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Abstract

Background: Human-targeted drugs may exert off-target effects or can be repurposed to modulate the gut
microbiota. However, our understanding of such effects is limited due to a lack of rapid and scalable assay to
comprehensively assess microbiome responses to drugs. Drugs and other compounds can drastically change the
overall abundance, taxonomic composition, and functions of a gut microbiome.

Results: Here, we developed an approach to screen compounds against individual microbiomes in vitro, using
metaproteomics to both measure absolute bacterial abundances and to functionally profile the microbiome. Our
approach was evaluated by testing 43 compounds (including 4 antibiotics) against 5 individual microbiomes. The
method generated technically highly reproducible readouts, including changes of overall microbiome abundance,
microbiome composition, and functional pathways. Results show that besides the antibiotics, the compounds berberine
and ibuprofen inhibited the accumulation of biomass during in vitro growth of the microbiota. By comparing genus and
species level-biomass contributions, selective antibacterial-like activities were found with 35 of the 39 non-antibiotic
compounds. Seven of the compounds led to a global alteration of the metaproteome, with apparent compound-specific
patterns of functional responses. The taxonomic distributions of altered proteins varied among drugs, i.e., different drugs
affect functions of different members of the microbiome. We also showed that bacterial function can shift in response to
drugs without a change in the abundance of the bacteria.

Conclusions: Current drug-microbiome interaction studies largely focus on relative microbiome composition and
microbial drug metabolism. In contrast, our workflow enables multiple insights into microbiome absolute abundance and
functional responses to drugs. The workflow is robust, reproducible, and quantitative and is scalable for personalized
high-throughput drug screening applications.
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Background
Human-targeted drugs are primarily developed for their
effects on the host, and little is known on their effects on
the microbiome. Microbiome response to drugs could
contribute to off-target drug effect [1]. In addition, the gut
microbiome has been linked to gastroenterological, neuro-
logic, respiratory, metabolic, hepatic, and cardiovascular
diseases [2]. Therefore, targeting the microbiome could
lead to novel therapies [3]. Orally administrated drugs go

through complex processing by the host [4], with some
drugs reaching the microbiome. As well, drugs can be
repurposed to target the microbiome using enteric/colonic
delivery approaches [5]. Although the effects of some
drugs and compounds on the microbiome have been re-
ported [6], many drug-microbiome interactions are un-
known. This is due in part to the extremely high numbers
of marketed drugs [7] and compounds in development [8]
together with the lack of assays that can rapidly and com-
prehensively assess the effects of compounds on individual
microbiomes.
Different in vitro approaches have been employed to

study drug-microbiome interactions. One strategy involves
long-term stabilization of the microbiota, as shown in
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various intestinal microbiota simulators based on continu-
ous flow [9–11]. This approach typically requires a long
culture period to stabilize the microbiota (15–20 days), and
notable shifts in taxonomic compositions compared with
the inoculum have been shown [9, 12]. Moreover, the size
and complexity of these culturing systems limit the number
of individual microbiomes and drugs that can be examined
[11], and thus may not be suitable for high-throughput
drug screening purpose. Another strategy is to culture indi-
vidual bacteria strains isolated from microbiomes. A recent
study examined the effects of approved drugs on the bio-
mass of forty individually cultured bacterial strains in a
high-throughput manner [13]. This approach highlighted
the importance of biomass in identifying antibacterial ef-
fects. However, it did not take into account the complexity
of a microbial community that could lead to different mi-
crobial responses. Approaches such as optical density meas-
urement [13], flow cytometry [14], and quantitative real-
time PCR [15] can be used to compare microbiome bio-
mass. However, these approaches lack insights into drug
impacts on microbial composition and functions, which are
highly related to healthy and disease states. There has been
no report of an in vitro gut microbiome-based drug screen-
ing approach that could assess both biomass responses and
functional alterations in a single analytical test.
The development of meta-omics approaches allowed

rapid and deep measurement of microbiome composi-
tions and functional activities. Genetic approaches
such as sequencing of 16S rRNA gene fragment ampli-
cons and shotgun metagenomics have been regarded
as the “gold standard” in microbiome analysis, provid-
ing relative quantifications of microbiome compos-
ition and functional capabilities [16, 17]. Notably,
different microbial members can differ by several
orders of magnitude in biomass [18]. Moreover, there
is little insight on which microbial traits actually
contribute to the functional activities of the micro-
biome, as functions predicted from metagenomics
analyses are not necessarily expressed. Studies have
shown that gene copy numbers are not representative
of protein levels [19]. In addition, RNA expression
have limited correlation to the actual protein abun-
dance [20]. In contrast, mass spectrometry (MS)-based
metaproteomics technology allows for deep insight
into proteome-level information of the microbiome
[21, 22], providing quantified protein abundances that
estimate the functional activities of the microbiome.
Proteins not only provide the biological activities to
the microbiome but also contribute the majority of
biomass in microbial cells. Hence, the metaproteomic
readouts can also be used to assess the microbiome
biomass and analyze community structure [23]. Meta-
proteomics has been previously validated to estimate
the microbiome and individual microbe biomasses

[24], and it readily quantifies the bacterial species re-
sponsible for > 90% of the total microbiome biomass
[25], making it sufficient for a fast-pass drug screening
application.
Here, we report an approach named Rapid Assay of

Individual Microbiome (RapidAIM), which applies meta-
proteomics to gain insights into the microbiome re-
sponses to drugs in an in vitro model [26]. Forty-three
compounds that have been previously suggested to im-
pact, interact with, or be metabolized by the gut micro-
biome were selected for this study (Supplementary Table
S1). Briefly, in RapidAIM, individual microbiomes are
cultured in a previously optimized culture system [26]
for 24 h, and the samples are then analyzed using a
metaproteomics-based analytical approach. A high-
throughput equal-volume based protein extraction and
digestion workflow was applied to enable absolute bio-
mass assessment along with the functional profiling. To
demonstrate the feasibility and performance of the Rapi-
dAIM assay, we carried out a proof-of-concept study in-
volving the 43 compounds and 5 individual gut
microbiomes. Microbiome responses including changes
in biomass, taxon-specific biomass contributions, taxon-
specific functional activities, and detailed responses of
specific enzymatic pathways can be obtained following
the assay.

Results
Development and evaluation of RapidAIM
RapidAIM consists of an optimized microbiome cultur-
ing method, an equal-volume based protein extraction
and digestion workflow and a metaproteomic analysis
pipeline (Fig. 1a). Briefly, fresh human stool samples
are inoculated in 96-well deep-well plates and cultured
with drugs for 24 h. We have previously optimized the
culture model and validated that it maintains the com-
position and taxon-specific functional activities of indi-
vidual gut microbiomes in 96-well plates [26]. After 24
h, the cultured microbiomes are prepared for metapro-
teomic analysis using a microplate-based metaproteo-
mic sample processing workflow (Supplementary Figure
S1) adapted from our single-tube protocol [28]. The
microplate-based workflow consists of bacterial cell
purification, cell lysis with ultrasonication in 8 M urea
buffer, in-solution tryptic digestion, and desalting. We
validated each step of this workflow and found no sig-
nificant differences in identification efficiency between
96-well plate processing and single-tube processing
(Supplementary Figure S1). To compare total biomass,
taxon-specific biomass and pathway contributions be-
tween samples in a high-throughput assay format, we
applied an equal sample volume strategy to our recently
developed metaproteomics techniques [22, 27, 29]. To
validate the absolute quantification of microbiome
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abundance by comparing total peptide intensity, an
equal volume of samples from a microbiome dilution
series (simulating different levels >of drug effects) was
taken for tryptic digestion and LC-MS/MS analysis.
Summed peptide intensity in each sample showed good
linearity (R2 = 0.991, Fig. 1b) with a standard colorimet-
ric protein assay, showing that the total peptide

intensity is a good indicator for microbiome biomass
levels. Because drugs can cause drastic changes in
microbiome abundance, we then evaluated whether
biomass differences between wells could also cause bias
in identified functional and taxonomic compositions.
We confirmed that the level of total biomass did not
bias the composition of functional profiles (Fig. 1c),

Fig. 1 Rapid Assay of Individual Microbiome (RapidAIM) workflow and performance. a Experimental, analytical, and bioinformatics components of
the RapidAIM workflow. Each individual’s gut microbiome samples are cultured with the test compounds in a 96-well deep-well plate at 37 °C in
strict anaerobic conditions for 24 h followed by high-throughput sample preparation and rapid LC-MS/MS analysis. Peptide and protein
identification and quantification, taxonomic profiling, and functional annotation were performed using the automated MetaLab software [27]. b A
series of six dilutions (dilution gradients: GRD1~6) of a same microbiome sample was tested in triplicates through the equal-volume digestion
and equal-volume MS loading protocol; the summed peptide intensity was compared with a set of protein concentration standards provided
with DC protein concentration assay and showed good linearity (center points and error bars represent mean ± SD). c Stacked bars of clusters of
orthologous groups (COG) category levels across the six concentrations showing no bias at the functional quantifications. d PCA based on LFQ
intensities of protein groups for all POC samples
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protein groups (Supplementary Figure S2a), or taxo-
nomic abundances (Supplementary Figure S2b).

RapidAIM: proof-of-concept study
We conducted a proof-of-concept (POC) study on the
use of RapidAIM to characterize drug effect on the
microbiome. We selected 43 compounds that have been
previously suggested to impact, interact with, or be me-
tabolized by the gut microbiome (Supplementary Table
S1). Thirty-seven of these compounds are FDA-
approved drugs; 4 are antibiotics, and the others include
nonsteroidal anti-inflammatory drugs (NSAIDs), anti-
diabetic drugs, aminosalicylate, and statins. Each com-
pound, at a concentration corresponding to the maximal
daily oral dose distributed in 200 g daily fecal wet weight
[30], was added to 5 wells of 96-well plates containing 1-
mL culture medium in each well. The drug solvent, di-
methyl sulfoxide (DMSO), was used as the negative con-
trol. Then, each of the 5 wells for each compound was
inoculated with a different fecal microbiome from
healthy human volunteers. Following 24 h of culturing,
the samples were processed through the microplate-
based workflow (Supplementary Figure S1) and were
subjected to a 90 min gradient-based rapid LC-MS/MS
analysis. Using our automated metaproteomic data ana-
lysis software MetaLab [27], 101,995 peptide sequences
corresponding to 24,631 protein groups were quantified
across all samples with a false discovery rate (FDR)
threshold of 1% (Supplementary Figure S3a). The aver-
age MS/MS identification rate was 32.4 ± 8.8% (mean ±
SD); an average of 15,017 ± 3654 unique peptides and
6684 ± 998 protein groups were identified per sample
(Supplementary Figure S3c-d). To provide a global over-
view of the microbiome responses, a PCA was per-
formed based on label-free quantification (LFQ)
intensities of protein groups (Fig. 1d). As expected, the
samples clustered based on the original microbiome
source and not based on drug treatment. A PerMA-
NOVA test [31] based on Bray-Curtis dissimilarities [32,
33] showed that the samples were significantly clustered
according to different individuals (p = 0.001 based on
999 permutations). Within each individual microbiome
group, a number of drug-treated samples clustered
closely to their control, while several other samples
clearly separated from the non-treated control.
We next evaluated the robustness and reproducibility of

the method by culturing one microbiota with drugs in
technical triplicates. Cultured triplicates yielded high Pear-
son’s r for LFQ protein group intensities (Supplementary
Figure S3b). Hierarchical clustering based on Pearson’s r
of LFQ protein group intensities between samples showed
that with the exception of several compounds which clus-
tered closely with DMSO; cultured triplicates were clus-
tered together (Supplementary Figure S4a). Moreover,

total biomass, functional enzymes, and species biomass
contributions were highly reproducible between tripli-
cates, as shown in Supplementary Figure S4b-d.

Effects of compounds on microbiome abundance and
composition
We examined the effect of the 43 compounds on the over-
all abundance (biomass) of each individual microbiome by
comparing the total peptide intensity (Fig. 2a). As expected,
the antibiotics greatly reduced total microbial biomass in
most individual microbiomes (with one exception of in-
creased microbiome abundance in response to rifaximin,
further examination is shown in Supplementary Figure S5).
Similar to these antibiotics, berberine and ibuprofen also
inhibited the biomass of all individual microbiomes.
We next explored the effects of drugs on the microbiome

composition based on bacterial biomass contributions. To
evaluate the overall shift of the microbiome, Bray-Curtis
distance [32, 33] between drug-treated and DMSO control
microbiome indicated that fructooligosaccharide (FOS),
rifaximin, berberine, diclofenac, ciprofloxacin, metronida-
zole, and isoniazid significantly shifted the microbiome
(pairwise Wilcoxon test, FDR-adjusted p < 0.05; Fig. 2c).
We further examined the response of individual bac-

terial taxon using their absolute abundance estimated
using the sum of all peptide intensities for each taxon as
previously described [27] (Fig. 2b). In contrast to genetic
sequencing-based approaches, which often only report
relative abundance, metaproteomics measure absolute
abundances. As expected, the broad-spectrum antibiotics
rifaximin, ciprofloxacin, and metronidazole significantly
reduced the total biomass (Fig. 2a) and the absolute
abundance of a many bacterial genera (Fig. 2b, Wilcoxon
test, p < 0.05). Nevertheless, ciprofloxacin and metro-
nidazole significantly increased the relative abundance of
genera Bifidobacterium, Ruminococcus, Butyrivibrio,
Paenibacillus, etc. (Supplementary Figure S6). Non-
antibiotic compounds, such as berberine, FOS, prava-
statin, ibuprofen, diclofenac, flucytosine, and indometh-
acin also showed significant decreases in the abundances
of over 10 genera. In addition, selective antibacterial ac-
tivities were found in 35 out of the 39 non-antibiotic
compounds at the genus level; at the species level, we
found that 32 non-antibiotic compounds significantly al-
tered the biomass of at least one bacterial species (one-
sided Wilcoxon rank sum test, FDR-adjusted p < 0.05;
Supplementary Table S2). Interestingly, members of the
Actinobacteria phyla, including Eggerthella, Gordonibac-
ter, Slackia, and Adlercreutzia, were the most susceptible
to drugs compared with most other genera (Supplemen-
tary Figure S6). In summary, RapidAIM allowed for the
assessment of changes in both absolute and relative
abundances of microbes in response to compounds.
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Overall functional profiles in response to compounds
The Bray-Curtis distance of protein group profiles
showed that all the four antibiotics, as well as FOS, ber-
berine, and diclofenac, significantly altered the micro-
biome functions (Fig. 3a). These functional alterations
likely stemmed from changes in taxonomic composition
as revealed by the genus-level Bray-Curtis distance

analysis (Fig. 2c). We next analyzed the protein group
intensities by partial least square discriminant analysis
(PLS-DA) to determine whether metaproteomic profiles
could be used to discriminate between the DMSO
control and each of the drug-treated microbiomes. In
agreement with the Bray-Curtis analysis results, PLS-DA
interpretation identified drug-specific metaproteomic

Fig. 2 Response of microbiome abundance and composition to compounds. a Biomass responses of individuals’ microbiomes to compounds
relative to DMSO control. Ratio of peptide intensity between compound and DMSO control samples was calculated for each individual
microbiome. b Log2 fold-change of absolute abundance at the genus level in response to each drug compared with the DMSO control. Genera
that existed in ≥ 80% of the volunteers are shown. Asterisk indicates significantly changed bacterial abundance by Wilcoxon test, p < 0.05. c Bray-
Curtis distance of genus-level composition between drug-treated microbiomes and the corresponding DMSO control samples. Heatmap colors
are generated with average of log2 fold-changes among the five individual samples. Statistical significance was calculated by pairwise Wilcoxon
test (FDR-adjusted p < 0.05). Box spans interquartile range (25th to 75th percentile), and line within box denotes median. For full compound
names, see abbreviation list in Supplementary Table S1
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patterns associated with the seven abovementioned
compounds, i.e., the four antibiotics, FOS, berberine,
and diclofenac (Supplementary Figure S7). Hence, here-
after, we named these seven compounds as class I
compounds, whereas others were named class II
compounds. To gain a better understanding of the
global effects of class I compounds on the gut
microbiome, we applied an unsupervised non-linear
dimensionality reduction algorithm, t-distributed sto-
chastic neighbor embedding (t-SNE) [34], to visualize
this subgroup of metaproteomic data based on pro-
tein group abundances (Fig. 3b). Class I compounds
led to a global alteration of the metaproteome, with
apparent compound-specific patterns.
We next examined the drug impacts on the abun-

dance of functional proteins according to clusters of

orthologous groups (COG) of proteins. We identified
535 COGs significantly decreased by at least 1 drug
treatment; 15 of these COGs were decreased by ≥ 10
compounds (Supplementary Figure S8). Diclofenac and
FOS were the only 2 compounds that significantly in-
creased COGs (55 and 81 COGs, respectively). Enrich-
ment analysis based on these significantly altered COGs
shows that COG categories found to be enriched were
responsive to 13 of our compounds (Fig. 3c), 6 of those
were class I compounds. Interestingly, the non-
antibiotic NSAID diclofenac increased the abundance
of several COG categories (Fig. 3c). By mapping these
significantly increased proteins from these COG
categories against the string database, we found that
these altered proteins are functionally interconnected
(Supplementary Figure S9).

Fig. 3 Effect of compounds on metaproteomic profiles of the microbiome. a Bray-Curtis distance of protein groups between drug-treated
microbiomes and the corresponding DMSO control samples. Statistical significance was calculated by pairwise Wilcoxon test (FDR-adjusted p <
0.05). b Unsupervised dimensionality reduction analysis showing compound-specific patterns of responses to class I compounds. c Enrichment
analysis of all significantly different COGs in the POC dataset. Significantly altered COGs with a p value cutoff of 0.05 are shown
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Specific proteins and enzymatic pathways in response to
compounds
Next, we examined the ability of RapidAIM to observe the
modulations of specific proteins and enzymatic pathways of
interest. As an example, we show that proteins related to
drug resistance were significantly altered by several com-
pounds (Wilcoxon test, Fig. 4a). Multidrug efflux pump
proteins that could extrude structurally dissimilar organic
compounds [35] were significantly increased by ibuprofen
and sulfasalazine treatment. Antibiotic-degrading enzyme
beta-lactamase [36] was significantly decreased by the anti-
biotics ciprofloxacin and metronidazole. Thioredoxin par-
ticipates in defense against oxidative stress induced by
drugs via peroxiredoxin [37]. Significant increases in

thioredoxin and/or peroxiredoxin were observed in
ten of our treatments. In addition, we analyzed the
response of enzymes along the butyrate production
pathway. In response to the antifungal drug flucyto-
sine, five out of seven observed enzymes showed sig-
nificant decreases (Supplementary Figure S10). As
another group of examples, we show the effects of
FOS and ciprofloxacin on specific enzymatic pathways
in an individual microbiome view (Fig. 4b, c). Protein
groups were annotated to KEGG (Kyoto Encyclopedia
of Genes and Genomes) enzymes and were mapped
against the KEGG pathway database. FOS increased
enzymes responsible for fructan and sucrose uptake,
as well as enzymes for conversion of D-fructose into

Fig. 4 Response of specific proteins and enzymatic pathways to drug treatment. a Response of proteins related to drug resistance (red asterisk
denotes p < 0.05 by Wilcoxon test); boxplots of all functional responses of the RapidAIM POC dataset are available at https://shiny.imetalab.ca/
RapidAIM_functional_response/. b Effect of FOS treatment on enzymes involved in fructose and mannose metabolism, GABA production, and
sulfide metabolism pathways. c Effect of ciprofloxacin treatment on enzymes involved in the glycolysis/gluconeogenesis and pentose phosphate
pathway. The five blocks of each enzyme represent the five individual microbiomes. Colors in the blocks represent differences between
normalized KEGG enzyme intensities with drug treatment versus DMSO (log2 transformation of the original intensity followed by a quotient
normalization (x/mean))
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D-fructose-1-phosphate, D-mannose-6-phosephate, and
β-D-fructose-6-phosphate (Fig. 4b). FOS also affected
enzymes involved in the interconversion between glu-
tamine, glutamate, and GABA (molecules involved in
gut-brain communication). In addition, enzymes in-
volved in sulfide accumulation were affected, includ-
ing decrease of dissimilatory sulfite reductase (EC
1.8.99.5) and increase of cysteine synthase (EC
2.5.1.47) (Fig. 4b). Ciprofloxacin significantly altered
the levels of enzymes involved in glycolysis/glycogen-
esis and pentose phosphate pathways (Fig. 4c). The
majority of enzymes involved in glycolysis were sig-
nificantly increased by ciprofloxacin. Ciprofloxacin
down-regulated enzymes (ECs 1.1.1.49/1.1.1.363,
3.1.1.31, 1.1.1.44/1.1.1.343) involved in synthesis of
ribulose-5-phosphate, which can be isomerized to ribose 5-
phosphate for nucleotide biosynthesis [38]. Moreover, the
levels of antioxidant enzymes superoxide dismutase (SOD)
and catalase (CAT) were increased, suggesting that cipro-
floxacin induces oxidative stress in gut bacteria (Fig. 4c).

Taxon-specific functional responses to class I compounds
We next performed a taxonomic analysis correlating to the
functional responses to diclofenac, FOS, ciprofloxacin, and
berberine, which represent four different types of com-
pounds (NSAID, oligosaccharide, antibiotics, anti-diabetes)
in the class I. Protein groups with VIP scores > 1 (thereafter
defined as differential proteins) were extracted from each
model and were annotated with their taxonomic and COG
information. The taxonomic distributions of the differential
proteins varied among drugs (Fig. 5a). Moreover, mapping
of the differential proteins to phyla-specific pathways re-
vealed phyla-specific responses, as shown for berberine in
Supplementary Figure S11. In agreement with Fig. 5a, pro-
teins with decreased abundance had a higher pathway
coverage than the proteins increased in Firmicutes and
Actinobacteria, while the opposite pattern was observed in
Bacteroidetes, Proteobacteria, and Verrucomicrobia. In
some cases, the phylum-specific responses included both
increased and decreased proteins within the same pathway
(black lines, Supplementary Figure S11). For example, we
observed this pattern in fatty acid, carbohydrate, and nu-
cleotide metabolism pathways in Firmicutes.
Genus-level analysis revealed genus-specific re-

sponses to berberine (Fig. 5b). In most genera, the
genus-specific responses correlated with the overall
abundance of the corresponding genus (Fig. 5b, right
panel). Nevertheless, some genera showed functional
shifts in response to berberine without changes in
overall abundance. For example, Bifidobacteria, Rose-
buria, Eubacterium, Clostridium, Ruminococcus, Blau-
tia, and Subdoligranulum exhibited downregulation of
proteins in various COG categories but no changes in
biomass were observed.

Gut microbiome functions altered by class II compounds
Class II compounds, in contrast to class I compounds,
did not cause a global shift in the five individual micro-
biomes (an example is given by indomethacin, Fig. 6a).
However, Fig. 6a as well as the Bray-Curtis analyses
(Figs. 2c and 3a) suggested that there was individual
variability in the extent of drug response. We show that
when analyzed on an individual subject basis, significant
individualized functional effects are present. For ex-
ample, PCA showed a clear differentiation between
indomethacin-treated microbiome and the DMSO con-
trol in cultured replicates of a single indomethacin-
treated microbiota from individual V1 (Fig. 6b), where,
303 significantly altered protein groups were identified
(Fig. 6c). These protein expression shifts suggest high
sensitivity of the RapidAIM assay in its application to
personalized drug screenings. Taxon-function coupled
enrichment analysis showed that protein groups with de-
creased abundances were highly enriched in the genus
Bacteroides. In addition, increased protein groups were
also enriched in Gordonibacter pamelaeae, Firmicutes
bacterium CAG:102, Alistipes putredinis, Eggerthella
genus, etc. (Fig. 6d). Protein groups with increased abun-
dances were mostly enriched in the order Enterobacter-
ales and were also enriched in Burkholderiales order,
Collinsella genus, and Proteobacteria phylum (Fig. 6d, e).
We further analyzed the functional enrichment corre-
sponding to the increased protein groups. Most of the
enriched functions corresponded to Enterobacterales.
These enriched functions included molecular chaper-
ones COG0459 chaperonin GroEL (HSP60 family) and
COG0234 co-chaperonin GroES (HSP10) (Fig. 6e).

Discussion
In the present study, we developed an approach named
RapidAIM to evaluate the effects of xenobiotics on indi-
vidual microbiomes. The range of xenobiotics that reach
the intestine and may interact with the gut microbiome
is massive and expanding. These xenobiotics include an-
tibiotics and other pharmaceuticals, phytochemicals,
polysaccharides, food additives, and many other com-
pounds. With the exception of antibiotics, we remain
surprisingly ignorant on the extent to which these com-
pounds affect the functions of the gut microbiome, and
whether these compounds could be repurposed to pro-
vide beneficial effects. This understanding was limited
by the lack of an efficient and scalable approach that
could maximally obtain insights into microbiome re-
sponses while minimizing the number of analytical tools
being used.
Here, we describe an approach which enables the ex-

ploration of drug-microbiome interactions using an opti-
mized in vitro culturing model and a metaproteomic
approach. We have achieved the maintenance of the
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Fig. 5 Global functional effects of berberine, ciprofloxacin, FOS and diclofenac. a Taxon-function distribution of protein groups responding to
berberine, FOS, ciprofloxacin, and diclofenac. Responding protein groups were selected by PLS-DA based on ComBat-corrected data. The
semicircle diameter represents the number of PLS-DA VIP > 1 protein groups corresponding to each phyla-COG category pair. b Genus level
shifts in functional activities in response to berberine and the alterations in biomass of the corresponding genera. Functional shifts (differential
protein groups) were identified by PLS-DA. For each genus, the percentages of the total numbers of up- and downregulated protein groups
corresponding to each COG category are shown. Shifts in bacterial biomass in the five microbiomes are shown in box plots with the boxes
spanning interquartile range (25th to 75th percentile) and the vertical lines denoting the median for each genus
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representativeness of the initial individual microbiome
[26]. Furthermore, for an in vitro culturing simulating
the in vivo microbiome, it is important to note that the
population of gut bacteria in the human body is highly
dynamic. It has been estimated that there are ~ 0.9·1011

bacteria/g wet stool and a total of ~ 3.8·1013 bacteria in
the colon. Approximately 200-g wet daily stool would be
excreted [30], leading to a dramatic decrease of the bac-
terial number in the gut; on the other hand, new bacter-
ial biomass starts growing on nutrients passing through
the gut. Current technologies examining the effect of
xenobiotic stimulation are usually based on microbiota
stabilized after over 2 weeks of culturing. However, at
the stable phase of microbiota growth, the ecosystem
reaches its carrying capacity (stable population size),

limiting possible observations such as drug effect on the
biomass. We have previously validated that the compos-
ition of gut microbiota is well maintained along the
growth curve using our growth cultures [26], and we
were able to observe drug responses of growing gut
microbiota by adding the compounds at the initial in-
oculation stage. Subsequently, combined with our quan-
titative metaproteomics approach based on equal-sample
volume digestion, we were able to observe the drug re-
sponses of using the overall microbiome abundance and
taxon-specific biomass contributions.
Absolute abundance is a much better measurement of

drug effects on the microbiome compared with relative
abundance because it details the levels of individual bac-
teria as well as the summative response at the

Fig. 6 Individual functional responses to indomethacin. a When visualizing the responses of several individual microbiomes with PCA (based on
LFQ intensities of protein groups), inter-individual variability can be greater than drug-induced functional shifts. b PCA clearly differentiated the
response of microbiome V1 treated in triplicates using RapidAIM. c Three hundred three significant protein group responders were found by t
test (FDR-adjusted p < 0.05). d Taxon enrichment analysis based on the differential protein groups, (p-adjusted = 0.05). e Taxon-function coupled
enrichment analysis of upregulated protein groups
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microbiome level. Moreover, it allows comparisons of ef-
fects across multiple drugs. Nevertheless, as the metage-
nomics field predominantly uses techniques that only
report relative abundance, we also provided the relative
abundance in Supplementary Figure S6. At first glance,
relative and absolute abundance can appear to tell differ-
ent stories. For example, Bifidobacterium is known to be
resistant to ciprofloxacin and metronidazole [39]
whereas most other genera are not. Therefore, while the
total biomass was decreased by ciprofloxacin and metro-
nidazole, the absolute abundance of Bifidobacterium
remained the same, resulting in an overall increase in its
relative abundance. Ibuprofen has been frequently used
as a safe medication; however, a recent study suggested
that ibuprofen had antimicrobial activity as a side effect
[40]. In agreement, we showed that ibuprofen signifi-
cantly inhibited the overall microbiome biomass, involv-
ing decreased absolute abundances of common gut
commensals such as Bacteroides, Clostridium, Dorea,
Eggerthella, and Akkermansia. As a final example, previ-
ous studies suggested that berberine has positive effect
on beneficial gut microbes, e.g., selectively enriched a
few putative short-chain fatty acid producing bacteria
[41], and increased the relative abundance of Akkerman-
sia [42]. However, although we also observed an increase
in Akkermansia’s relative abundance, its absolute abun-
dance was not affected by berberine. In this example, an
enrichment of a taxon (increase in relative abundance)
does not necessarily relate to its outgrowth. Therefore,
we suggest that absolute abundance provides a better
evaluation of the changes induced in the microbiome by
drug treatments.
We showed that the RapidAIM assay yielded insights

into functional responses at multiple levels. Using PLS-
DA, we found that berberine, FOS, metronidazole, iso-
niazid, ciprofloxacin, diclofenac, and rifaximin consist-
ently shifted the metaproteome of the individual gut
microbiomes. By annotating the altered proteins at tax-
onomy, function, and pathway levels, we revealed the ac-
tions of the different drugs on the microbiome. For
example, FOS treatment elevated enzymes involved in
fructan and sucrose uptake, as well as enzymes involved
in the interconversion among glutamine, glutamate, and
GABA, which are associated with microbiome commu-
nication via the gut-brain axis [43]. In agreement, a
study has shown that FOS administration increased
GABA receptor genes in mice and further exhibited both
antidepressant and anxiolytic effects [44]. FOS also de-
creased proteins involved in sulfide generation, suggest-
ing decreased sulfide accumulation in the microbiome.
This observation is in agreement with in vivo studies
showing that FOS treatment decreased the concentra-
tion of fecal H2S [45–47]. Ciprofloxacin treatment in-
creased enzymes SOD and CAT, which was in

agreement with several reports indicating that ciproflox-
acin triggers oxidative stress in several bacteria [48–50].
With berberine treatment, we showed that taxon-
specific functional shifts can occur either with or with-
out a change in the taxon’s biomass. Our analysis on
phylum-specific responses showed that within the same
phylum, proteins with the same functionality can in-
crease in one species while decreasing in another, sug-
gesting that there can be strong functional redundancy
of species within a phylum. These observations highlight
the strength of our workflow which enables quantitative
metaproteomic profiling of the microbiome. Indeed,
current classical sequencing-based approaches (sequen-
cing of 16S rRNA gene fragment amplicons or metage-
nomics sequencing), which generate relative abundances,
would not detect these types of changes. Finally, we
showed that although a compound may not show global
impacts across the five tested microbiomes, it could re-
sult in significant alterations on a single microbiome
basis. The example given by indomethacin indicated that
the order Enterobacterales was enriched with increased
chaperonin GroEL (HSP60 family) and co-chaperonin
GroES (HSP10) (Fig. 6e), which have been implicated in
infection and diseases pathology [51].
Our workflow still exhibits certain limitations. In par-

ticular, MS analysis is a time-consuming process. To this
end, a fast-pass screening process should consider using
techniques such as tandem mass tags (TMT) [52, 53] to
multiplex multiple microbiome samples in one MS ana-
lysis. Furthermore, our workflow only measures the direct
effects of compounds on the microbiome. In its current
implementation, it does not take into account the host ef-
fect on the microbiome and/or the effects of drug metabo-
lites produced by the host. Nevertheless, these metabolites
could be tested along with the RapidAIM assay by add-
itional analysis. Future efforts could be aimed at incorpor-
ating co-culture of host cells/tissue and gut bacteria [54–
56] into a high-throughput drug screening process for
achieving more comprehensive insights on host-drug-
microbiome interaction. Metaproteomics is a tool that is
orthogonal to other omics technologies [19]; hence, for
the need of deeper investigations, RapidAIM could also be
coupled with techniques such as metagenomics or meta-
bolomics for a multiple dimension view of the micro-
biome interaction with drugs.

Conclusion
To date, the field of drug-microbiome interactions
largely focuses on relative microbiome composition and
microbial drug metabolism, with a limited understanding
of the effects of pharmaceuticals on the absolute abun-
dance and the function of the gut microbiome. A better
understanding of these interactions is essential given
that the drug effects on the microbiome biomass and
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functions may have important health consequences. Our
workflow enabled the insights into both absolute abun-
dances and functional responses of the gut microbiome
to drugs using metaproteomics as the single analytical
tool. We have shown that our workflow is robust, repro-
ducible, and quantitative, and is easily adaptable for
high-throughput drug screening applications.

Methods
Stool sample preparation
The Research Ethics Board protocol (# 20160585-01H)
for stool sample collection was approved by the Ottawa
Health Science Network Research Ethics Board at the
Ottawa Hospital. Stool samples were obtained from 5
healthy volunteers (age range 27–36 years; 3 males and
2 females). Exclusion criteria were as follows: IBS, IBD,
or diabetes diagnosis; antibiotic use or gastroenteritis
episode in the last 3 months; use of pro-/pre-biotic, laxa-
tive, or anti-diarrheal drugs in the last month; or preg-
nancy. All volunteers were provided with a stool
collection kit, which included a 50-mL Falcon tube con-
taining 15 mL of sterile phosphate-buffered saline (PBS)
pre-reduced with 0.1% (w/v) L-cysteine hydrochloride, a
2.5-mL-sterile sampling spoon (Bel-Art, USA), plastic
wrap, gloves, and disposal bags. Briefly, each volunteer
placed the plastic wrap over a toilet to prevent the stool
from contacting water, collected ~ 3 g of stool with the
sampling spoon, and dropped the spoon into the pre-
pared 50-mL tube. The sample was immediately weighed
by a researcher and transferred into an anaerobic work-
station (5% H2, 5% CO2, and 90% N2 at 37 °C), where
the tube was uncapped to remove O2 before
homogenization with a vortex mixer. Then, the hom-
ogenate was filtered using sterile gauzes to remove large
particles and obtain the fecal inoculum.

Culturing of microbiota with drug treatments
Each fecal inoculum was immediately inoculated at a
concentration of 2% (w/v) into a 96-well deep-well plate
containing 1-mL culture medium and a compound dis-
solved in 5 μl DMSO (or 5 μl DMSO as the control) in
each well. The culture medium contained 2.0 g L−1 pep-
tone water, 2.0 g L−1 yeast extract, 0.5 g L−1 L-cysteine
hydrochloride, 2 mL L−1 Tween 80, 5 mg L−1 hemin, 10
μL L−1 vitamin K1, 1.0 g L−1 NaCl, 0.4 g L−1 K2HPO4,
0.4 g L−1 KH2PO4, 0.1 g L−1 MgSO4·7H2O, 0.1 g L−1

CaCl2·2H2O, 4.0 g L−1 NaHCO3, 4.0 g L−1 porcine gas-
tric mucin (cat# M1778, Sigma-Aldrich), 0.25 g L−1 so-
dium cholate, and 0.25 g L−1 sodium chenodeoxycholate
[26]. The culture medium was sterile and had been pre-
reduced overnight in an anaerobic workstation. Concen-
tration of each compound was determined based on the
assumption that maximal oral dosage of the drug distrib-
uted in 200 g average weight of the colon contents.

However, several compounds (i.e., cimetidine, ciproflox-
acin, flucytosine, mesalamine, metformin, metronidazole,
naproxen-sodium, paracetamol, rifaximin, sodium butyr-
ate, and sulfasalazine) exceeded solubility in the given
volume of DMSO (5 μl). After confirming that these
compounds still showed effect after a 10× dilution (as
can be seen from hierarchical clustering in Supplemen-
tary Figure S3), the concentrations corresponding to the
1/10 highest oral dosages were used for these com-
pounds. Detailed catalog number and concentration of
each compound is listed in Supplementary Table S1.
After inoculation, the 96-well deep-well plate was cov-
ered with a sterile silicone gel mat with a vent hole for
each well made by a sterile syringe needle. Then, the
plate was shaken at 500 rpm with a digital shaker (MS3,
IKA, Germany) at 37 °C for 24 h in the anaerobic
chamber.

Metaproteomic sample processing and LC-MS/MS analysis
The sample processing was based on a previously reported
metaproteomic sample processing workflow [57], we
adapted it for 96-well plates (Supplementary Figure S1).
Briefly, after culturing for 24 h, each 96-well plate was
transferred out of the anaerobic station and was immedi-
ately centrifuged at 300g at 4 °C for 5 min to remove deb-
ris. With all plates sitting on ice, the supernatants were
transferred into new 96-well deep-well plates for another
two rounds of debris removal at 300g. The supernatants
were then transferred to a new plate and centrifuged at
2272g for 1 h to pellet the microbiota. The supernatant
was removed, and the pelleted bacterial cells were washed
three times with cold PBS in the same 96-well deep-well
plate, pelleting the cells after each wash by a 2272g centri-
fugation for 1 h at 4 °C. The 96-well plate containing har-
vested bacterial cells was then stored overnight at – 80 °C
before bacterial cell lysis and protein extraction. The lysis
buffer was freshly prepared, containing 8 M urea in 100
mM Tris-HCl buffer (pH = 8.0), plus Roche PhosSTOP™
and Roche cOmplete™ Mini tablets. Microbial cell pellets
were then re-suspended in 150 μl lysis buffer and lysed on
ice using a sonicator (Q125 Qsonica, USA) with an 8-tip-
horn probe. One hundred percent amplitude was used
(i.e., 15.6 watts per sample), and four cycles of 30 s ultra-
sonication and 30 s cooling down were performed. Protein
concentrations of the DMSO control samples were mea-
sured in triplicate using a detergent compatible (DC) assay
(Bio-Rad, USA). Then, a volume equivalent to the average
volume of 50 μg of protein in the DMSO control samples
was acquired from each sample and placed into a new 96-
well deep-well plate. The samples were reduced and alky-
lated with 10 mM dithiothreitol (DTT) and 20 mM iodoa-
cetamide (IAA), followed by a 10× dilution using 100 mM
Tris-HCl (pH = 8.0) and tryptic digestion at 37 °C for 18 h
using 1 μg of trypsin per well (Worthington Biochemical
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Corp., Lakewood, NJ). Digested peptides were desalted
using a panel of lab-made 96-channel filter tips generated
by inserting 96 20 μl filter tips into a 96-well cover mat
and stacking each filter tip with 5 mg of 10-μm C18 col-
umn beads. After being washed twice with 0.1% formic
acid (v/v), tryptic peptides were eluted with 80% aceto-
nitrile (v/v)/0.1% formic acid (v/v).
After freeze-drying, each sample was re-dissolved in

100 μl 0.1% formic acid (v/v), and 2 μl of the solution
(corresponding to 1 μg of proteins in the DMSO con-
trol) was loaded for LC-MS/MS analysis in a randomized
order. An Agilent 1100 Capillary LC system (Agilent
Technologies, San Jose, CA) and a Q Exactive mass
spectrometer (ThermoFisher Scientific Inc.) were used.
Peptides were separated on a tip column (75-μm inner
diameter × 50 cm) packed with reverse phase beads (1.9
μm/120 Å ReproSil-Pur C18 resin, Dr. Maisch GmbH,
Ammerbuch, Germany) using a 90-min gradient from 5
to 30% (v/v) acetonitrile at a 200 nL/min flow rate. 0.1%
(v/v) formic acid in water was used as solvent A, and
0.1% FA in 80% acetonitrile was used as solvent B. The
MS scan was performed from 300 to 1800 m/z, followed
by data-dependent MS/MS scan of the 12 most intense
ions, a dynamic exclusion repeat count of two, and re-
peat exclusion duration of 30 s were used. The resolu-
tions for MS and MS/MS were 70,000 and 17,500,
respectively.

Assessment of the equal-volume strategy
Six dilutions of a single microbiome sample were pre-
pared in triplicate wells and an equal volume was taken
from each sample for tryptic digestion and LC-MS/MS
analysis. Metaproteomic sample processing and analysis
followed the same procedures stated above, and total
peptide intensity was calculated. A DC protein concen-
tration assay was also performed with each sample. Lin-
earity between total protein concentration and total
peptide intensity quantified by LC-MS/MS was then
compared.

Metaproteomics data analysis
Protein/peptide identification and quantification, taxo-
nomic assignment, and functional annotations were done
using the MetaLab software (version 1.1.0) [27]. MetaLab
is a software that automates an iterative database search
strategy, i.e., MetaPro-IQ [29]. The search was based on a
human gut microbial gene catalog containing 9,878,647
sequences from http://meta.genomics.cn/. In MetaLab, a
spectral clustering strategy [27] was used for database
construction from all raw files, then the peptide and pro-
tein lists were generated by applying strict filtering based
on a FDR of 0.01, and quantitative information for pro-
teins was obtained with the maxLFQ algorithm on Max-
Quant (version 1.5.3.30). Carbamidomethyl (C) was set as

a fixed modification and oxidation (M) and N-terminal
acetylation (Protein N-term) were set as variable modifica-
tions. The matching between runs option was used. In-
strument resolution was set as “High-High.”
Total microbiome biomass was estimated for each

sample by summing peptide intensities. Taxonomic
identification was achieved by assigning peptide se-
quences to lineage of lowest common ancestor (LCA).
The “peptide to taxonomy” database (pep2tax database)
was selected for mapping identified peptides to the taxo-
nomic lineages [27]. Bacteria, eukaryota, viruses, and ar-
chaea were included in the LCA calculation. Taxonomic
biomass was quantified by summing the intensities of
the peptides corresponding to each taxon. A Bray-Curtis
dissimilarity-based approach [32] was applied for evalu-
ating the variation of genus-level biomass contributions
between drug-treated and DMSO control groups. Calcu-
lation of the Bray-Curtis distance was performed using
the R package “vegan” [33].
The quantified protein groups were first filtered ac-

cording to the criteria that the protein appears in > 80%
of the microbiomes with at least one drug treatment.
Then, LFQ protein group intensities of the filtered file
were log2-transformed and normalized through quotient
transformation (x/mean) using the R package “cluster-
Sim.” Variance associated with the individual signature
was evaluated by PerMANOVA test [31] based on Bray-
Curtis dissimilarities [32, 33] using the R package
“vegan.” Then, LFQ protein group intensities were proc-
essed by a ComBat process [58, 59] using iMetalab.ca
[60] to remove possible batch effects between individual
microbiomes. Using the ComBat-corrected data, an un-
supervised non-linear dimensionality reduction algo-
rithm, t-distributed stochastic neighbor embedding (t-
SNE) [34] was then applied to visualize similarities be-
tween samples using the R package “Rtsne.” Parameter
for the function Rtsne() were, perplexity = 10, max_iter
= 1200 (number of iterations), other parameters were set
as default. The R function geom_polygon implemented
in ggplot2 was used to visualize the t-SNE results.
Functional annotations of protein groups, including

COG and KEGG information, were obtained in the
MetaLab software. In addition, KEGG ortholog (KO)
annotation of protein FASTA sequences was conducted
using GhostKOALA (https://www.kegg.jp/ghostkoala/)
[61]. Log2 fold-change of each drug-treated sample rela-
tive to the corresponding DMSO control was calculated
using the abundances of proteins annotated to COG cat-
egories and COGs. Functional enrichment analysis was
performed using the enrichment module on iMetalab.ca
through inputting the list of COG functional proteins. Ad-
justed p value cutoff was set at 0.05 for the enrichment
analysis. We also visualized all functional responses (in-
cluding COG, KEGG, NOG, and GO terms) using a R
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Shiny app, which is available at https://shiny.imetalab.ca/
RapidAIM_functional_response/. In this app, fold change
of a function between treated and control micro-
biomes was visualized using boxplots, and statistical
significances were calculated using Wilcoxon test.

Statistical analysis
We examined data distribution on all levels of data, and
results indicated non-normal distributions of the dataset
(examples shown in Supplementary Figures S12 and S13).
Hence, a non-parametric statistical hypothesis test, the
Wilcoxon rank sum test, was applied in statistical analyses.
For multiple comparisons, p values were adjusted using
the Benjamini-Hochberg false discovery rate (FDR)
procedure [62]. For multivariate analysis, partial least-
squares discriminant analyses (PLS-DA) based on
ComBat-corrected protein group intensities were per-
formed using MetaboAnalyst (http://www.metaboana
lyst.ca/) [63]. PLS-DA model were evaluated by cross-
validation of R2 and Q2.

Data visualizations
Box plots, violin plots, hierarchical clustering, 3D scatter
plots, heatmaps, PCA, and t-SNE were visualized using R
packages ggplot2, gridExtra, scatterplot3d, and pheatmap.
Pathway maps were visualized using iPATH 3 (https://
pathways.embl.de/) [64] and Pathview Web (https://path-
view.uncc.edu/) [65]. Stacked column bars and functional
enrichments were visualized on iMetaLab.ca.
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