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Background: Bathyarchaeota, a newly proposed archaeal phylum, is considered as an important driver of the
global carbon cycle. However, due to the great diversity of them, there is limited genomic information that
accurately encompasses the metabolic potential of the entire archaeal phylum.

Results: In the current study, nine metagenome-assembled genomes of Bathyarchaeota from four subgroups were
constructed from mangrove sediments, and metatranscriptomes were obtained for evaluating their in situ
transcriptional activities. Comparative analyses with reference genomes and the transcripts of functional genes posit
an expanded role for Bathyarchaeota in phototrophy, autotrophy, and nitrogen and sulfur cycles, respectively.
Notably, the presence of genes for rhodopsins, cobalamin biosynthesis, and the oxygen-dependent metabolic
pathways in some Bathyarchaeota subgroup 6 genomes suggest a light-sensing and microoxic lifestyle within this

Conclusions: The results of this study expand our knowledge of metabolic abilities and diverse lifestyles of
Bathyarchaeota, highlighting the crucial role of Bathyarchaeota in geochemical cycle.

Keywords: Bathyarchaeota, Rhodopsin, Porphyrin biosynthesis, Calvin-Benson-Bassham cycle, Urea producing,

Background

Bathyarchaeota, formerly named MCG (Miscellaneous
Crenarchaeotal Group) [1], is a newly proposed archaeal
phylum within the TACK (Proteoarchaeota) superphy-
lum [2-4]. It is a cosmopolitan phylum, inhabiting vari-
ous anoxic environments, such as groundwater, paddy
soil, hot spring, salt marsh sediments, estuary, mangrove
sediments, seafloor, and hydrothermal sediments [5-11].
It is also one of the most numerous archaeal groups in
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the marine sub-seafloor, estimated to have 2.0-3.9 x
10?® cells in the global ecosystem [3, 12]. The ubiquity
and high abundance suggested that Bathyarchaeota
might play a role in the global biogeochemical cycle
[13]; however no pure cultures of Bathyarchaeota have
been successfully established. Recently, an enrichment of
Bathyarchaeota was obtained, suggesting the utilization
of lignin as an energy source and bicarbonate as a car-
bon source by subgroup 8 (Bathy-8), yet more metabo-
lisms need to be explored [14].

Based on the analysis of metagenome-assembled ge-
nomes (MAGs) and single-cell genomes (SAGs), Bath-
yarchaeota has been implicated to have potential abilities
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for CO, fixation with Wood-Ljungdahl pathway, aceto-
genesis, methane metabolism, and degradation of pep-
tides, fatty acids, aromatic, and other organic
compounds [2, 3, 14-17], suggesting Bathyarchaeota
may play an important role in the global carbon cycle.
At least 25 subgroups have been identified in Bathyarch-
aeota based on the phylogenetic analyses of 16S rRNA
genes [13], and many subgroups display distinct environ-
mental preferences implicating diversification and adap-
tation to unique environmental conditions [6, 18-21].
Thus, the current information is too limited to compre-
hensively understand the metabolic capacities of Bath-
yarchaeota and its role in the geochemical cycle.

Bathyarchaeota are the most abundant archaeal
phylum in the mangrove and mudflat sediments of
Futian Nature Reserve (Shenzhen, China) and Mai Po
Nature Reserve (Hong Kong, China) [6, 22]. Thus, fol-
lowing those studies, the total DNA and RNA of sedi-
ment samples from these two places were sequenced for
constructing genomes and transcriptomes of Bathyarch-
aeota, respectively. Together with all available bathyarch-
aeotal MAGs in the public database (including the
dozens of MAGs released lately [23]), we aimed to (1)
search for the new metabolisms of Bathyarchaeota; (2)
compare metabolic potentials among bathyarchaeotal
subgroups; and (3) further predict the roles of Bath-
yarchaeota in the geochemical cycle.

Results and discussion
Genome construction and transcriptome
In total, eight layers in three sediment profiles from two
habitats were selected for metagenomic and metatran-
scriptomic sequencing (Figure S1; details of the samples
and sequencing are listed in Table S1). Raw DNA reads
were trimmed, de novo assembled, and binned to obtain
multiple MAGs. Among them, bathyarchaeotal MAGs
were picked out and combined with reference bath-
yarchaeotal genomes to form a database, then short
DNA reads of Bathyarchaeota were recovered by remap-
ping DNA reads of all samples to the genome database.
Finally, nine bathyarchaeotal MAGs were constructed by
de novo assembling bathyarchaeotal reads and subse-
quent binning. All bathyarchaeotal MAGs ranged from
~ 0.6 to ~ 1.9 Mb in size, 34.68-58.90% G+C content,
and estimated completeness (based on the presence of
single-copy genes) of 58.03—95.33% (Table S2).
Phylogenetic analyses of 16 ribosomal proteins were
conducted with all available bathyarchaeotal MAGs (91
reference genomes from database and 9 MAGs from this
study; Fig. 1a) and high-completeness MAGs (containing
all 16 ribosomal proteins; 22 reference genomes from
database and 6 MAGs from this study; Figure S2), both
of results show similar structure, confirming the valid
subgroup assignments of bathyarchaeotal MAGs. Taken
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together with phylogenetic analysis of 16S rRNA genes
and average nucleotide identity results (Fig. 1b, c), nine
bathyarchaeotal MAGs in the current study were be-
lieved to belong to Bathy-6 (4 MAGs), -8 (2 MAGs), -15
(2 MAGs), and -17 (1 MAG), respectively. These four
subgroups were also proved to be the major bathyarch-
aeotal subgroups in the previous reports of archaeal
communities in both mangrove habitats [6, 22].

The coverages of metagenome and transcriptome to
each MAG are shown in Figure S3 and Table S3. Similar
to the bathyarchaeotal abundance in the mangrove and
seafloor sediments using 16S rRNA gene sequencing [6,
18, 22], the metagenomic coverages of all MAGs were
increased along with the sediment depth, with RPKM
value from 0 (MF-5.3.1.4 in SZ_ 1) — 0.058 (MF-3.4 in
SZ 1) in the surface to 0.017 (MF-10.5.5.11.1.24 in
Maipo-9) - 0.392 (MF-3.4 in Maipo-9) in the deepest
layer (Figure S3a and Table S3). However, the results of
transcriptomic coverage had no significant correlations
with depth, with the minimal coverage in SZ 2 (MEF-
10.5.5.11.1.24; RPKM value is 0) and maximal coverage
in Maipo-8 (MF-9.11; RPKM value is 3.049) (Figure S3b
and Table S3). These results suggested that genomic
abundance of bathyarchaeotal members could not reflect
their real transcritional activities in the sediments, and
highlighted that it is important to investigate the tran-
scriptome of the microbial community in the future eco-
logical functions [24, 25].

Light sensing

Rhodopsins are membrane proteins engaged in light per-
ception and are widespread in three domains of life.
They are employed by many organisms to generate en-
ergy from light [26-28]. According to the annotation of
bathyarchaeotal MAGs, rhodopsin genes were also found
in the MAGs of Bathy-6 and -8 (Fig. 2). For further con-
firming the type of rhodopsin, a rhodopsin phylogenetic
tree was constructed, clearly showing that the rhodop-
sins detected in Bathyarchaeota are heliorhodopsins (Fig.
3). Heliorhodopsins are newly described types of rho-
dopsins, which are abundant and globally distributed
[29]. The photocycle of heliorhodopsins (including ret-
inal isomerization and proton transfer, the same as in
type-1 and type-2 rhodopsins) is long, which is common
in sensory type-1 rhodopsins and benefits for the inter-
action between rhodopsins and transducer proteins [29].
This result suggests a light-sensory activity of heliorho-
dopsin, indicating that Bathyarchaeota may sense light.
The metatranscriptomic analysis further supported the
transcriptional activity for rhodopsin genes in Bathy-6
and -8 (Fig. 4), suggesting that members of Bathy-6 and
-8 in mangrove sediments might sense light. However,
previous studies have revealed that most of bathyarch-
aeotal members prefer subsurface of the sediments and
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large numbers of Bathyarchaeota were found in deeper
biosphere where visible light could barely reach [6, 18,
22, 30], thus Bathyarchaeota may not capture visible
light with rhodopsin. Infrared light has been proved to
be an available energy source for some plants and bac-
teria [31-35], and rhodopsin could gain longer-
wavelength or even infrared sensitivity by substituting
all-trans-retinal (chromophore for archaeal cells) with 3,
4-dehydroretinal [36], retinal A2, 3-methylamino-16-
nor-1,2,3,4-didehydroretinal, or other analogs [37].

Previous studies have also shown that the retinal defi-
ciency by deleting gene sll1541 (converting carotenal to
retinal) in bacterial cells could in vivo reconstitute far-
red-absorbing rhodopsin with exogenous retinal analog
(all-trans-3,4-dehydroretinal and 3-methylamino-16-nor-
1,2,3,4-didehydroretinal) [38]. In the current study, two
bathyarchaeotal MAGs were found to harbor the genes
for carotenoid biosynthesis (crtY) and the genes encod-
ing retinol dehydrogenase (RDHS, 11, 12, 13, 14) were
identified in seven bathyarchaeotal MAGs (Table S4). It
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Porphyrin biosynthesis

Porphyrin is an important type of tetrapyrrole for living
organisms on Earth, many biological processes, including
photosynthesis, respiration, circulation, and nutrition,
are dependent on the compounds derived from it (chlo-
rophylls, coenzyme F430, hemes, and cobalamin, respect-
ively) [41, 42]. The biosynthesis of these derived
compounds all starts with synthesizing Uroporphyrino-
gen III from glutamate or glycine, then different metal
ions are chelated in porphyrin rings by different chela-
tases, in which dozens of enzymes are involved [43]. In
the current study, all of genes related to anaerobic co-
balamin biosynthesis were found in Bathyarchaeota, and
some members within bathy-6, -8, and -20 were found

to harbor more than half of them (including cobalt che-
latase ¢biK and cbiX), suggesting the potential cobalamin
biosynthesis by Bathyarchaeota (Fig. 2). Cobalamin, also
named Vitamin B12, is an essential enzyme cofactor in
DNA, fatty acid, and amino acid metabolisms for all lives
[44]. Cobalamin can only be produced in nature by a
few bacteria and archaea [45], thus eukaryotic organisms
and cobalamin auxotrophic microbes rely on them. A
previous study suggests some members within domain
Archaea serve as cobalamin producers in natural envi-
ronments, including Euryarchaeota and Thaumarchaeota
[44, 46—48]. To our knowledge, this is the first report to
provide the genetic evidence of cobalamin biosynthetic
pathway in two subgroups of Bathyarchaeota. This
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finding suggests that some members of Bathyarchaeota
may benefit the growth of other lives via vitamin B12
production in diverse environments.

Interestingly, the phylogenetic analysis of the chelatase
genes in Bathyarchaeota indicated that, besides cobalt
chelatase (chiK and c¢biX), many magnesium chelatase
genes were also harbored by Bathyarchaeota (cluster
with chlD and chll) (Figure S4), and most of bathyarch-
aeotal MAGs with the magnesium chelatase genes (in-
cluding members of Bathy-1, -3, -15, -20, and -22) did
not harbor the genes for cobalamin biosynthesis (Fig. 2).
Magnesium chelatase is known to work in the first
unique step of (bacterio)chlorophyll biosynthesis by
inserting magnesium ion into protoporphyrin IX [49],
further gene exploring indicated that some genes related
to chlorophyll synthesis are also found in bathyarchaeo-
tal MAGs (Bathy-6, -8, -15, and -17 in Fig. 2), thus the
existence of magnesium chelatase genes might support a
potential chlorophyll biosynthesis, suggesting the meta-
bolic diversity in Bathyarchaeota.

Calvin-Benson-Bassham (CBB) cycle

Ribulose-1,5-bisphosphate  carboxylase/oxygenase (Ru-
BisCO) and phosphoribulokinase (PRK) are two represen-
tative enzymes of the CBB cycle [50]. In the current study,
among 100 available bathyarchaeotal genomes, 33

genomes within 8 subgroups, including Bathy-6, -8, -15,
and -17, harbored the genes of RuBisCO (Fig. 2), and they
phylogenetically belonged to Form III (including both
Forms IlI-a and III-b) (Fig. 5). The genes of PRK were
found in the genomic bins of Bathy-15 and -17 (Fig. 2 and
Figure S5), with transcript activity in Bathy-17 (Fig. 4). In
comparison with the short scaffolds harboring the genes
of PRK, some RuBisCO genes were harbored by the long
scaffolds (> 10 kbp) encoding ribosomal proteins (in ge-
nomes B24, SG8-32-3, MF-5.3.1.4, etc.) and other CBB
cycle-related enzymes (in genomes BA1l, MF-10.3, MF-
4.2.1.10.12.7, etc.), further supporting that Bathyarchaeota
may participate in CBB cycle. Notably, it is the first time
to report a Form III-a RuBisCO in bathyarchaeotal MAGs.
Previously, Form IlI-a RuBisCO has only been identified
in methanogens [51], which employ both PRK and Form
III-a RuBisCO to regenerate carbon fixation [52]. A previ-
ous study has demonstrated that even Escherichia coli
could generate a functional CBB cycle with the co-
existence of RuBisCO and PRK [53]. Thus, considering
that bathyarchaeotal MAGs harbored all genes of CBB
cycle, including RuBisCO, prk, phosphoglycerate kinase
(pgk), glyceraldehyde-3-phosphate dehydrogenase (gapA),
triosephosphate isomerase (¢piA), fructose-bisphosphate
aldolase (fbaB), fructose-1,6-bisphosphatase (fbp), trans-
ketolase (tkt), and ribulose-phosphate 3-epimerase (rpe),
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and they all have transcript activities (MF-10.5.5.11.1.24
in Fig. 4), all of the results suggested the metabolic poten-
tial for carbon fixation through the CBB cycle in the bath-
yarchaeotal cells. Taken together with the potential
chlorophyll biosynthesis pathway described above, mem-
bers of Bathyarchaeota may possess both metabolic path-
ways for carbon fixation and light sense (potential
chlorophyll based and/or rhodopsin based). However, the
co-existence and relationship of these two pathways in
Bathyarchaeota are unknown, more works are needed to

verify.

Nitrogen metabolism

Several studies have found genomic evidence that Bath-
yarchaeota are involved in the nitrogen cycle [13, 15,
54]. In the current study, more nitrogen-related genes,
including ammonium transporter (amt), hydroxylamine
reductase (hcp), respiratory nitrate reductase (narH), ni-
trite reductase (nir), nitrogenase iron protein (nifH), and
mono/di/trimethylamine aminotransferase (mttB/mtbB/
mtmB), were found in bathyarchaeotal MAGs, and dif-
ferent bathyarchaeotal subgroups harbored different

ones (Fig. 2). Taken together with the different transcript
activities of these genes in different subgroups (Fig. 4),
bathyarchaeotal members may be capable of producing
ammonium with diverse nitrogen compounds. Genes in-
volving in urea production were also found in bath-
yarchaeotal MAGs (Fig. 2) with high transcriptional
activities (Fig. 4), further suggesting that Bathyarchaeota
may convert ammonium to urea. For life in the ocean,
nitrogen is a limiting nutrient [55], and the current study
suggests that Bathyarchaeota may utilize diverse primary
nitrogen sources to produce urea (Fig. 4), suggesting that
Bathyarchaeota may act as a “transfer station” for nitro-
gen compounds in the global nitrogen cycle.

Moreover, for urea producing, two pathways, including
arginase (rocF) and agmatinase (speB) pathways, were
both found in Bathyarchaeota. Different from the wide-
spread of speB in all bathyarchaeotal subgroups, rocF
only existed in the MAGs of Bathy-6, -8 and -15 (Fig. 2),
and had transcriptional activity only in Bathy-15 (Fig. 4).
Gene rocF is formerly known only existing in the mem-
bers of bacteria and eukaryotes [56]; however, according
to the phylogenetic analysis in the current study, in
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addition to Bathyarchaeota, rocF genes were also found
existing in Woesearchaeota and Thorarchaeota, and they
formed a distinct clade in the phylogenetic tree (Figure
S6), indicating that archaeal arginase evolves independ-
ently from those of Bacteria and Eukaryotes.

Sulfur metabolism

Sulfate or sulfite was previously reported as the import-
ant environmental factors to shape the distribution of
bathyarchaeotal subgroups [18, 30, 57], and genomic evi-
dence for dissimilatory sulfate and sulfite reduction via
genes sat-aprAB (sulfate adenylyltransferase-
adenylylsulfate reductase) were also reported [17, 58].
They both suggested that Bathyarchaeota could partici-
pate the global sulfur cycle. In the current study, differ-
ent from previous studies, diverse genes related to
assimilatory sulfur reduction via genes cysND-cysC-cysH-
¢ysl (sulfate adenylyltransferase-phosphoadenosine phos-
phosulfate reductase-sulfite reductase) were identified
from the bathyarchaeotal genomes (Fig. 2). Similar to
the nitrogen metabolism, different subgroups of Bath-
yarchaeota harbored parts of sulfur reducing metabol-
ism: more than half of genomes within Bathy-15 and -17
harbored the genes related to sulfate reduction (cysND,
¢ysC, and cycH), while the gene cysI only detected in one
Bathy-6 genome, and most of the genomes within
Bathy-6 harbored the gene related to thiosulfate reduc-
tion (phs) (Fig. 2). The transcriptional activities of the
genes within each subgroup were also different from
each other (Fig. 4), suggesting different subgroups of
Bathyarchaeota may participate in different parts of the
sulfur cycle. In addition, most members of Bathyarch-
aeota may have the ability to reduce S° to sulfide with
hydA (hydrogenase/sulfur reductase), supporting the
previous studies that high abundance of Bathyarchaeota
in the sulfur-rich habitats [12, 20, 59, 60]. All of these
results indicated a role of Bathyarchaeota in the global
sulfur cycle.

Distinct microoxic lifestyle of Bathy-6

Notably, the genes related to the oxygen-dependent path-
ways were found in bathyarchaeotal MAGs, including
pyruvate oxidase (poxL) in Bathy-6 and -8, and superoxide
dismutase (SOD) in Bathy-1, -6, and -15 (Fig. 2 and Figure
S7). In particular, most MAGs of Bathy-6 did not harbor
poxL and SOD genes, while six reference MAGs within
Bathy-6 harbor both genes (Fig. 2), suggesting that some
members of Bathy-6 may live aerobically. Further, the
phylogenetic analysis of bathyarchaeotal MAGs indicated
that, the MAGs harboring the genes of both cobalamin
biosynthesis (more than half of related genes) and oxygen-
dependent pathways were phylogenetically clustered to-
gether and formed a functionally distinctive lineage within
Bathy-6 (Figs. 1 and 2). In addition, rhodopsin was also
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found in the MAGs within this lineage, suggesting that
members of this lineage may be a source of vitamin B12
preferring microoxic habitats with/without accessible
light. It is totally different from the anoxic lifestyle of the
other bathyarchaeotal members, supporting the distinct
niche preference of Bathy-6 in the previous study [22, 30]
and suggesting versatile metabolic abilities and varied life-
styles within Bathy-6.

Conclusions

Previous genomic analyses have suggested that Bath-
yarchaeota was an important driver for global carbon
cycle. However, many potential metabolisms are ignored,
thus it is underestimating the importance of Bathyarch-
aeota in global biochemical cycle. In this study, Bath-
yarchaeota was firstly found to potentially involve in
rhodopsin and porphyrin biosynthesis, CBB cycle, and
some pathways related to nitrogen and sulfur cycles.
The potential biosynthetic pathway of rhodopsin and
chlorophyll-like compounds suggested phototrophy of
Bathyarchaeota, the potential biosynthesis of cobalamin
indicated a possible vitamin B12 production by some
Bathyarchaeota, and the pathway of utilizing diverse ni-
trogen compounds to produce urea implied that Bath-
yarchaeota might be an important “transfer station” for
marine nitrogen cycle. Moreover, some members of
Bathy-6 were found to have a light-sensory, vitamin B12
producing, and microoxic lifestyle, highlighting diverse
metabolic abilities among or even within bathyarchaeotal
subgroups. Considering Bathyarchaeota is a widespread
and high-abundance phylum in diverse environments,
the new knowledges of bathyarchaeotal metabolisms in
the current study further highlight the crucial role of
Bathyarchaeota in the global biochemical cycle.

Methods

Sample collection, DNA and RNA extraction, and
sequencing

Mangrove wetland often occurs in subtropical coastal re-
gions, and it supports plenty of plants, animals, meio/
macro-fauna, and prokaryotes, contributes up to 15% of
all carbon accumulation in marine settings [61, 62].
Futian Nature Reserve (Shenzhen, China) and Mai Po
Nature Reserve (Hong Kong, China) are located at the
north and south sides of Shenzhen Bay in Southern of
China, respectively, and their mangrove forests join at
the estuarine mouth of Shenzhen River (Figure S1). As
described in the recent studies [13, 63], sediment cores
were collected from the mangrove and mudflat in Futian
Nature Reserve (Shenzhen, China) and Mai Po Nature
Reserve (Hong Kong, China) using columnar samplers
(Figure S1). Eight samples were picked out and put in an
icebox before taken to the lab. Samples for RNA extrac-
tion were preserved in RNAlater (Ambion, China). For
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each sample, 10 g sediment was used for DNA and RNA
extraction with PowerSoil DNA Isolation Kit and RNA
Powersoil Total RNA Isolation Kit (QIAGEN, German),
respectively. For RNA samples, Ribo-Zero rRNA re-
moval kit (Illumina, USA) was used to remove rRNA,
and the reverse transcription of remaining RNA was
conducted using SuperScript III First Strand Synthesis
System (Invitrogen, USA). Consequently, DNA and
cDNA were sequenced using Illumina HiSeq 4000
(USA) PE150 by BerryGenomics (China).

Metagenome assembly, genome binning, and gene
annotation
Raw metagenomic reads were dereplicated (100% identity
over 100% length) and trimmed using sickle [64].
Remaining reads of each sample were de novo assembled
using IDBA-UD [65] with the parameters -mink 65, -maxk
145, and -steps 10. The binning of scaffolds was con-
ducted using MetaBAT [66] with 12 sets of parameters.
Then, 12 results were analyzed using Das Tool [67] to ob-
tain the optimized genomic bins. To improve the qualities
of the bins, the scaffolds of bathyarchaeotal bins and refer-
ence genomes were remapped by the raw reads of all sam-
ples using BWA [68], all mapped reads were repeated
assembling and binning as above. Finally, the genomic
bins were decontaminated based on the results of contig-
cluster tree using anvio5 (http://merenlab.org/software/
#anvio). The completeness and contamination of MAGs
were calculated using CheckM [69]. The taxonomic as-
signment of the MAGs was conducted with GTDB-Tk
package [70] to ensure them belonging to Bathyarchaeota
(Table S5), subgroup assignment was performed by build-
ing phylogenetic trees (see “Phylogenetic analyses and
average nucleotide identity” section).

16S rRNA genes were predicted and taxonomically
assigned by BLASTn against the SILVA NR99 database
(v132) [71]. Genes were called using Prodigal with param-
eter -p meta [72]. Genes were annotated using KEGG
Automatic Annotation Server [69] and BLASTp against
NR database retrieved on December 2017 (e value < le
-5). To further confirm the annotation of the marker
genes related to Calvin-Benson-Bassham (CBB) cycle, urea
cycle, light sensing, porphyrin biosynthesis, and microoxic
lifestyle, amino acid sequences of ribulose-1,5-bispho-
sphate carboxylase/oxygenase (RuBisCO), phosphoribulo-
kinase (PRK), arginase/agmatinase, rhodopsin, chelatase,
and superoxide dismutase (SOD) were downloaded from
UniProt database (Accessed July 2019) [73] to form the
local ones, and the amino acid sequences called from
bathyarchaeotal MAGs were BLASTp against the local
database (e value < le-5). Finally, phylogenetic trees were
built to ensure the annotation of the genes. Details of the
related gene annotation are shown in Table S4.
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Metagenomic and transcriptomic abundance of
sequences

The gene abundance from each MAG was determined
by mapping metagenomic reads to the sequences using
BWA software with the default setting [68], and the rela-
tive abundances were calculated using the RPKM
method [74]. Transcript abundance of predicted genes
was calculated by mapping non-rRNA transcriptomic
reads to gene sequences as above, and the relative abun-
dance of each gene was normalized by the abundance of
ribosomal protein S3, considering its transcripts could
be detected in all bathyarchaeotal MAGs as single-copy
conserved gene. Details of transcript level of the pre-
dicted genes are shown in Table S6.

Phylogenetic analyses and average nucleotide identity
Phylogenetic tree of 16S rRNA gene was built with all 16S
rRNA gene sequences from bathyarchaeotal MAGs and
the reference sequences from Zhou et al. [13]. Phylogen-
etic analysis of genomes was conducted with 16 ribosomal
protein data sets (ribosomal proteins L2, L3, L4, L5, L6,
L14, L15, L16, L18, L22, 124, S3, S8, S10, S17, and S19)
[75] predicted by CheckM [69]. The phylogenetic trees of
the functional proteins were built with sequences from
the MAGs and anchor sequences from Jaffe et al. [51]
(RuBisCO and PRK), Pushkarev et al. [29] (rhodopsin),
Novék et al. [76] (agmatinase and arginase), or the se-
quences of local database mentioned above (chelatase and
SOD), respectively. All trees were constructed as below:
sequences were aligned independently using MUSCLE
[77], columns with more than 95% gaps were trimmed
using trimAL [78]. Before building tree, 16 ribosomal pro-
tein alignments were concatenated, and the taxa with less
than 50% of the alignment columns were removed. The
maximum likelihood trees of 16S rRNA gene, 16 riboso-
mal proteins, and functional proteins were built using
RAXML 8.0 [79] on the CIPRES Science Gateway [80], the
number of bootstraps was 1000, and the evolutionary
models were GTRCAT (for nucleotide) and LG+GAMMA
(for amino acid), respectively. Then, the trees were visual-
ized on the iTOL web server [81].

The pairwise average nucleotide identity between each
bathyarchaeotal genome was calculated and plotted by
using get_homologues package [82] with default
parameters.
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