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Abstract

Background: In human microbiome studies, it is crucial to evaluate the association between microbial group (e.g.,
community or clade) composition and a host phenotype of interest. In response, a number of microbial group
association tests have been proposed, which account for the unique features of the microbiome data (e.g., high-
dimensionality, compositionality, phylogenetic relationship). These tests generally fall in the class of aggregation
tests which amplify the overall group association by combining all the underlying microbial association signals, and,
therefore, they are powerful when many microbial species are associated with a given host phenotype (i.e,, low
sparsity). However, in practice, the microbial association signals can be highly sparse, and this is especially the
situation where we have a difficulty to discover the microbial group association.

Methods: Here, we introduce a powerful microbial group association test for sparse microbial association signals,
namely, microbiome higher criticism analysis (MiHC). MiHC is a data-driven omnibus test taken in a search space
spanned by tailoring the higher criticism test to incorporate phylogenetic information and/or modulate sparsity
levels and including the Simes test for excessively high sparsity levels. Therefore, MiHC robustly adapts to diverse
phylogenetic relevance and sparsity levels.

Results: Our simulations show that MiHC maintains a high power at different phylogenetic relevance and sparsity
levels with correct type | error controls. We also apply MiHC to four real microbiome datasets to test the association
between respiratory tract microbiome and smoking status, the association between the infant's gut microbiome
and delivery mode, the association between the gut microbiome and type 1 diabetes status, and the association
between the gut microbiome and human immunodeficiency virus status.

Conclusions: In practice, the true underlying association pattern on the extent of phylogenetic relevance and
sparsity is usually unknown. Therefore, MiHC can be a useful analytic tool because of its high adaptivity to diverse
phylogenetic relevance and sparsity levels. MiHC can be implemented in the R computing environment using our
software package freely available at https://github.com/hk1785/MiHC.
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Background

The recent advent of next-generation sequencing has en-
abled unbiased microbiome profiling for all microbes
inhabiting in different organs of the human body. The
two major sequencing platforms for microbiome profil-
ing are the targeted polymerase chain reaction ampli-
cons for the 16S ribosomal RNA (rRNA) gene [1, 2] and
the shotgun metagenomics for the whole microbial gen-
ome [3]. These sequencing platforms produce various
types of metagenomic information, such as microbial
abundance, gene content, and metabolic capacity [4].
Among those, here we focus on a common type of the
microbiome data for the microbial composition with
relative abundances and phylogenetic relationships. We
also consider the operational taxonomic unit (OTU) as a
surrogate of microbial species and the smallest unit of
the microbial biomarkers nested in different microbial
assemblages (e.g., communities (bacteria, fungi, viruses),
upper- or lower-level taxa (phyla, classes, orders, fam-
ilies, genera)). The roles of the microbiome on human
health or disease have been intensely studied throughout
all different microbial assemblages. For example, the
community of bacteria has been primarily studied on the
disparity in microbial diversity among different popula-
tions (e.g., diseased vs. non-diseased, treatment vs. pla-
cebo) [5-8]. While the communities of fungi or viruses
have been less studied, they are gaining more and more
attention [9, 10]. Moreover, investigators have intensely
studied the disparity in microbial taxon composition
throughout a breadth of hierarchical taxonomic classifi-
cations (e.g., phyla to genera) [11, 12].

Here, we refer, in general, the study on the association
between any microbial group (e.g., community or clade)
composition and a host phenotype (or any other health/
disease-related factor) as a microbial group association
study. In response to the popularity of such studies, re-
searchers have proposed a number of microbial group
association tests while incorporating the unique features
of the microbiome data (e.g., high-dimensionality, com-
positionality, phylogenetic relationship) into their pro-
posed tests. The most popular approaches are the
association tests using a- or S-diversity indices [5, 6]. a-
diversity measures within-sample diversity, by which the
high-dimensional microbiome information can be pro-
jected into a single diversity variable. We can then easily
test the association between an a-diversity index and a
host phenotype using a traditional statistical method
(e.g., generalized linear models), or we can jointly con-
sider multiple a-diversity indices and conduct an omni-
bus microbial diversity association analysis using the
adaptive microbiome a-diversity-based association test
(aMiAD) [13]. On the other hand, 5-diversity measures
between-sample diversity (i.e., dissimilarity or distance),
by which the high-dimensional microbiome information
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can be projected into a full rank similarity matrix via a
kernel machine framework [14]. We can then test the
association using the ANOVA-type association test
known as the permutational multivariate analysis of vari-
ance (PERMANOVA) [15-17] or the regression-type as-
sociation test known as the regression-microbiome
regression-based kernel association test (MiRKAT) [14],
while they result in a similar performance [14]. Re-
searchers have also proposed diverse microbial group as-
sociation tests to amplify the overall group association
by combining all the underlying microbial association
signals (e.g., the microbiome sum of powered score tests
(MiSPU) [18]).

All the above tests generally fall in the class of aggre-
gation tests as all the underlying microbial association
signals are aggregated into the a- or S-diversity or the
overall group association statistic [19]. Therefore, they
are powerful when a large number of OTUs are associ-
ated with a host phenotype (i.e., low sparsity) [19]. How-
ever, in practice, it is possible that only few OTUs are
associated with a host phenotype (i.e., high sparsity),
and, as an extreme case, even a single OTU can cause
human disease (e.g., a small influx of Escherichia coli
0O157:H7 can cause food poisoning [20]). However, it is
questionable if the current methods can powerfully dis-
cover the microbial group association for the high spars-
ity situation. For example, it is so obvious that there is a
huge disparity in a variety of host phenotypes between
the normal and germ-free mice because of the huge dis-
parity in their microbiomes (i.e., presence vs. absence of
microbiome) [21], and, in this low sparsity situation, any
of the current methods can powerfully discover the mi-
crobial group association with no need for any additional
method development. Thus, here we instead move our
focus onto the high sparsity situation, in which only a
small portion of the OTUs are associated with a host
phenotype and the pressing issue of powerfully discover-
ing the disparity in a host phenotype driven by the
sparse association signals.

We notice that the group association test, known as
higher criticism (HC) test, is powerful at high sparsity
levels because its test statistic reflects only the single lar-
gest association signal among underlying individual asso-
ciation signals [22]. While the use of the higher criticism
test has been extended to genome-wide association stud-
ies [23, 24], it has not been well-appreciated for the
microbiome group association analysis. This might be
because of the unique features of the microbiome data
and the resulting need for more sophisticated analysis
procedures. Thus, here we further tailor the higher criti-
cism test for microbial group association analysis by in-
corporating phylogenetic information and modulating
sparsity levels, as follows. First, we notice that phylogen-
etically relevant species share similar genetic
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components and evolutionary histories and, as a result,
they are likely to have similar functional effects on a host
phenotype [25]. Thus, to improve power when the
OTUs associated with a host phenotype are phylogenet-
ically relevant, we introduce a weighted higher criticism
test which gives a higher weight to the OTUs whose
phylogenetically relevant OTUs have larger association
signals. Second, the original higher criticism test is
powerful at a high sparsity level but rapidly loses power
as the sparsity level decreases. Thus, to improve power
for lower sparsity levels, we introduce a modulated
higher criticism test which flexibly reflects the single or
multiple largest association signal(s) among underlying
individual association signals. In addition, we notice that
the Simes test [26] is also powerful at high sparsity levels
because it requires only a single strong association signal
among underlying individual association signals which is
significant even after the multiple testing correction. We
heuristically, but not theoretically, found that the Simes
test is more powerful at excessively high sparsity levels
than the higher criticism test while the Simes test more
rapidly loses power as the sparsity level decreases than
the higher criticism test (see the “Simulation results”
section).

Here, the dilemma in reality is that the OTUs associ-
ated with a host phenotype can be phylogenetically rele-
vant or not, and they can be highly sparse or less sparse.
Yet, unfortunately, we cannot presume which specific as-
sociation pattern underlies our study in advance because
of the lack of prior knowledge. Thus, here we introduce
a data-driven omnibus test, namely, microbiome higher
criticism analysis (MiHC), which robustly adapts to di-
verse association patterns. To achieve the robust adap-
tivity, we first construct multiple candidate tests by
combining the principles of the original, weighted and
modulated higher criticism tests, and the Simes test, in
which each of the individual candidate tests suits some
specific association pattern. Then, we use the minimum
p value among those candidate tests as the test statistic
of MiHC with the aim of closely reaching the highest
power among those candidate tests. Finally, we use a
residual-based permutation approach based on the mini-
mum p value statistic to calculate the p value for MiHC.
Here, the residual-based permutation approach enables
to preserve OTU-by-OTU correlations [27], which are
inherent in the microbiome data because of the compos-
itional constraint (also known as unit sum constraint),
phylogenetic relevance, and other potential sources.

Our extensive simulations show that MiHC robustly
maintains a high power at different phylogenetic rele-
vance and sparsity levels with correct type I error con-
trols at the significance level of 5%. We also apply MiHC
to four real microbiome datasets to test the association
between respiratory tract microbiome and smoking
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status [28], the association between the infant’s gut
microbiome and delivery mode [29], the association be-
tween the gut microbiome and type 1 diabetes status
[30], and the association between the gut microbiome
and human immunodeficiency virus (HIV) status [31].

Methods and materials

This section is devoted to describe methodological de-
tails (i.e., models, notations, test statistics, and computa-
tional procedures) for our proposed methods. Since we
use many notations, we organize them in a summary
table for easy follow-up (Additional file 1: Table S1).

Generalized linear models and marginal score statistics
We suppose that the data include # samples, m OTUs in
a microbial group of interest (e.g., community or clade)
and / covariates (e.g., age, gender). Let y; denote a host
phenotype (or any other health/disease-related factor) of
interest, 0; denote an OTU in relative abundance (i.e.,
proportion), and x; denote a covariate for i = 1,..., 1, j =
1,..., m and k = 1,..., I. To test the association between
OTUs and a host phenotype adjusting for covariates, we
consider a generalized linear model [32] (Eq. 1),

g(m) =xla+o]pB, (1)

where g(-) is a canonical link function, 4; = E(y; | x; 0)),
and a = (ag, ...,a)" and B =By ...,/:o’m)T are the regres-
sion coefficients for the covariates, x; = (1, %1, ..., %) s
and the OTUs, 0; = (01, ..., 0i) % respectively. Here, y;
conditional on x; and o; is assumed to follow a distribu-
tion in the exponential dispersion family with the prob-

ability density/mass function (Eq. 2).

y:6i-b(6;)
ai(¢)

where 0; is the natural parameter, ¢ is the dispersion
parameter, and a(-), b(-), and ¢(-) are the known func-
tions [32]. Let b '(0;) and b (6;) denote the first two de-
rivatives of b(6;) evaluated at 6; as such, E(y; | x; 0,) =
b'(8) and Var(y; | %, 0) = a{¢)b (6;). Here, we are in-
terested in testing the global null hypothesis of no asso-
ciation between OTUs and a host phenotype adjusting
for covariates (Eq. 3).

701 6.9) = x| Febpo)) @)

Ho : f3; =0 forall j’sin {1,...,m} vs. .
Hy : 3;#0 for some jsin{1,...,m} (3)

While we will soon address the above global hypoth-
esis testing in the following sections, here we first delin-
eate the marginal standardized score statistic for each
OTU (Eq. 4) as it is the key component of the higher
criticism test [24].
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where o; = (04 ..., onj)T, ¥ = 1Y)’ g is the vector
of the expected values of y/s estimated under the null
xiT“ 5 oHy = (/}1‘,07 ~~a/:’n‘0)T =
(¢ (aTa0), g (6fa0)) = (B'(Br o).t (Bn ),
and P = W- WX(X"WX)'X"W, where W is the diag-
onal matrix of the marginal variances of y/s estimated
under the null model of g(u;) = x7a; W = diag(a,(¢,)b"(
él, 0)s e an(éo)b"(én, o)), and X = (x,...,x,)", forj = 1,
..., m. Here, the statistic Z; tells the effect direction and
size for the jth OTU, and we assume that Z; follows the
standard normal distribution N(0,1) under the marginal
null hypothesis of B; = 0. Then, we can calculate the
marginal p value for the jth OTU as P(|Z;| > N(0,1)).

model of g(u;) =

Unweighted and weighted higher criticism analyses
Donoho and Jin first derived the higher criticism test, mo-
tivated by an idea of the great statistician, John Wilder
Tukey [22]. Then, the higher criticism test has been fur-
ther developed by a few follow-up studies [23, 24, 33, 34].
While there are different forms of the test statistic, we use
the simplest form of (Eq.5) based on [23].

}{ r}'/m_Pj }

where uHC is the test statistic for the higher criticism
test [23], p; is the p value for the jth OTU, and r; is the
rank of p; in the ascending order of p;'s for j = 1,..., m.
We denote this higher criticism test as the unweighted
higher criticism (uHC) test in order to distinguish it
from the forthcoming weighted higher criticism test.
Here, a relatively large observed statistic value compared
with null statistic values indicates a higher chance to dis-
cover the group association. Prior studies have found
that this higher criticism test sensitively detects highly
sparse association signals [22—24, 33]. The major ration-
ale behind is that the test statistic (Eq. 5) focuses on the
ri/m
\/p/(l—p/)/m)

) quantiles of significance among

(5)

single largest deviation between the expected (
pj
p;(1-p;)/m
all the m tests; as such, only a small number of association
signals are sufficient to get a large statistic value [22—24].
In microbiome association studies, phylogenetic-
ally relevant species tend to have similar effects on
a host phenotype because of their similarities in
genetic components and evolutionary histories [25].
Thus, to improve power when the OTUs associated
with a host phenotype are phylogenetically relevant,

and observed (
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we introduce the weighted higher criticism (wHC)
test (Eq. 6).

wHC = maxje{l,...,m}{ M }’ ©
p].(l_pj)/m

where wHC is the test statistic for the weighted higher
criticism test and w; is the weight for the jth OTU. To
assign the weight to each OTU (i.e., w; for j = 1,..., m),
we first partition the m OTUs into C phylogenetically
close clusters based on OTUs’ pairwise cophenetic dis-
tances [35], where the cophenetic distance of any two
OTUs refers to the total length of the branches to
their most common ancestor (i.e., the closest intersec-
tion) in the phylogenetic tree and we calculate it
using the function, cophenetic, in the R package, stats.
For this, we use the partitioning-around-medoids al-
gorithm [36] based on the optimal number of clusters
(C) which maximizes the average silhouette width
searching up to 30 clusters [36]. Let {(j) denote a
cluster anchored at the jth OTU among the C clus-
ters. Then, we define w; as (Eq. 7),

1
Z D, ! Z; |
e\
W]' = 1
> 5o

JeONGY

+1, (7)

where D/‘ ;s the cophenetic distance between jth and

jth OTUs, j € {(j) and j € {()\{j}. w; is designed to give

a higher weight to the OTUs whose neighboring OTUs,

with respect to closer phylogeny (see 7'-), have larger
JiJ

association signals (see |Zl.r |). Therefore, w; amplifies

the association signals from close phylogeny and hence
can suit when the OTUs associated with a host pheno-
type are phylogenetically relevant.

Modulated higher criticism analyses for lower sparsity
levels

Again, the higher criticism test is powerful for high
sparsity levels, but it is underpowered for low sparsity
levels [24]. In practice, the true associations are not al-
ways so highly sparse that the higher criticism can be
underpowered. Thus, to improve power for lower spars-
ity levels, we make some modulations to the original test
statistic as (Eq. 8),

1 h y y
uHC,) = A Z —— (8)
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where uHC, is the test statistic for the unweighted
higher criticism test for a given / value, Tl is
py(=py)/m
r,'/m—p/
p/(l—p/-)/m
order for j = 1,..., m, and & needs to be pre-specified, /
€ {1, 2, ..., m-1, m}. uHC, is the average of the first

__nilm )y and
\/l’/(l‘P/')/m

) quantiles of significance among all

the j th order statistics of ’s in the descending

largest deviations between the expected (

Pj
observed ( NI
the m tests (Eq. 8). uHCy, is also a generalization of the
original higher criticism test (Eq. 5) because when 1 = 1,
uHC(;,) becomes the original higher criticism test (i.e.,
uHC). uHC;) relies on the single largest deviation and
hence can suit high sparsity levels. As % increases,
uHC ;) considers more deviations to the next level
association signals and hence can suit lower sparsity
levels. When h=m, uHC(;,, becomes uHC,. uHC,,
considers all the m deviations and hence can suit
the least sparsity level. Without loss of generality,
we can apply the same modulations to the weighted
higher criticism (wHC) test (Eq. 9).

1< W/ (r//m—p/)

HCp =~ ———u "2
wHC () h/X_:l (—‘—‘p/ (l_p/)/m

where wHC;, is the test statistic for the weighted higher
W// (r/ /mfp/_r) .
is the

ps(-ps)/m
] ]

s in the descending

©)

criticism test for a given /4 value, and

wi(rj/m-p;) ,
p/‘<17pj)/ m
order for j = 1,..., m. We calculate the p values for the
individual unweighted (uHCg,’s) and weighted
(WHC;,)’s) tests based on a permutation method (see the

“p value calculation” section).

jth order statistics of

Simes test

Simes (1986) introduced a simple modification of the
Bonferroni procedure for multiple hypothesis testing
and a group association test, known as the Simes test,
that calculates the p value as the minimum p value
among the marginal p values that are corrected by the
Bonferroni procedure (i.e., multiplied by the number of
tests) and weighted by the inverse of their ranks (ie.,
multiplied by the inverse of their ranks) [26] (Eq. 10).

. mp;
Psimes = T'simes = MmiNjefy ... .m} PR
]

(10)
where Pg;es and Tsimes are the p value and the test stat-
istic for the Simes test, p; is the p value for the jth OTU,
and r; is the rank of p; in the ascending order of p;’s for j
= 1,..., m. To discover the group association, the Simes
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test requires only a single strong association signal
which can produce a significant p value even after
adjusting for multiple hypothesis testing. Thus, the
Simes test is also powerful at highly sparsity levels. Our
simulations demonstrate that the Simes test is more
powerful at excessively high sparsity levels than the
higher criticism test while the Simes test more rapidly
loses power as the sparsity level decreases (see the
“Simulation results” section).

Microbiome higher criticism analysis

In reality, the true microbial associations can be phylo-
genetically relevant or not, and they can be highly sparse
or less sparse, yet we do not know the true underlying
association pattern in advance. Thus, to robustly adapt
to the unknown phylogenetic relevance and sparsity
levels, we propose a data-driven omnibus test, namely,
microbiome higher criticism (MiHC) analysis (Eq. 11).

Tminc = min( YIE;H (PuHC(h)anHC(h))7PSimes)a
(11)

where P,ycpy’s are the p values based on the uHC,
tests, Pyncgy's are the p values based on the wHC,
tests for ’'s ina set I (e.g, I = {1, 3, 5, 7, 9}), and Psjnes
is the p value based on the Simes test. Thjpc is the mini-
mum p value among all the uHC;, (Eq. 8) and wHCy,,
(Eq. 9) tests for /’s in I' and the Simes test (Eq. 10). Of
course, we do not use this minimum p value as the final
p value for MiHC, but we instead use it as the test statis-
tic of MiHC. We calculate the p value for MiHC based on a
permutation method (see the “p value calculation” section).
This kind of the minimum p value statistic approach has also
been widely used in many prior association tests [13, 14, 18,
37-39]. The set (I') can be spanned up to the union set of {1,
2,..., m-1, m}. However, it is a huge computational burden to
survey all the / values in the union set because of the high-
dimensionality of the microbiome data. Thus, we use a can-
didate set of T = {1, 3, 5, 7, 9} and it was sufficient in our sim-
ulations and real data applications. The use of the minimum
p value statistic allows MiHC to closely approach the most
powerful test among all the candidate tests in I' and the
Simes test. Therefore, compared with the original higher
criticism test (which is only for /7 = 1) or the Simes test, our
candidate set always gives a similar or higher power. Our ex-
tensive simulation experiments demonstrate the high adap-
tivity of MiHC to various phylogenetic relevance and sparsity
levels while robustly maintaining a high power with well-
controlled type I error rates (see the “Simulation results”
section).

By the same logic, we can also consider two local omni-
bus tests, namely, uHC4 (Eq. 12) and wHC, (Eq. 13), that
are taken within each of the two sub-domains: (1) the
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unweighted higher criticism tests (i.e., uHC,tests for /’s
in T) and the Simes test and (2) the weighted higher criti-
cism tests (i.e., wHC, tests for /s in I') and the Simes
test.

Tunc, = min( r}g}n (PuHC(h))aPSimes)v (12)
TWHCA = min( Ip}’gl{n( PwHC(h)) 5 PSimes) 5 (13)

Tunc, is the minimum p value among uHC, (Eq. 8)
tests and the Simes test (Eq. 10) while Tyuc, is the
minimum p value among wHC;, (Eq. 9) tests and the
Simes test (Eq. 10). These two local omnibus tests are
distinguished from the global omnibus test, MiHC, that
is taken within the global domain of all the unweighted
and weighted higher criticism tests (i.e., all the uHC,
and wHC, tests for /’s in T) and the Simes test. Tync,
and Ty, are the test statistics of uHC, and wHC,, re-
spectively, and we calculate the p value based on a per-
mutation method (see the “p value calculation” section).
By the formula, we can infer that uHC, and wHC, can
modulate sparsity levels through #’s in I' and the Simes
test for excessively high sparsity levels, while uHC, suits
the low phylogenetic relevance, but wHC, suits the high
phylogenetic relevance. Although the global omnibus test
(i.e, MiHC) (Eq. 11) is our major proposal for microbial
group association analysis, we introduce these two local
omnibus tests (i.e, uHC, and wHC,) especially because
uHC, is useful to modulate sparsity levels when the
phylogenetic information is not available (e.g., microbial
functional studies for genetic/metabolic content).

p value calculation

There have been different approaches to calculate the p value
for the higher criticism test [22—24, 33, 34]. The analytical
approaches based on an asymptotic distribution proposed in
[22, 33, 34] have the advantage of producing a closed-form p
value in a computationally efficient manner. However, the
analytical approaches assume independent tests and/or rely
on asymptotics in 7 which requires 7 as large as a million
for valid statistical inferences [23]. In microbiome association
studies, the independence assumption can be easily violated
because of the inherent compositional constraint and phylo-
genetic relevance. Furthermore, the microbiome data do not
usually include a million OTUs so that the slow convergence
rate to asymptotics in m can lead to invalid statistical infer-
ences [23]. Thereafter, Barnett et al. proposed an exact p
value calculation which releases the independence assump-
tion and the huge m requirement. However, its computa-
tional burden increases exponentially as m increases; hence,
it can handle only a small number of OTUs. Therefore, in-
stead of using the asymptotic or the exact method, we use a
permutation method to calculate the p value for our
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proposed method. In particular, we use the following
procedures.

1. Fit the null generalized linear model and estimate
the residuals as g =
(01-¢ (o] o), . 3,-g (5 00))

2. Calculate the marginal score statistics as Z; = ojTéO /
A /ojTPo ;i (Eq. 4) and the marginal p values as p; =
P(|Z| > N(0,1)) for j = 1,..., m. Calculate the
observed statistics, uHC;,) (Eq. 8) and wHC,, (Eq.
9), for each & € T, and the p value for the Simes
test, Psimes (Eq. 10).

3. Permute the estimated residuals ey multiple times
(say, B times) and denote each permuted residual
vector as e/b for b = 1,..., B. Repeat step 2 B times,
replacing é; with each e,, and calculate the null
statistics, uHC ) (Eq. 8) and wHC () (Eq. 9), for
each 7 € T and for each b € {1,..., B} and the null

statistics for the Simes test, Tsimesr) = MiNje(1,. m}
{%} for each b EB{L..., B}.
J
4. Calculate Pyycpy = Z[](LIHC(;,)(I,) > uHC;,))+1]/

B

(B+1) and Pyncw = > [I(WHC(;,)(;,) > wHC,))+1]/
b=1

(B+1) for each & € T. Calculate the observed
statistics, TuHCA = mll’l( r;l%n(PuHC(h))7PSimes) (Eq
12), Twhc, = min( %%H(PWHC(h))7PSimes) (Eq. 13)
and Tygpc = min( Iilsinr(PuHC(h)aPwHC(h))aPSimes)
(Eq. 11).

5. Calculate PuHC(h)(b) = Zb/;eb [](uHC(h)(b’)
> uHC(h)(b>) =+ 1]/(B+1) and PwHC(h)(b) = Zblzb [](
wHC(h)<b/) > wHC ) + 1]/(B+1) for each h € T,

and PSimes(b) = Zblzb [I(TSimes(b’) < TSimes(b)) + 1}

/(B+1), where b € {1,...,B}and b € {1,..., B}.

Calculate the null statistics, Tync,,, = min( r}?%n(
€.

Punicin(v))s Psimes(s)) (EQ- 12), Twhc,,, = min( Iﬂn
(Puwric(n) (b)) Psimes(v)) (Eq. 13) and Tygipicpy = min

( l’ggn(PuHC(h)(b)yPWHC(h)(b)),PSimes(b>> (Eq. 11),

for b = 1,..., B. B

6. Calculate the p values for uHC,4 as Pync, = > [(
b=1
Tunc,v) < Tunc,) + 11/(B+1), wHC4 as Pync,

M

(T whc,») < Twhc,) + 11/(B+1) and MiHC as

b=1

B

Pyiinic = Y- [(Twminc) < Tvine) + 11/(B+1).
b=1
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Importantly, our permutation method can robustly ac-
count for any correlation structure among the m tests
using the same permuted residual vectors repeatedly for
each test (i.e., residual-based permutation) [27]. More-
over, since MiHC is based on the score test (Eq. 4)
which is computationally efficient and the null model
needs to be fitted only once, our method is computa-
tionally manageable.

Visualization
Here, we introduce simple Q-Q plots to demonstrate in-
fluential OTUs in each of the two sub-domains (i.e.,
uHC and wHC) for MiHC. First, we draw Q-Q plots be-
ri/m

\p(l-p;)/m

tween the expected ( ) and observed (

——2___) quantiles for uHC (Eq. 5) and between the
p/(l—p/-)/m
expected (%) and observed (%) quan-

tiles for wHC (Eq. 6), respectively, for j = 1,..., m. Here,
we use (blue) dots to represent individual OTUs and a
(red) diagonal line with intercept 0 and slope 1 to repre-
sent no influential points; as such, the OTUs that fall
along the diagonal line have no influence on the host
phenotype while the OTUs that have larger deviations
from the diagonal line are more influential on the host
phenotype. Then, we report the 10 most influential
OTUs corresponding to the 10 largest deviations from
the diagonal line with respect to uHC and wHC, respect-
ively. We use darker to lighter vertical lines to represent
more to less influential OTUs in rank order among the
10 most influential OTUs. Example visualizations can be
found later in the “Real data applications” section.

Simulation results

We conducted simulation experiments to compared
MiHC with the prior tests, Simes test [26], higher criti-
cism (HC) test (i.e, uHC (Eq. 5)) [22], aMiAD [13],
adaptive MiSPU (aMiSPU) [18], and Optimal MiRKAT
(OMIRKAT) [14]. Our simulation design is based on
prior studies [14]. We first estimated the proportions
and dispersion for the 100 most abundant OTUs from
the real respiratory tract microbiome data [28] based on
the Dirichlet-multinomial model [40]. Then, we itera-
tively generated an OTU count table using the Dirichlet-
multinomial model with the estimated proportions and
dispersion and a rooted phylogenetic tree with 100
leaves using the function, rtree, in the R package, ape
[41]. Here, we fixed the total reads per sample as 1000
to mimic the compositional constraint and considered
two different sample sizes, n = 50 and n = 100, respect-
ively. To illustrate fits of the simulated data, we gener-
ated histograms of the relative abundances for the 100
most abundant OTUs of the real respiratory tract
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microbiome data and the simulated data based on the
Dirichlet-multinomial model (Additional file 2: Figure
S1). For the relative abundances of the simulated data,
we took averages across 100 simulated data sets that
were iteratively generated based on the Dirichlet-
multinomial model for #n = 50 and # = 100, respectively.
To estimate type I error rates and powers, we generated
Gaussian responses based on the linear regression model
below.

y; = 0.5 x scale(xy;) + 0.5 x scale(xy) + S

X Z scale(o;) + &;,

JeA

where x;; are x;, are the covariates generated from the
Bernoulli distribution with success probability 0.5 and
the standard normal distribution N(O, 1), respectively, A
is a set of OTUs that are associated with the host pheno-
type y;, € is an error term generated from the standard
normal distribution N(0, 1), and scale is the
standardization function to have mean 0 and standard
deviation 1.

To estimate type I error rates, we assigned 5 = 0 to re-
flect the null hypothesis of no association for all OTUs
(Eq. 3). To estimate powers, we assigned 5 = 1 for n =
50 and 5 = 0.5 for n = 100, while choosing the set of as-
sociated OTUs (A) based on two different scenarios: (1)
we randomly selected 2%, 4%, 6%, 8%, 10%, or 12% of
the OTUs to be associated with the host phenotype and
(2) we selected 2%, 4%, 6%, 8%, 10%, or 12% of the
OTUs which are phylogenetically close to be associated
with the host phenotype. We regard the second scenario
more realistic because the phylogenetic relevance likely
to give shared functional attributes. In particular, for the
second scenario, we randomly selected one OTU as a
seed OTU and then included 2%, 4%, 6%, 8%, 10%, or
12% of the OTUs that are closest to the seed OTU (in-
cluding the seed OTU) with respect to cophenetic dis-
tance [35]. For both of the scenarios, 2%, 4%, 6%, 8%,
10%, and 12% reflect from high to low sparsity levels.

Results

Simulation results

Fits of the simulated data

Additional file 2: Figure S1 reports the histograms of
the relative abundances for the real respiratory tract
microbiome data [28] and the simulated data based
on the Dirichlet-multinomial model [40]. We can
observe that the simulated data approximate to the
real data in shape while including high proportions
for rare OTUs (Additional file 2: Figure S1). This in-
dicates that the Dirichlet-multinomial model is use-
ful to simulate microbiome data.
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Type | error

Table 1 reports empirical type I error rates at the signifi-
cance level of 5% for all the surveyed methods. We can
observe correct type I error controls (i.e., the empirical
type I error rates close to the significance level of 5%)
for all the individual (ie., uHC,)’s and wHC,’s) and
omnibus (i.e., uHC,4, wHC,4, and MiHC) higher criticism
tests and the Simes test and also for all the other com-
peting tests (ie, aMiAD, aMiSPU, and OMIiRKAT)
(Table 1). Therefore, all the surveyed tests are valid in
hypothesis testing.

Power

Here, we report the power comparisons in the
order of (i) the comparison for the individual (i.e.,
uHC(,y’'s and wHC,)’s) and local omnibus (i.e.,
uHC, and wHC,) higher criticism tests and the
Simes test (Fig. 1 (n = 50) and Additional file 3:
Figure S2 (n = 100)); (ii) the comparison for the
local omnibus (i.e., uHC4 and wHC,) and global
omnibus (i.e., MiHC) higher criticism tests (Fig. 2
(n = 50) and Additional file 4: Figure S3 (n = 100));
and (iii) the comparison for MiHC with the prior
tests (i.e., Simes, HC, aMiAD, aMiSPU, and OMiR-
KAT) (Fig. 3 (n = 50) and Additional file 5: Figure
S4 (n = 100)).

Table 1 Empirical type | error rates at the significance level of
5% for the individual (i.e, uHCy,'s and wHCy,'s for h € {1, 3, 5, 7,
9}) and omnibus (i.e,, uHC,, wHC,, and MiHC) higher criticism
tests, the Simes test, and the other competing tests (ie., aMiAD,
aMiSPU, and OMIRKAT)

Category Method n=50 n=100
Individual HC tests ~ Unweighted tests uHCp) 0051 0049
uHC s 0050 0052
uHCs) 0.049 0049
uHCe) 0.050  0.050
uHCg 0050 0051
Weighted tests wHCy) 0047 0047
wWHC, 0.048 0049
WHCs 0048 0049
wHC; 0049 0049
WHCq, 0.049 0049
Omnibus HC tests  Local omnibus tests uHC, 0.049 0.049
wHC, 0.049  0.049
Global omnibus tests  MiHC 0050 0.052
Non-HC tests Simes 0.048  0.049
aMiAD 0.050  0.051
aMiSPU 0051 0051
OMIRKAT 0050 0.050
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The individual (i.e., uHC() and wHC)) tests are more
powerful using a smaller /& value for higher sparsity
levels, while they are more powerful using a larger &
value for lower sparsity levels (Fig. 1 and Additional file
3: Figure S2), which is explained by the modulation
scheme (Eq. 8 and Eq. 9). The Simes test is powerful at
high sparsity levels but rapidly loses power as the spars-
ity level decreases (Fig. 1 and Additional file 3: Figure
S2). The Simes test is more powerful at high sparsity
levels (i.e., < 2% or < 4%) even than the original high
criticism test (i.e., uHC)), but it is less powerful at low
sparsity levels (i.e, = 4% or > 6%) than any individual
higher criticism tests (Fig. 1 and Additional file 3: Figure
S2). uHC, closely approaches the most powerful test
among the individual unweighted tests (i.e., uHC,’s)
and the Simes test (Fig. la, ¢ and Additional file 3: Fig-
ure S2:A,C), while wHC, closely approaches the most
powerful test among the individual weighted tests (i.e.,
wHC,’s) and the Simes test (Fig. 1b, d and Additional
file 3: Figure S2:B,D), which is explained by the adaptiv-
ity of the minimum p value statistic (Eq. 12 and Eq. 13).
The unweighted tests (i.e., uHC,’s and uHC,) are more
powerful than the weighted tests (i.e., wHCy,’s and
wHC,) when randomly selected OTUs are associated
with the host phenotype (Fig. 1a > Fig. 1b, Additional file
3: Figure S2A > Additional file 3: Figure S2B, and Fig.
2a), while the weighted tests are more powerful than the
unweighted tests when phylogenetically relevant OTUs
are associated with the host phenotype (Fig. 1c < Fig. 1d,
Additional file 3: Figure S2C < Additional file 3: Figure
S2D, and Fig. 2b), which is explained by the weighting
scheme for phylogenetic relevance (Eq. 7). In addition,
the unweighted tests (i.e., uHCy,y’s and uHC,) are al-
most equally powerful when either randomly selected
OTUs (Fig. 1a) or phylogenetically relevant OTUs (Fig.
1c) are associated with the host phenotype (Fig. 1a = Fig.
1c). This is because the unweighted tests do not utilize
any phylogenetic information; hence, they treat either
randomly selected OTUs or phylogenetically relevant
OTUs all equally as randomly selected OTUs.

To facilitate easier comparison, Fig. 2 and Additional
file 4: Figure S3 report estimated powers only for the
local omnibus (i.e., uHC4 and wHC,) and global omni-
bus (i.e, MiHC) higher criticism tests. Here again, uHC 4
is more powerful than wHC, when randomly selected
OTUs are associated with the host phenotype (Fig. 2a
and Additional file 4: Figure S3A), while wHC, is more
powerful than uHC, when phylogenetically relevant
OTUs are associated with the host phenotype (Fig. 2b
and Additional file 4: Figure S3B), which is explained by
the weighting scheme for phylogenetic relevance (Eq. 7).
Importantly, we can observe that MiHC closely ap-
proaches the most powerful test between uHC, and
wHC, (Fig. 2 and Additional file 4: Figure S3), which is
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explained by the adaptivity of the minimum p value stat-
istic in the entirety (Eq. 11). This indicates that MiHC
maintains a high power throughout different phylogen-
etic relevance and sparsity levels, while the individual or
the local omnibus tests are limitedly powerful only for
some specific phylogenetic relevance and sparsity levels
(Figs. 1 and 2 and Additional files 3 and 4: Figure S2-
S3). Thus, we suggest to use MiHC especially in respond

to the unknown phylogenetic relevance and sparsity
levels in practice.

Here, we also compare MiHC with the prior tests,
Simes, HC, aMiAD, aMiSPU, and OMIRKAT. MiHC,
Simes, and HC are powerful for high sparsity levels, while
they lose power gradually for lower sparsity levels (Fig. 3 and
Additional file 5: Figure S4). However, the power decay is
slower for MiHC than Simes and HC (Fig. 3 and Additional
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file 5: Figure S4), which is explained by the modulation
scheme (Eq. 8 and Eq. 9) and the adaptivity of the minimum
p value statistic (Eq. 11). We can also observe that the power
gap from MiHC to Simes or HC is larger when phylogenet-
ically relevant OTUs are associated with the host phenotype
(Fig. 3 and Additional file 5: Figure S4), which is explained
by the weighting scheme for phylogenetic relevance (Eq. 7)
and the adaptivity of the minimum p value statistic (Eq. 11).
Therefore, MiHC better suits the microbiome association
studies with multifarious phylogenetic relevance and sparsity
levels. On the contrary, aMiAD, aMiSPU, and OMiRKAT
are underpowered for high sparsity levels, yet they gain
power gradually for lower sparsity levels (Fig. 3 and Add-
itional file 5: Figure S4). This is because they amplify the
overall group association by aggregating underlying microbial
association signals in the sense of requiring as many associ-
ation signals as possible. Especially, OMiRKAT is most
powerful when phylogenetically relevant OTUs are associ-
ated with the host phenotype at low sparsity levels (ie., >
10%) (Fig. 3b), and we do not discourage the use of aMiAD,
aMiSPU, and OMIRKAT for lower sparsity levels. MiHC is
more powerful than aMiAD, aMiSPU, and OMiRKAT for
many sparsity levels in our simulations (Fig. 3 and Additional
file 5: Figure S4). We developed MiHC, from a different per-
spective, for the powerful discovery from high to low sparsity
levels, which was especially challenging by the prior tests.

Real data applications

The association between the respiratory tract microbiome
and smoking status

Charlson et al. have collected swab samples from the
upper respiratory tract to survey the effect of cigarette
smoking on the respiratory tract microbiome [28]. The
microbiome data for the OTU abundance table and phylo-
genetic tree are publicly available in the R package, GUni-
Frac [42], where the raw sequence data had been
processed using the QIIME pipeline [2] by targeting the
V1-2 region of the 16S ribosomal RNA (rRNA) gene
(refer to [28] for more detailed sampling/data processing
procedures) and the phylogenetic tree had been con-
structed by using FastTree [43, 44]. The microbiome data
include 273 OTUs with mean relative abundance > 107
for 60 samples (28 smokers and 32 non-smokers). Here,
we test the association between respiratory tract microbial
composition and smoking status while adjusting for gen-
der and antibiotic use within the last 3 months.

We found the significant association between respira-
tory tract microbial composition and smoking status
throughout all the individual and omnibus higher criti-
cism tests and the Simes test (Fig. 4a). We can also ob-
serve only a small difference between the unweighted
(ie, uHCyy's and uHC,) and weighted (i.e, wHC’s
and wHC,) tests (Fig. 4a), indicating that the OTUs as-
sociated with smoking status might have only mild
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phylogenetic relevance. We can also confirm it in
visualization with similar graphical patterns between
uHC and wHC (Fig. 4a). We also report the 10 most in-
fluential OTUs with respect to uHC and wHC, respect-
ively (Fig. 4a). For the other competing methods, aMiAD
and OMIRKAT find the significant association while
aMiSPU does not (Table 2 A). MiHC finds the signifi-
cant association (p value, 0.017) (Table 2 A and Fig. 4a).

The association between the infant’s gut microbiome and
delivery mode

Bokulich et al. have conducted a microbiome profiling study
to survey the effect of the early life factors (e.g., delivery mode,
infant nutrition, antibiotic use) on the infant’s gut microbiome
[29]. As a demonstration, we test the association between the
infant’s gut microbiome and delivery mode (ie., vaginal or
cesarean birth) while adjusting for gender and predominant
diet (breastfeeding vs. formula). The microbiome data include
310 OTUs with mean relative abundance > 10~ for 32 infants
(11 infants by cesarean delivery and 21 infants by vaginal de-
livery) [29, 37], where the raw sequence data had been proc-
essed using the QIIME pipeline [2] by targeting the V4 region
of the 16S rRNA gene (refer to [29, 37] for more detailed sam-
pling/data processing procedures) and the phylogenetic tree
had been constructed by using FastTree [43, 44].

All the weighted tests (i.e., WHC,’s and wHC,) except for
wHC4) found the significant association between the infant’s
gut microbiome and delivery mode, while none of the un-
weighted tests (i.e, uHCy,’s and uHC,) and the Simes test
found it (Fig. 4b), indicating that the OTUs associated with
delivery mode might have strong phylogenetic relevance. We
can also confirm it in visualization with larger deviations be-
tween the expected and observed quantiles for wHC than
uHC (Fig. 4b). We can also observe that the individual tests
(ie., uHCy, and wHC,)) using a larger / value find smaller p
values (Fig. 4b), indicating that many OTUs might be associ-
ated with delivery mode (i.e., low sparsity). We can also con-
firm it in visualization that many OTUs have some
deviations between the expected and observed quantiles (Fig.
4b). We also report the 10 most influential OTUs with re-
spect to uHC and wHC, respectively (Fig. 4b). For the other
competing methods, OMiRKAT finds the significant associ-
ation while aMiAD and aMiSPU do not (Table 2 B). MiHC
finds the significant association (p value, 0.044) (Table 2 B
and Fig. 4b).

The association between the gut microbiome and T1D
status

Livanos et al. have conducted a microbiome profiling
study to survey the roles of the gut microbiome on T1D
onset through mouse experiments [30]. As a demonstra-
tion, we test the association between gut microbial com-
position and T1D status. For this, 19 mice were
exposed to therapeutic-dose pulsed antibiotic (PAT)
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treatment at 6 weeks of age and then followed up for
30 weeks. The microbiome data include 120 OTUs
with mean relative abundance > 10™* for the 19 mice
at 30 weeks of the follow-up (9 T1D-free mice and
10 T1D-onset mice), where the raw sequence data
had been processed using the QIIME pipeline [2] by
targeting the V4 region of the 16S rRNA gene (refer

to [30] for more detailed sampling/data processing
procedures) and the phylogenetic tree had been con-
structed by using FastTree [43, 44].

We found the significant association between gut mi-
crobial composition and T1D status throughout all the
individual and omnibus higher criticism tests but not
through the Simes test (Fig. 5a). We can also observe
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Table 2 The p values for the individual (e, uHC(y's and wHC,'s for h € {1, 3, 5, 7, 9}) and omnibus (i.e., uHC,4, wHC,4, and MiHC)
higher criticism tests, the Simes test, and the other competing tests (i.e., aMiAD, aMiSPU, and OMIRKAT). (A) The association between
respiratory tract microbiome and smoking status. (B) The association between the infant's gut microbiome and delivery mode. (C)
The association between the gut microbiome and type 1 diabetes status. (D) The association between the gut microbiome and
human immunodeficiency virus status. * represents significant p values

Category Method A B C D
Individual HC tests Unweighted tests uHC) 0.024* 0.192 0.025* 0.009*
uHCg) 0.023* 0.173 0.024* 0.008*
uHCs) 0.023* 0.131 0.024* 0.007*
uHC) 0.022* 0.097 0.024* 0.007*
uHCg 0.022* 0.088 0.024* 0.007*
Weighted tests wHC() 0.008* 0.063 0.026* 0.009*
wWHC3, 0.010* 0.042* 0.024* 0.008*
WHCs) 0.013* 0.032* 0.023* 0.007*
wHC) 0.015* 0.025* 0.023* 0.007*
wHCq 0.015* 0.020* 0.024* 0.007*
Omnibus HC tests Local omnibus tests UuHC, 0.040* 0.129 0.029* 0.013*
wHC, 0.016* 0.036* 0.029* 0.012*
Global omnibus tests MiHC 0.017* 0.044* 0.030* 0.012*
Non-HC tests Simes 0.023* 0.163 0.191 0.170
aMiAD 0.035* 0449 0.346 0.012*
aMiSPU 0.063 0.170 0.017* 0.181
OMIRKAT 0.005* 0.001* 0.016* 0.150

only a small difference between the unweighted (i.e.,
uHC,y’s and uHC,) and weighted (i.e, wHC,y’s and
wHC,) tests (Fig. 5a). This might indicate that the OTUs
associated with T1D status have only mild phylogenetic
relevance. We also report the 10 most influential OTUs
with respect to uHC and wHC, respectively (Fig. 5a). For
the other competing methods, aMiSPU and OMiRKAT
find the significant association while aMiAD does not
(Table 2 C). MiHC finds the significant association (p
value, 0.03) (Table 2 C and Fig. 5a).

The association between the gut microbiome and HIV
status

Pinto-Cardoso et al. have conducted a microbiome pro-
filing study to survey the effect of antiretroviral therapy
(ART) on the gut microbiome of HIV-positive individ-
uals [31]. As a demonstration, we test the association be-
tween gut microbial composition and HIV status while
adjusting for age. For this, 33 HIV-infected individuals
on ART and 10 HIV-uninfected individuals from Mexico
were included in the analysis [31]. The microbiome data
include 422 OTUs with mean relative abundance > 10™*
for the 44 individuals, where the raw sequence data had
been processed using the Resphera Insight [45] by tar-
geting the V3 and V4 regions of the 16S rRNA gene
(refer to [31, 46] for more detailed sampling/data

processing procedures) and the phylogenetic tree had
been constructed by using PyNAST [47].

We found the significant association between gut mi-
crobial composition and HIV status throughout all the
individual and omnibus higher criticism tests, but not
through the Simes test (Fig. 5b). We can also observe
only a small difference between the unweighted (ie.,
uHC,y’s and uHC,) and weighted (i.e, wHCy’s and
wHC,) tests (Fig. 5b), indicating that the OTUs associ-
ated with T1D status might have only mild phylogenetic
relevance. We can also confirm it in visualization with
similar graphical patterns between uHC and wHC (Fig.
5b). We also report the 10 most influential OTUs with
respect to uHC and wHC, respectively (Fig. 5b). For the
other competing methods, aMiAD finds the significant
association while aMiSPU and OMiIRKAT do not (Table
2 D). MiHC finds the significant association (p value,
0.012) (Table 2 D and Fig. 5b).

Discussion and conclusions

In this paper, we introduced a data-driven omnibus test,
MiHC, to evaluate the association between microbial
group (e.g., community or clade) composition and a host
phenotype of interest. Our simulations demonstrated
that MiHC robustly maintains a high power for both
random and phylogenetic association patterns at differ-
ent high sparsity levels with correct type I error controls.
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Fig. 5 The Q-Q plots between the expected and observed quantiles for uHC and wHC, respectively. a The association between the gut
microbiome and type 1 diabetes status. b The association between the gut microbiome and human immunodeficiency virus status. Blue dots
represent individual OTUs and a red diagonal line represents no influential points. Darker to lighter vertical lines represent more to less influential
OTUs in rank order among the 10 most influential OTUs that correspond to the 10 largest deviations from the red diagonal line. The asterisk
represents the p values for all the individual (i.e, uHC,)'s and wHC,'s for h € {1, 3, 5, 7, 9}) and omnibus (i.e,, uHC4, wHC,4, and MiHC) higher
criticism tests and the Simes test

We also applied MiHC to four different real microbiome
datasets and observed that MiHC finds stably low p
values while the individual (i.e., uHC,’s and wHC,’s)
higher criticism tests and the Simes test find differing p
values depending on the underlying phylogenetic rele-
vance and sparsity levels. Thus, MiHC is a useful

analytic tool in practice because of the unknown phylo-
genetic relevance and sparsity levels.

We considered the optimal number of clusters which
maximizes the average silhouette width searching up to
30 clusters and the candidate set of T = {1, 3, 5, 7, 9}, in-
stead of the union set of ' = {1, 2,..., m-1, m}, for the
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individual (i.e., uHC(,’s and wHC,’s) higher criticism
tests to avoid the exhaustive search and huge computa-
tion. However, any other upper limit to fine the optimal
number of clusters and any other smaller or larger can-
didate set can alternatively be considered by the re-
searcher’s choice through the options in our software
package. For example, you may believe that the candi-
date set of I' = {1, 3, 5, 7, 9} is too much tailored to high
sparsity levels; hence, you can include larger values in
the candidate set for lower sparsity levels. Moreover, a
number of microbiome data normalization procedures
have been proposed [48], but there is no consensus on
which procedure is the best and such debate is beyond
the scope of this paper. We did not survey any further
normalization procedure except for using relative abun-
dances (i.e., proportions), instead of absolute abundances
(i.e., read counts), to control differing total read counts
per sample. However, MiHC is compatible with any
other normalization procedure (e.g., centered log-ratio
transformation [49]), which can be considered by the re-
searcher’s choice. We set up all the implementation pro-
cedures described in this paper as a default in our
software package, yet we do not strictly force to use it.
Instead, we give researches some user options in our
software package to make the best use of it.

We developed MiHC based on the generalized linear
models to handle exponential family responses with the
linear predictor [32]. However, its application can be
much broader, and, for example, the potential extensions
to survival [38, 50], longitudinal [39, 51], or mediation
[52] analysis need to be further studied.
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