the 10 most abundant groups, only 2
classified genera were observed: Acidothermus (1.8—2.9%
of the sequences) and Singulisphaera (0.2-2.6% of the
sequences) (Fig. 1a). Similarly, the taxonomic compos-
ition of the ORF-based analysis was dominated by do-
main Bacteria, with an average of 82% of the ORFs
belonging to bacteria and approximately 18% of the
OREFs originating from unclassified organisms, in all the
samples (Additional file 1: Supplementary Figure S1b).
At phylum level, we observed, in total, 103 bacterial
groups, 6 fungal groups, and 11 archaeal groups in all
the samples. Acidobacteria (20.1-25.3% of the
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Table 1 SIP shotgun metagenomics sequencing statistics for each treatment. Average from 4 replicates

EPS amended “Heavy" fraction

Statistics Unamended Control
Number of reads 1,590,046

Number of contigs 8237025

Longest contig (bp) 2,651

N50 466

Mapping (%) 184

Number of ORFs 96,141

1,591,447 1,509,247
784745 92,521.75
3,645.25 9414.75
473 542

196 329
91,272 115,023.3

Unamended Control incubation without WH15EPS, EPS amended incubation containing '2C-WH15EPS, “Heavy” fraction, “heavy” fraction of incubations

containing "3 C-WH15EPS

sequences) was the most abundant phylum in un-
amended and '*C-EPS-amended control samples, while
Actinobacteria (26% of the sequences) was the predom-
inant group in “heavy” fraction samples (Additional file
1: Supplementary Figure S1b). At genus level, we found
1541 groups, of which 667 were unclassified. The top
three most abundant groups in both control treatments
were “unclassified microorganisms” (17.3-19.4% of the
OREFs), “unclassified Bacteria” (12.7-16% of the ORFs),
and “unclassified Acidobacteriaceae” (9.3—11.5%), while
the predominant groups in “heavy” fraction samples
were “unclassified microorganisms” (16.1% of the ORFs),
“unclassified Bacteria” (18.9% of the ORFs), and “unclas-
sified Planctomycetes” (9% of the ORFs) (Fig. 1b).
PERMANOVA (p values < 0.001) showed that, for
both SSU rRNA data and ORF-based analysis, the mi-
crobial communities were different between treatments,
with both control treatments closer to each other, and
“heavy” fraction samples separated from both control
treatments in PCoA graphs (Fig. 2). For SSU rRNA com-
munities, the first two axes of PCoA explained 43.3% of
the variation, while for ORF based data, 90.6% of the

variation was explained. RDA analysis (p = 0.002) for
both datasets showed that mainly groups of Planctomy-
cetes, such as “unclassified Planctomycetes”, “unclassified
Planctomycetales,” “unclassified Planctomycetia” and
Singulisphaera, were driving the dispersion of the micro-
bial communities between “heavy” fraction and both
control treatments (Additional file 1: Supplementary Fig-
ure S2), consistently with the higher abundance of
Planctomycetes in labeled samples. Alpha diversity indi-
ces showed that richness and diversity indices were
lower for “heavy” fraction samples in comparison with
both controls (Additional file 1: Supplementary Figure
S3), supported by ANOVA test (p value < 0.05).

Functional profile of SIP metagenome

KEGG, COG, and CAZy databases were employed for
functional gene annotation to explore the functional
characteristics of the microbial communities. Approxi-
mately 60% of the ORFs were assigned to COGs, match-
ing in total to 20,644 COGs. The most abundant COG
categories in all the samples were “R-general function
prediction” (10.8-11.6% of the ORFs) (Additional file 1:

3) 100%
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Fig. 1 Taxonomic composition and relative abundance of microbial groups at genus level in SIP metagenome treatments based on a SSU rRNA
gene taxonomic classification and b ORF taxonomic classification. Only the ten most abundant groups for each treatment are displayed. Average
abundances of 4 replicates. Unc.: unclassified. No EPS: incubation without WH15EPS. Unlab.: EPS-incubation containing '°C-WH15EPS. Heavy:
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Fig. 2 Principal Coordinate Analysis (PCoA) clustering of normalized and Hellinger-transformed SIP metagenome sequencing data based on Bray-
Curtis distances of a SSU rRNA gene taxonomic classification and b ORF taxonomic classification. No EPS: incubation without WH15EPS. Unlab.:
EPS-incubation containing '>C-WH15EPS. Heavy: “heavy fraction” of incubations containing '*C-WH15EPS

Supplementary Figure S4a). Boruta feature selection
“random forest” analysis (p < 0.05) was used to identify
feature annotations that segregated significantly between
treatments. A total of 32 COGs were selected by Boruta
algorithm. Thirteen among the identified COGs were
more abundant in the unamended control samples,
while 19 were more abundant in the labeled samples
(Fig. 3a). However, most of the features identified by the
analysis belonged to the category unknown function.
Some of the unknown COGs abundant in the labeled
treatment, though, were associated mostly to phyla
Planctomycetes and Acidobacteria, according to egg-
NOG database v 4.5 (Additional file 1: Supplementary
Table S1).

KEGG analysis demonstrated that about 50% of the
ORFs were assigned to 7,343 KEGG functional ortho-
logs. The 17 most abundant KEGGs in all samples were
assigned to three categories: signaling and cellular pro-
cesses (8 KEGGs—0.16% of the total ORFs), genetic in-
formation and processing (6 KEGGs—0.14% of the total
ORFs), and metabolism (3—0.21% of the total ORFs)
(Additional file 1: Supplementary Figure S4b). Boruta
feature selection identified 40 KEGGs that influenced
the dispersion of the samples, of which 26 were more
abundant in the labeled treatment and 14 were more
abundant in the unamended control (Fig. 3b). Among
the KEGGs more abundant in the labeled treatment, 13
could be assigned to KEGG pathways, mostly related to
“metabolic pathways” and “microbial metabolism in di-
verse environments” (Additional file 1: Supplementary
Table S2). Within the KEGGs more abundant in the un-
amended control treatment, 8 could be assigned to
KEGG pathways, the majority related to “metabolic

pathways” (Fig. 3b, Additional file 1: Supplementary
Table S2).

Annotation using dbCAN database showed that fam-
ilies GT41 (8.4—11% of the CAZYmes), AA3 (4.4-5%),
GT4 (3.4-4.7%), GT2 (4.1-4.3%), and CE10 (3.5-4.2%)
were among the most predominant in all the treat-
ments (Additional file 1: Supplementary Figure S4c).
Boruta feature selection identified 27 CAZY families af-
fecting the dispersion of the sample treatments (Fig.
3c), the vast majority belonging to the category glyco-
side hydrolase (GH). Among the selected families, 15
were more abundant in the labeled treatment, and 12
were more abundant in the unamended control. The
categories abundant in the labeled treatment involved
xylan and fructan modules, xylanases, mannosyltrans-
ferases, and agarases, while the categories abundant in
the unamended controls were mostly o and [ galactosi-
dases and glucosidases (Additional file 1: Supplemen-
tary Table S3). PERMANOVA (p values < 0.001)
demonstrated that for KEGG, COG, and dbCAN data,
the functional gene compositions were different be-
tween treatments, similarly to taxonomic analysis, with
control treatments grouping together and separated
from “heavy” fraction samples (Additional file I:
Supplementary Figure S5).

Cultivated microbes metagenome

Overview of the metagenomics data

A total of 422,735,048 reads were obtained after se-
quence quality filtering, with an average of 80% of the
OREFs classified with KEGG and COG databases. The se-
quencing statistics are described in Table 2.
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Fig. 3 Boruta random forest feature selection of functions that significantly segregated across treatments based on 1000 permutations for a COG
annotation, b KEGG annotation, and ¢ dbCAN annotation. Heatmaps based on the z-scored TPM normalized relative abundances of annotated
ORFs from SIP metagenome samples. The description of the functions displayed in the heatmap is detailed in Supplementary Table S1 (COG),
Supplementary Table S2 (KEGG), and Supplementary Table S3 (dbCAN). No EPS: incubation without WH15EPS. Unlab.: EPS-incubation containing
12C-WH15EPS. Heavy: "heavy fraction” of incubations containing '*C-WH15EPS

Community composition of cultivated microbes
metagenome based on SSU rRNA and ORF classification
Analysis of the taxonomic composition based on SSU
rRNA showed an average of 73% of the sequences
belonged to domain Bacteria, 20% to kingdom Fungi,
and 7% were derived from other Eukaryotes (Additional
file 1: Supplementary Figure S6a). At phylum level, 17
bacterial groups, 7 fungal groups, and 14 eukaryotic

groups were identified. The most abundant group was
the bacterial phylum Proteobacteria, with ~ 47.9% of the
sequences, followed by fungal phylum Ascomycota, with
~ 14.5% of the sequences (Additional file 1: Supplemen-
tary Figure S6b). At genus level, 450 groups in total were
observed, with the most abundant groups being bacterial
groups. The predominant groups were “unclassified Bac-
teria” (~ 2.2% of the sequences) and Dyella (~ 1.5% of
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Table 2 Cultivated shotgun metagenome sequencing statistics for each plate. Average from 2 replicates per plate

Statistics Plate 1 Plate 2 Plate 3 Plate 4
Number of reads 49,148,370 54,247,258.5 58,397,852 49,574,043.5
Assembled reads 147E+10 1.6224E+10 1.75E+10 14796E+10
Number of contigs 67,980,868 76,125,070.5 82,202,170 68,767,888
Number of predicted genes 159,832 254,727 535677 479,683
KEGG (% classified ORFs) 66.2 67.2 65.2 63.9

COG (% classified ORFs) 946 94.5 94.1 94.0
CAZYmes (%) 45 4.7 47 45

GC content (%) 596 60.3 590 58.2

the sequences) (Fig. 4a). Silvimonas and Burkholderia
were also among the top 10 most abundant genera (~
1.4 and 1.3% of the sequences, respectively). Similarly,
for the ORF based data, the most abundant groups at
genus level belonged to domain Bacteria, revealing the
presence of 1930 groups at genus level. “Unclassified
microbes” was the most abundant group, followed by
genera Caballeronia (15.4% of the ORFs) and Parabur-
kholderia (15.1% of the ORFs) (Fig. 4b). Other genera,
such as Burkholderia, Rhodanobacter, and Dyella were
also among the predominant groups (7.8, 7.1, and 4.9%
of the ORFs) (Fig. 4b).

Functional profile of cultivated microbes metagenome

The functional profile of the cultivated microbes’ meta-
genome was explored through the annotation with
KEGG, COG, and dbCAN databases. COG analysis dem-
onstrated that approximately 20.6% of the annotated

COGs were assigned to unknown functions. Among the
classified COGs, similarly to SIP metagenome, the pre-
dominant categories involved “E-amino acid transport
and metabolism” (~ 8.6% of the ORFs), “G-carbohydrate
transport and metabolism” (~ 8.0% of the ORFs), and
“C-energy production and conversion” (~ 7.3% of the
OREFs) (Fig. 5a).

KEGG pathway analysis showed that around 65% of
the ORFs were assigned to 9945 KEGG orthologs. The
20 most abundant KEGGs were distributed in the
categories “Genetic information processing” (1 KEGG ~
0.24% of the total ORFs), “Metabolism” (4 KEGGs ~
1.18% of the total ORFs), and “Signaling and cellular
processes” (15 KEGGs — 4.54% of the ORFs), of which
13 KEGGs were classified as transporters (Fig. 5b).

The analysis of the carbohydrate-active enzymes with
dbCAN demonstrated the presence of 298 CAZyme
families. Twenty-three families were predominant, which
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a) 100% Betaproteobacteria b) 100% u Mucilaginibacter
90% B unclassified 90% :
Gammaproteobacteria u Granulicella
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Sample
Fig. 4 Taxonomic composition and relative abundance of microbial groups at genus level in samples from the metagenome shotgun of
cultivated microorganism based on a SSU rRNA gene taxonomic classification and b ORF taxonomic classification. Only the ten most abundant
groups are displayed. Average from 2 replicates per plate of culture medium
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annotation (10 most abundant). The descriptions of the functions displayed in b and ¢ are detailed in Supplementary Table S4. Average from 2
replicates per plate of culture medium. E-amino acid transport and metabolism; G-carbohydrate transport and metabolism; H-coenzyme transport
and metabolism; C-energy production and conversion; I-lipid transport and metabolism; F-nucleotide transport and metabolism; Q-secondary
metabolites; D-cell cycle; N-cell motility; M-cell wall/membrane/envelope biogenesis; V-defense mechanisms; P-inorganic ion transport and
metabolism; U-intracellular trafficking; O-post translational modification; T-signal transduction mechanisms; L-replication, recombination, and
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abundance was above 1%. Within the most abundant fam-
ilies, we observed 2 AA families (7.75% of the CAZymes), 1
CBM family, 4 CE families, 10 GH families, and 6 GT
families (Fig. 5¢). Those CAZyme families comprise mostly
enzymes with cellulolytic (alpha-glucosidases, alpha-
fucosidases), hemicellulolytic (alpha-rhamnosidases, alpha-
xylosidases, alpha-mannosidases, beta-galactosidases), and
cell wall metabolism activities (N-acetylglucosaminyltrans-
ferases, alpha-N-acetylgalactosaminidases, and peptidogly-
can lyases) (Additional file 1: Supplementary Table S4). The

most abundant family was GT41 (Fig. 5c), which encom-
passes UDP-GIcNAc: peptide -N-acetylglucosaminyltrans
ferases and UDP-Glc: peptide N-B-glucosyltransferases, en-
zymes involved in protein glycosilation. Among the GH
families, the most abundant was GH13.

Among all 127 GH families found in both metagen-
ome datasets, 114 families were observed in both data-
sets, while 5 families were exclusive from the SIP dataset
(GH112, GH48, GH52, GH86, GH98) and 8 were exclu-
sive from the cultivated microbes dataset (GHI11,
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GH131, GH132, GH134, GH45, GH7, GH80, GHS85)
(Additional file 1: Supplementary Figure S7).

Taxonomy of the enriched glycoside hydrolase families
Taxonomic analysis of the most abundant GH family in
both metagenome datasets, GH13, demonstrated that
the majority of the sequences of GH13 in the cultivated
microbes dataset belonged to phyla Proteobacteria
(66.8% of the GH sequences) and Acidobacteria (21.8%
of the GH sequences), while in the SIP dataset the most
abundant phyla for GH13 were Actinobacteria (20.4—
45.7% of the GH sequences), Acidobacteria (4—24.7% of
the sequences), and other phyla (27-34% of the GH se-
quences) (Table 3).

Within GH families that were more abundant in the
SIP “heavy” fraction (Fig. 3c), sequences of GH109
belonged mainly to Acidobacteria (45% of the GH se-
quences), other phyla (31-42% of the GH sequences),
and Planctomycetes (2-29% of the GH sequences).
GH117 family sequences belonged predominantly to
Actinobacteria (17-33% of the sequences), Acidobacteria
(0-33% of the GH sequences), and other phyla (33-64%
of the GH sequences). Family GH50 sequences belonged
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mainly to Proteobacteria (8—100% of the GH sequences)
and other phyla (0-92% of the GH sequences). GH 32
sequences were affiliated mainly to Acidobacteria (11—
44% of the GH sequences) and other phyla (44-79% of
the GH sequences). GH17 sequences belonged to
phylum Proteobacteria (44—-75% of the GH sequences)
and other phyla (25-57% of the GH sequences). GH71
sequences were affiliated to phyla Actinobacteria (35—
100% of the GH sequences), Proteobacteria (0-25% of
the sequences), Acidobacteria (0-25% of the sequences),
and other phyla (0-43% of the sequences).

Metagenome-assembled genomes (MAGs) assembled from
the cultivated microbes metagenome

The binning process using contigs longer than 5kb
generated, after curation and quality filtering, 4 draft
genomes. The genome length ranged from 3.0 to 6.3
Mb, and the GC content ranged from 57 to 62%. All
MAGs belonged to phylum Proteobacteria. None of the
MAGs was classified to genus level; however, the ge-
nomes were closer to genera Paraburkholderia (MAG1)
and Amantichitinum (MAG2 and MAG4). MAG3 clos-
est classification was to family Rhodanobacteraceae.

Table 3 Taxonomy associated to sequences of glycoside hydrolases belonging to GH13 family (most abundant) and the enriched

GH families in heavy fraction samples from SIP metagenome

GH families Sample Proteobacteria Acidobacteria Actinobacteria Planctomycetes Others
GH13 Cultivated 66.8 (2605) 218 (827) 0.9 (36) 0.09 (1) 104 (514)
GH13_SIP Control 20.1 (128) 234 (148) 256 (162) 0.1 (4) 31 (196)
EPS 17.9 (89) 24.7 (125) 204 (95) 29 (13) 34 (172)
Labeled 72(127) 4 (30) 45.7 (333) 5.7 (42) 27 (201)
GH109 Control 11 (22) 45 (92) 12 (26) 24 31 (68)
EPS 7 (19) 26 (76) 7(18) 21 (60.8) 40 (111.6)
Labeled 7 (34 9 (48) 13 (62) 29 (150) 42 (217)
GH117 Control 0(0) 33(M 33(1) 0(0) 33(M
EPS 00 0(0) 17 (1) 0(0) 38 (5)
Labeled 9 (M 0(0) 27 (3) 0(0) 64 (7)
GH50 Control 100 (3) 0 (0) 00 0 (0) 0 (0)
EPS 100 (2) 0(0) 0(0) 0(0) 0(0)
Labeled 8 (2 0(0) 00 0(0) 92 (24)
GH32 Control 0(0) 44 (4) 1 () 00 44 (4)
EPS 0(0) 1) 5(1) 5() 79 (15)
Labeled 6 (2) 14 (5) 3(N) 9(3) 69 (24)
GH17 Control 75 (9) 0(0) 0 (0) 0(0) 25 (3)
EPS 43 (3) 0 (0) 00 0 (0) 57 (4)
Labeled 44 (8) 0(0) 0(0) 0(0) 56 (10)
GH71 Control 0 (0) 0(0) 100 (1) 0(0) 0(0)
EPS 0(0) 25(M 50 (2) 0 (0) 25(M
Labeled 22 (5) 0(0) 35(8) 0(0) 43 (10)

Average percentage from 4 replicates (total number of sequences)
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Table 4 Genome characteristics for the 4 metagenome-assembled genomes (MAGs) obtained in this study

Genome MAGT MAG2 MAG3 MAG4

Taxonomy Burkholderiaceae 95% Neisseriaceae 42% Rhodanobacteraceae Neisseriaceae: 42%
(closest hit) (Paraburkholderia 86%) (Amantichitinum: 42%) 77% (Amantichitinum 42%)
Length (Mb) 6.3 30 48 3.7

Contigs 1997 997 80 1482
Completeness (%) 83.2 796 99.7 875
Contamination (%) 476 3.92 244 5

GC (%) 62 57 59 57

Number of predicted genes 7126 3580 4280 4552

Hits to protein database

KEGG % 90.1 96.8 79.2 93.8

COG % 853 85.1 80.2 84

DBcan n (%) 279 (3.9) 141 (3.9) 210 (4.9) 180 (4.0)

The characteristics of the genomes are described in
Table 4. The coverage of the genomes is described in
Additional file 1: Supplementary Table S5.

Approximately, 83.7% of the ORFs predicted for the
MAGs could be assigned to COGs. The analysis showed
that most of the COG assigned ORFs fell on the cat-
egory “S-function unknown” (16.4—18.4% of the OREFs).
Among the classified COGs, however, the most abun-
dant categories were “K-transcription” (5.9-9% of the
ORFs), “E-amino acid metabolism” (4.8—-8.1% of the
ORFs), “G-carbohydrate metabolism” (3.32-7.2%), “C-
energy production” (4.2-5.9%), “P-inorganic ion metab-
olism” (4.65-6.3%), and “M-cell wall/membrane biogen-
esis” (5.2-5.9%) (Fig. 6a).

KEGG pathway analysis demonstrated that around
90% of the predicted ORFs could be assigned to KEGG
orthologs. The majority of the most abundant KEGG
orthologs in all the MAGs were related to several types
of transporter functions (Fig. 6b and Additional file 1:
Supplementary Table S6). In order to evaluate the fea-
tures of the MAGs that could be involved in the uptake
of the WHI15EPS sugar units, we decided to look deeper
into the transporters. Twenty-four of the KEGG ortho-
logs observed in MAG1 genome were associated to the
transport of several sugars, such as sorbitol, ribose,
arabinose, xylose, fructose, rhamnose, glucose, mannose,
and multiple sugars (Additional file 1: Supplementary
Table S7). Among the KEGG orthologs observed in
MAG 2 genome, 62 were related to sugar transport,
such as maltose, raffinose, lactose, glucosides, cellobiose,
xylose, fructose, rhamnose, glucose, mannose, and mul-
tiple sugars (Additional file 1: Supplementary Table S8).
MAGS3 did not exhibit sugar specific transporters within
the 60 KEGGs related to transport function; however,
we observed some general type transporters (Additional
file 1: Supplementary Table S9). In MAG4, 61 KEGG
orthologs related to sugar transport were observed, such

as maltose, raffinose, lactose, sorbitol, cellobiose, arabin-
ose, xylose, fructose, rhamnose, glucose, mannose, and
multiple sugars (Additional file 1: Supplementary Table
S10). We also performed the analysis of the CAZYmes
with dbCAN database, in order to find enzymes that
could be in associated the breakdown of the WHI5EPS.
MAGTI possessed 279 CAZymes distributed in 90 fam-
ilies, of which the most abundant were CE1, GT4, GT42,
CE10, and AA3 (Fig. 6c). The seventy-six glycoside
hydrolases observed were distributed in 43 families,
including a wide range of activities, such as endo and
exo-mannosidases, alpha- and beta-glucosidases and ga-
lactosidases, xylosidases, fucosidases, and rhamnosidases
(Additional file 1: Supplementary Table S11). MAG2
possessed 141 CAZymes distributed in 65 families, and
GT41, GT2, and CE1 were the most abundant families
(Fig. 6¢). A total of 51 glycoside hydrolases from 30 fam-
ilies were observed, with activities such as alpha- and
beta-glucosidases, beta-galactosidases, mannanases and
mannosidases, xylanases, and polygalacturonases (Add-
itional file 1: Supplementary Table S11). In MAG3, 210
cazymes distributed in 81 families were observed, and
GT41, GT2, CEl, and CE10 were the most abundant
(Fig. 6¢). Sixty-four glycosil-hidrolases distributed in 37
families were detected. The activities included alpha-
and beta-galactosidases, alpha-glucosidases, mannosi-
dases, mannanases, rhamnosidases, arabinosidades, chiti-
nases, and trehalases (Additional file 1: Supplementary
Table S11). The genome of MAG4 displayed 180
CAZymes distributed in 73 families, of which the most
abundant were CE1, GT2, and GT41 (Fig. 6¢). The 64
glycoside hidrolases were spread among 34 families,
including activities such as chitinases, arabinofuranosi-
dases, alpha- and beta-glycosidases, mannosidases, cellu-
lases, xylanases, and polygaracturonases (Additional file
1: Supplementary Table S11). The distribution of most
abundant CAZYmes and GH families in both
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Fig. 6 Relative abundance distribution of the most abundant functional categories in metagenome assembled genomes (MAGs) assembled from
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metagenomics datasets and MAGs is depicted in
Additional file 1: Supplementary Figure S8.

Discussion

In the present study, we applied culture-independent
and culture-dependent techniques to evaluate microbial
diversity and functions involved in the degradation of a
microbial biopolymer, WHI15EPS, focusing on enzymes
of biotechnological interest. First, we compared the
functional potential of the environment with and with-
out the presence of WHI15EPS, evaluating the taxonomic

and functional enrichment produced by the addition of
the biopolymer using stable isotope probing (SIP). Sec-
ond, we used metagenomics to evaluate the functional
potential of the microorganisms grown in culture
medium with WHI15EPS as the sole carbon source.

SIP analysis demonstrated that in both 16S rRNA-
metagenome  dataset extracted and ORF based
characterization, phyla Proteobacteria, Actinobacteria,
Acidobacteria, and Planctomycetes were the most abun-
dant in WHI15EPS amended and unamended treatments.
However, the addition of WHI15EPS to the litter samples
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promoted an increase in the abundance of the phylum
Planctomycetes, which was more evident in “heavy” frac-
tion samples, showing that Planctomycetes also play an
active part in the degradation of WHI15EPS. Further-
more, at genus level in the 16S rRNA based analysis,
“unclassified Planctomycetes” and Singulisphaera, which
belong to the same phylum, were the most abundant
groups in the labeled treatment, while “unclassified
Planctomycetes” was also among the most abundant in
the ORF-based analysis. Proteobacteria, Actinobacteria,
and Acidobacteria are widely known to be involved in
carbon-degradation processes, for instance, glucose [29],
xylan [30], and cellulose assimilation [31]. The glycolytic
potential of phylum Planctomycetes was recently demon-
strated by Ivanova et al. [32], in which genus
Singulisphaera, for instance, responded significantly to
pectin and xylan amendments.

The cultivation-dependent approach demonstrated, as
expected, a lower taxonomic diversity, in which the
widely studied Proteobacteria were among the most
abundant. The discrepancy between the diversity of taxa,
especially the most abundant groups, observed in cul-
tured and uncultured-based techniques is defined as
“The Great Plate Count Anomaly” [33]. The cultivability
of microorganisms in laboratory depends of many fac-
tors, such as nutrients, oxygen level, temperature, pH,
and growing factors [34], limiting the total assortment of
taxa that can be actually recovered in culture media.
Nevertheless, adding WH15EPS as an alternative carbon
source allowed us to demonstrate that several still un-
known microorganisms can be grown in laboratorial
conditions if unusual compounds are explored. The
lower diversity in the culture media plates permitted the
assembly of 4 draft genomes related to the most abun-
dant Proteobacteria, which classification until genus level
was not possible, once more demonstrating the enrich-
ment and potential for isolation of previously unknown
microbes.

In order to find potential enzymes of biotechnological
interest, we investigated the diversity of CAZymes in
both culture-independent and culture-dependent gener-
ated datasets, due to their importance in almost all in-
dustrial sectors, such as chemical, pharmaceutical, and
food industries, as well as production of detergents, tex-
tiles, leather, paper, and bioenergy [4]. Furthermore, we
also investigated the presence of enzymes that could be
employed for biofilm removal.

Among all CAZymes observed, the most abundant
families belonged to glycoside transferase families, such
as GT41, GT2, and GT4, either in culture-based or in
culture-independent datasets. GT's are known to catalyze
the formation of glycosidic bonds by transferring a sugar
residue from a donor to an acceptor, which could be
carbohydrates, proteins, lipids, DNA, and other
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molecules [35]. Even though a large proportion of genes
of microorganism’s genomes in general encode for GTs
(about 1-2% of the total number of genes) [36], those
enzymes are still not as well explored as GHs [35].
Glycosilated compounds play a wide range of roles, such
as energy storage, cell integrity and signaling, among
others, and the glycosilation of natural products is im-
portant in the exploration of bioactive compounds [37].
GTs are involved in the production of antibiotics, such
as chloroeremomycin [38], vancomycin [39], and
erythromycin D [40]; therefore, they might be of interest
especially for the pharmaceutical industry.

Within glycoside hydrolases, the most abundant family
in both metagenomics datasets was GH13 (from Proteo-
bacteria), which encompasses starch and pullulan modi-
fying enzymes, including a-amylases, pullulanases, a-1,6-
glucosidases, branching enzymes, maltogenic amylases,
neopullulanases, and cyclodextrinases [41]. Amylases are
among the most important enzymes for food industry,
where they can be employed for production of glucose
and maltose syrups, reduction of viscosity of syrups, pro-
duction of clarified fruit juices, solubilization of starch
for brewing processes, and manufacture of baked prod-
ucts [12]. Furthermore, the application of a-amylases for
the inhibition of biofilm formation has been investigated.
In the study of Fleming et al. [42], the use of amylase
(from Bacillus subtilis) and cellulose (from Aspergillus
niger) solutions to biofilms of S. awreus and P.
aeruginosa decreased biomass significantly, increasing
the effectiveness of antibiotics treatments. A similar ef-
fect was observed in the study of Craigen et al. [43],
where a commercially available a-amylase detached the
aggregates produced by S. aureus and inhibited biofilm
production.

Notwithstanding, feature selection with Boruta pack-
age revealed the differential abundance of GH families in
“heavy” fraction SIP samples, originated from microor-
ganisms that are believed to be able to degrade
WHI15EPS. These microorganisms belonged mainly to
phyla Proteobacteria, Acidobacteria, Actinobacteria,
Planctomycetes, as well as high proportion of unknown
microorganisms. GH109 (Acidobacteria and Planctomy-
cetes) contains «-N-acetylgalactosaminidases, which
might be employed in the development of universal red
blood cells, through the enzymatic removal of monosac-
charides from red blood cells’ membranes, and improve-
ment of blood supply in hospitals [44]. Furthermore,
those enzymes can be involved in the deconstruction of
WHI5EPS, since it contains units of xylose, glucose, and
arabinose [23]. Families GH117 (Acidobacteria and
Actinobacteria) and GH50 (Proteobacteria) contain
agarases, which can be used for the production of oligo-
saccharides with antioxidant activities for applications in
food, pharmaceutical, and cosmetic industries [45].
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Family GH32 (Acidobacteria) comprises invertases and
inulinases, enzymes that can be applied in food and
fermentation processes [46, 47]. GH17 (Proteobacteria)
is composed of endoglucanases with activity against -
glucan and laminarin, effective additives for the degrad-
ation of polysaccharides for animal feed [47]. Mutanases
belonging to GH71 (Actinobacteria) family already
showed activity against glucans present in dental plaque
[48].

Interestingly, sixteen of the most abundant GH fam-
ilies in the culture-independent dataset were found to be
the predominant in the culture-dependent approach,
and all the GH families with higher abundances in the
labeled SIP samples were also observed in the culture-
dependent dataset. Furthermore, the MAGs also con-
tained GH families of interest, with variable abundances
among them. MAG1 (similar to Paraburkholderia) con-
tained 8 ORFs belonging to family GH92, which encom-
passes alpha-mannosidases with applications in food and
pharmaceutical industries, for the production of juices,
degradation of plant material, or coffee extraction [49].
In MAG2 (similar to Amantichitinum), five ORFs were
classified as GH23, which contains lysozymes that can
be used as polysaccharide hydrolysers for biofilm break-
down [2, 50]. MAG3 (Rhodanobacteraceae) is abundant
in GH92 and GH23 but also GH2 family ORFs, which
comprises several enzymes. Within the best character-
ized ones, there are [-galactosidases employed for the
production of lactose-free milk products and other
galactooligosaccharides [51]. MAG4 (similar to Amanti-
chitinum) is rich in GH18 enzymes, involving chitinases
that for instance are important agents with applications
for fungal biological control and bioremediation pro-
cesses [52]. It is important to recognize that, even
though the MAGs possessed a low level of contamin-
ation (< 5%), they do not represent genomes of axenic
cultures from isolated microorganisms. Therefore, the
corresponding laboratory cultures should still be recov-
ered in order to fully validate our MAGs.

Our study showed that, using SIP and a complex EPS
(WHI15EPS), we could detect the subset of the total mi-
crobial community that was capable of incorporating the
biopolymer. Among those we observed members of
Planctomycetes as an interesting target for biotechno-
logical studies and heterologous expression, which could
be performed also in several other genes, combining bio-
informatics, gene synthesis, and enzymatic screening
[53]. In addition, we demonstrated that functional diver-
sity induced by the presence of WHI5EPS in both
culture-dependent and culture-independent approaches
was enriched in genes coding for GHs, for instance, am-
ylases, chitinases, agarases, and endoglucanases and that
could be applied in chemical, pharmaceutical, and food
industries. Furthermore, the use of WHI15EPS may be
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employed for the investigation and isolation of yet un-
known taxa, such as unclassified Proteobacteria and
Planctomycetes, increasing the number of current cul-
tured bacterial representatives.

Conclusions

We observed, in the functional diversity induced by the
presence of WHI5EPS in both culture-dependent and
culture-independent approaches, the presence of 310
CAZyme families, from which 38.4% (119) were GH
families. GHs of biotechnological interest could poten-
tially be employed in almost all industrial sectors, such
as chemical, pharmaceutical, and food industries, as well
as production of detergents, textiles, leather, paper, and
bioenergy. Furthermore, we also observed the presence
of enzymes that could be employed for biofilm removal.
Even though the potential enzymes might belong to slow
growing microorganisms in laboratorial conditions, such
as Acidobacteria, Planctomycetes, and Verrucomicrobia,
sequences can still be targeted for further heterologous
expression and characterization. In addition, the culture-
based metagenomics dataset allowed the assembly of 4
metagenome-assembled genomes (MAGs) that poten-
tially belong to unclassified Proteobacteria. We showed
that WHI15EPS may be employed for the isolation of
known and unknown microbes, as well as the targeting
of sequences of a wide range of CAZyme families.

Material and methods

Soil samples

Four topsoil-litter mixed samples were collected in the
spring of 2017 from the Wolftheze forest in the
Netherlands (Additional file 1: Supplementary Table
S12). Samples were taken from topsoil (0 to 5cm) adja-
cent to fallen tree trunks. The collected samples were
pooled, sieved (2-mm mesh), and immediately used for
SIP incubation with EPS from Granulicella sp. strain
WH15 (WHI15EPS). The physicochemical properties of
the topsoil-litter samples were determined (Eurofins
Agro BV, Wageningen, NL) and are presented in
Additional file 1: Supplementary Table S13. A workflow
diagram of the experiments is depicted in Fig. 7.

SIP metagenome

["3CJ-labeled and unlabeled EPS production

Granulicella sp. strain WHI15 was cultivated on PSY5
solid medium [54] containing 3% (wt/vol) fully '*C-la-
beled glucose as the sole carbon source or unlabeled glu-
cose for unlabeled control EPS production. After 30 days
of incubation at 20 °C polysaccharide portion of EPS was
extracted and purified according to Liu et al. [55]. Sixty
microliters of 36.5% formaldehyde was added to each
sample and incubated at 4 °C for 1 h. Next, 4ml of 1M
NaOH was added and incubated at 4 °C for 3 h. After
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Fig. 7 Workflow diagram of the experimental design. a "*C-Glucose and ">C-Glucose was used in PSYL5 culture medium for ">C- and '?C-WH15EPS
production by Granulicella sp WH15. "*C- and "°C-WH15EPS were purified and incubated with litter-topsoil samples collected in Wolfheze forest, NL.
Controls without WH15EPS were also incubated; each treatment had 6 replicates. After 35 days of incubation and CO, respiration measurements, DNA
was extracted and fractionated. “Heavy fraction” of the '*C-WH15EPS incubations and total DNA from '?C-WH15EPS and controls without EPS were
sent for shotgun sequencing. b In parallel, purified '*C-WH15EPS was used as a carbon source for culture medium DNMS. A 102 dilution of litter-
topsoil samples collected in Wolfheze forest was inoculated in the culture medium and incubated at room temperature for 30 days. Each plate had 2
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centrifugation at 9000xg for 40 min, cell debris in the
supernatant were eliminated through filtering (0.2 pm
membranes, Millipore) at room temperature, and
monosaccharides were removed by dialysis in Snake-
Skin™ Dialysis Tubing (3500 Da) (Thermo Fisher Sci-
entific,c MA, USA) against demineralized water at 4 °C
for 48 h. DNA concentration in the EPS solution was
determined in a Qubit fluorometer using a broad-
range Quant-iT™ dsDNA Assay Kit (Invitrogen, Carls-
bad, CA, USA). EPS protein concentrations were de-
termined by a Pierce™ Modified Lowry Protein Assay
Kit (Thermo Fisher Scientific, MA, USA). The total
carbohydrate content was estimated by the phenol-
sulfuric acid method [56] modified for 96-well plates
[57] with glucose as the standard. The EPS solutions
were freeze-dried at — 80 °C for 72h until further
processing. The purified EPS contained ~ 400 mg/ml
carbohydrates, ~ 1% protein, and undetectable amounts of
DNA.

Stable isotope probing (SIP) incubation

Freeze-dried EPS was hydrated with 1 ml of Milli-Q ster-
ile water immediately before inoculation in topsoil-litter
samples to create a homogeneous distribution. Five
grams (wet weight) of topsoil-litter samples with 0.05%
(wt/wt) WHI15EPS (labeled and unlabeled controls) or
without EPS were added to a 120-ml bottle, which was
sealed with a butyl rubber stopper and incubated at
room temperature (22 °C) in the dark. Each treatment
(labeled EPS, unlabeled EPS, and control without EPS)
had six replicates. In order to maintain oxic conditions
and prevent *CO, cross-feeding, all vials were uncapped
and aired every 4 days. The use of WHI15EPS by the mi-
crobial community was monitored as CO, respiration
through gas chromatography (GC) (Trace GC Ultra,
Thermo Fisher Scientific, MA, USA), performed daily to
monitor the vial headspace CO,. For incubations with
[**C]-labeled EPS, monitoring of the headspace CO,
13C/'2C ratio was performed via GC combustion isotope
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ratio mass spectrometry (GC/C/IRMS) (GC IsoLink II™
IRMS System, Thermo Fisher Scientific, MA, USA). CO,
emissions throughout the experiment are shown in Add-
itional file 1: Supplementary Figure S9. After 35 days of
incubation, 0.5 g of samples were removed from the vials
for DNA extraction.

DNA extraction and fractionation

DNA was extracted from 250 mg of soil with or with-
out 'C-labeled/unlabeled substrates with the Power-
Soil® DNA Isolation Kit (MO BIO Laboratories, Inc)
according to the manufacturer’s instructions and
quantified by a spectrophotometer (NanoDrop™ 2000,
Thermo Fisher Scientific,c, MA, USA). Gradient frac-
tionation was performed according to Neufeld et al.
[58]. Two microgram of DNA were combined with
CsCl (1.72g/ml) and gradient buffer (100 mM Tris-
HCI pH 8.0, 100 mM KCl, 1 mM EDTA) in an ultra-
centrifugation tube (PA UltraCrimp 1.8 ml, Thermo-
Fisher Scientific, MA, USA) and ultracentrifuged at
125,395xg (Discovery 120SE ultracentrifuge, Thermo-
Fisher Scientific, Massachusetts, USA) under vacuum
at 20 °C for 65h. Gradient fractionation resulted in
18 DNA fractions of approximately 100 pl each, which
density was measured with a refractometer (AR200,
Reichert Technologies, New York, USA). DNA was
precipitated from the CsCl with polyethylene glycol
solution (30% PEG6000, 1.6 M NaCl) and glycogen
(20 pg/pl), washed with 70% ethanol, and eluted in
30ul of 10mM Tris-HCl buffer, pH 8.0. The DNA
concentration of each fraction was determined in a
Qubit 4 Fluorometer (ThermoFisher Scientific, MA,
USA) using a Quant-iT™ dsDNA HS Assay Kit (Invi-
trogen, Carlsbad, CA, USA). The unlabeled substrate
incubations were used as controls to determine the
expected position of labeled soil DNA in the CsClI
density gradients.

Library preparation and high-throughput shotgun se-
quencing were performed using the “heavy” DNA frac-
tions pooled within each sample replicate as well as the
total DNA of both the ?C-EPS-amended and unamended
controls. Library preparation and Illumina MiSeq PE250
shotgun sequencing were performed at McGill University
and Génome Québec Innovation Centre (Montréal, Qué-
bec, Canada). The sequences were deposited in the Euro-
pean Nucleotide Archive (ENA; https://www.ebi.ac.uk/
ena) under the accession number PRJEB31257.

Metagenome of cultivated microorganisms in media with
WH15EPS as sole carbon source

For evaluation of the metagenome of microorganisms
that were able to grow in culture medium with WH15
EPS as a sole carbon source, 10 g of fresh topsoil-litter
sample were mixed with 100 ml of 100 mM MES buffer
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(2-[N-morpholino]ethanesulphonic acid, 1.95g/l, pH
5.5), agitated for 30 min at room temperature on a vor-
tex and decanted for 30 min. Dilutions (10~ to 107
were prepared in sterile MES buffer, and 200 ul of the
dilutions were plated in quadruplicate. Diluted culture
medium DNMS [MgSO,7H,O 0.2g/l, CaCl,.2H,O
0.053 g/l, chelated iron solution 0.2 ml/l (ferric III am-
monium citrate 0.1g/100ml, EDTA 0.2 g/100 ml, HCI
0.3 ml/100 ml) trace element solution SL10 1 ml/L [59],
NH,4Cl 0.1g/l, agar 20g/l] with added WHI15EPS [23]
(0.05%) pH 5.5 and 40 ng/pl (40 mg/1) cicloheximide to
prevent growth of fungi was used for plating. To prevent
caramelization, the freeze-dried purified WHI15EPS was
hydrated with Milli-Q water, sterilized by filtration
through a 0.2 um membrane (Millipore), and added to
the culture medium after autoclaving. Chelated iron so-
lution and trace element solution SL10 were added after
autoclaving and cooling of the culture medium. The
plates inoculated with the soil suspension were incu-
bated at room temperature for 1 month. The dilution
10~ was chosen for sequencing. After incubation, col-
onies were scraped and used for total DNA extraction
with PowerSoil®° DNA Isolation Kit (MO BIO Laborator-
ies, Inc). Following the first DNA extraction, a second
round of DNA extraction was performed for each sam-
ple, according to Dimitrov et al. [60]. The total DNA ex-
tracted from the plates was used for metagenome
shotgun sequencing. Library preparation and Illumina
HiSeq XTen sequencing were performed at Genewiz
(Suzhou, China). The sequences were deposited in the
European Nucleotide Archive (ENA; https://www.ebi.ac.
uk/ena) under the accession number PRJEB24069.

Bioinformatics and statistical analyses of metagenome
data

SIP metagenome

SIP metagenome sequences were processed using EBI
MGnify [61] pipeline and SqueezeMeta [62] pipeline in
sequential mode. Briefly, in the SqueezeMeta pipeline,
trimming and quality filtering were performed using
Trimmomatic [63]; assembly for each sample separately
was done using Megahit [64]; Prodigal [65] was used for
ORF prediction, and barrnap [66] was employed for
rRNA gene sequence retrieval, which were classified
using RDP classifier [67]. Diamond [68] software was
used for taxonomic classification of the ORFs against
Genbank nr database and functional annotation with
eggNOG database, for KO and COG numbers [69].
eggNOG-mapper [70] was employed for carbohydrate-
active enzymes annotation with against dbCAN [71].
SqueezeMeta script SQM2tables.py was used to compute
the average coverage and normalized TPM (transcripts
per million) values for information on gene and function
abundances. Normalized TPM SqueezeMeta ORF
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dataset and 16S rRNA gene data recovered from
MGN:ify analysis were used for statistical analyses, per-
formed in RStudio version 1.1.423 running R version
3.5.1 [72]. For the 16S-based analysis, OTUs with less
than 1 count across all the samples, chloroplast and
mitochondrial sequences were discarded; prior to alpha
diversity analyses, the data were rarefied to the size of
the smallest sample (175 reads). For both ORF-based
and 16S gene-based taxonomy datasets, “Phyloseq” pack-
age [73] was used to calculate the number of observed
OTUs, Shannon and Inverse Simpson diversity indices,
and Chaol and ACE diversity estimators. Significant
differences in the estimators between treatments were
evaluated through parametric and non-parametric tests,
including ANOVA, Kruskal-Wallis, and Tukey’s HSD
tests (package “agricolae”) [74]. Bray-Curtis distance
matrices constructed using the Hellinger transformed
[75] datasets were used for principal coordinate analysis
(PCoA) using the capscale function from the “vegan”
package v. 2.4.6 [76]. Group dissimilarities were tested
by permutational multivariate analysis of variance (PER-
MANOVA) using the function Adonis from the “vegan”
package. CANOCO (version5) [77] was employed to ex-
plore the relationship between sample treatments and
taxa abundance through redundancy analysis (RDA) in
the Hellinger transformed datasets. The statistical sig-
nificance (p value < 0.05) of eigenvalues and treatment-
taxa abundance correlations was tested using Monte
Carlo permutation test at 499 permutations, and the top
20 taxa associated with the dispersion of the treatments
were displayed in RDA graphs.

In order to identify predicted functions (COG,
KEGG, and CAZYmes) responsible for the observed
clustering patterns, we performed a feature selection
using a “random forest” algorithm using the R pack-
age Boruta [78] (1,000 trees, p value < 0.05). Boruta
tests if the importance of each individual variable is
significantly higher that the importance of a random
variable by fitting random forest models iteratively
until all predictor variables are classified as “con-
firmed” or “rejected” at the 0.05 alpha level [79]. The
heatmaps for relevant features for each function were
constructed with pheamap [80] R package, based on
z-score transformed TPM (transcripts per million)
abundances to improve normality and homogeneity of
the variances. Sequences were submitted to the Euro-
pean Nucleotide Archive (ENA) and are available
under the accession number PRJEB31257.

Metagenome analysis for cultivated microorganisms

The DNA of the cultivated microorganisms were shot-
gun metagenome sequenced, and the sequences were
processed using EBI MGnify [61] pipeline and ATLAS
(Automatic Tool for Local Assembly Structures) [81]
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pipeline. For ATLAS, quality filtering was performed
using BBDuk2, and cross-assembly was done with Mega-
hit [64]; functional and taxonomic analysis were per-
formed at ORF level for the assembled contigs. Prodigal
[65] was used for ORF prediction, and eggNOG database
[69] was used for functional annotation (COG and KO
numbers) using the DIAMOND software [68]. eggNOG-
mapper [70] was used for functional annotation of
CAZymes with dbCAN [71]. The Kaiju software [82]
was used for ORF taxonomy assignment against NCBI
RefSeq database. Custom scripts were used to generate
tables containing information of taxonomy and function
abundance of the ORFs in all samples. Quality con-
trolled contigs > 1000 kb were used for binning using
Concoct [83], Maxbin [84], and Metabat [85]; resulting
bins were refined using DAS tool [86], and genome
dereplication was performed with dRep [87]. Complete-
ness and contamination of the assembled genomes were
checked using CheckM [88], as well as taxonomy assign-
ment. The ORFs of the genomes were predicted using
Prodigal [65], and DIAMOND software [68] was used
for functional annotation with eggNOG (COG and KO
numbers) [69]. The annotation of CAZYmes was per-
formed with eggNOG-mapper [70] against dbCAN [71].
Sequences were submitted to the European Nucleotide
Archive (ENA) and are available under the accession
number PRJEB24069.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540168-020-00836-7.

Additional file 1 Supplementary Figure S1: Taxonomic composition
and relative abundance of microbial groups at phylum level in SIP
metagenome treatments based on a) SSU rRNA gene sequence
classification (>2.2 % abundance) b) ORF taxonomic classification (>0.1%
abundance). Average abundances of 4 replicates. Unc: unclassified. No
EPS — incubation without WH15EPS. Unlab EPS-incubation containing
"2C-WH15EPS. Heavy — ‘heavy fraction’ of incubations containing '>C-
WH15EPS; Supplementary Figure S2: Biplot of the Redundancy analysis
(RDA) based on normalized and Hellinger-transformed abundances of a)
SSU rRNA gene taxonomy classification and b) ORF taxonomic classifica-
tion. Only the best 20 fitting groups are displayed. Unc: unclassified. No
EPS - incubation without WH15EPS. Unlab EPS-incubation containing
"2C-WH15EPS. Heavy — ‘heavy fraction’ of incubations containing '>C-
WH15EPS; Supplementary Figure S3: Box-plot comparisons of alpha-
diversity assessment by richness estimators (number of observed OTUs,
Chao1, ACE) and diversity indices (Shannon, Inverse Simpson) for SIP 16S
rRNA gene samples. ‘Heavy fraction’ values are significantly lower in com-
parison with both controls for all comparisons (p-value < 0.05). Compari-
sons performed across treatments using ANOVA test and Tukey's HSD
post-hoc test. Data rarefied to the minimum sampling depth. Unlab. EPS-
incubation containing '?C-WH15EPS. Heavy — ‘heavy fraction’ of incuba-
tions containing '*C-WH15EPS; Supplementary Figure S4: Relative
abundance distribution of the most abundant functional categories in
TPM-normalized metagenome sequencing data from the SIP metagen-
ome. a) COG annotation (all categories); b) KEGG annotation (above 0.1 %
abundance); ¢) dbCAN annotation (above 1% abundance). E-Amino acid
transport and metabolism; G- Carbohydrate transport and metabolism; H-
Coenzyme transport and metabolism; C-Energy production and conver-
sion; I-Lipid transport and metabolism; F-Nucleotide transport and
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metabolism; Q- Secondary metabolites; D-Cell acycle; N-Cell motility; M-
Cell wall/membrane/envelope biogenesis; V-Defence mechanisms; P-
Inorganic ion transport and metabolism; U-Intracellular trafficking; O-Post
translational modification; T-Signal transduction mechanisms; L-
Replication, recombination and repair; K-Transcription; J-Translation; S-
Function unknown; R-General function and prediction; X-Mobilome.; Sup-
plementary Figure S5: Principal Coordinate Analysis (PCoA) clustering
of normalized and Hellinger-transformed SIP metagenome sequencing
data based on Bray-Curtis distances of a) COG annotation, b) KEGG anno-
tation and ¢) dbCAN annotation. No EPS — incubation without WH15EPS.
Unlabeled EPS-incubation containing '“C-WH15EPS. Heavy — ‘heavy frac-
tion’ of incubations containing '*C-WH15EPS; Supplementary Figure
S6: Taxonomic composition and relative abundance of microbial groups
at a) kingdom and b) phylum level in samples from the metagenome
shotgun of cultivated microrganims based SSU rRNA gene taxonomic
classification. Average from 2 replicates per plate of culture medium,
Supplementary Figure S7: Venn diagram depicting the number of
common and unique glycoside hydrolase (GH) families observed in SIP
metagenome and metagenome of cultivate microorganisms’ datasets;
Supplementary Figure S8: Distribution of the 20 most abundant
CAZyme families in a) SIP metagenome samples (relative abundance,
average of 4 replicates); b) metagenome of cultivated microorganisms
(relative abundance, average of 2 replicates); ¢) Metagenome-Assembled
Genomes (MAGs) (number of genes), and most abundant glycosyl hydro-
lases (GH) in d) SIP metagenome samples (relative abundance, average of
4 replicates), e) metagenome of cultivated microorganisms (relative abun-
dance, average of 2 replicates) and f) Metagenome-Assembled Genomes
(MAGs) (number of genes); Supplementary Figure $9: CO, emission.
CO, production during total incubation period. Control: control without
EPS; EPS: control containing '?C-EPS; Labeled: incubation with ">C-EPS; La-
beled CO, percentage: '>CO, emitted during '*C-EPS sample incubation;
water: days when samples were hydrated; air: days when samples were
aired. Supplementary Table S1: COG functions that significantly segre-
gated across treatments selected by Boruta random forests algorithm
based on 1000 permutations in the SIP metagenome treatment compari-
sons; Supplementary Table S2: KEGG orthologs that significantly segre-
gated across treatments selected by Boruta random forests algorithm
based on 1000 permutations in the SIP metagenome treatment compari-
sons; Supplementary Table S3:CAZyme families that significantly segre-
gated across treatments selected by Boruta random forests algorithm
based on 1000 permutations in the SIP metagenome treatment compari-
sons; Supplementary Table S4: Most abundant CAZyme families
(above 1% abundance) and most abundant KEGG orthologs (above 0.2%
abundance) in the shotgun metagenome of cultivated microorganisms;
Supplementary Table S5: MAGs coverage in all samples; Supplemen-
tary Table S6: Most abundant KEGG orthologs in MAGs and their associ-
ated functions. A selection of the top 10 most abundant KEGG orthologs
in each genome is displayed. Annotation performed using eggNOG data-
base.; Supplementary Table S7: Sugar transporters in MAG1 annotated
with eggNOG database; Supplementary Table S8: Sugar transporters in
MAG2 annotated with eggNOG database; Supplementary Table S9:
General type transporters in MAG3 annotated with eggNOG database;
Supplementary Table S10: Sugar transporters in MAG4 annotated with
eggNOG database; Supplementary Table S$11: Families of CAZymes
observed in the MAGs, number of ORFs and associated functions; Sup-
plementary Table S12: Coordinates of the sampling sites; Supplemen-
tary Table S13: Physicochemical properties of topsoil-litter samples.
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