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Abstract

Background: There is an important need for the development of fast and robust methods to quantify the
diversity and temporal dynamics of microbial communities in complex environmental samples. Because
tandem mass spectrometry allows rapid inspection of protein content, metaproteomics is increasingly used for
the phenotypic analysis of microbiota across many fields, including biotechnology, environmental ecology,
and medicine.

Results: Here, we present a new method for identifying the biomass contribution of any given organism
based on a signature describing the number of peptide sequences shared with all other organisms,
calculated by mathematical modeling and phylogenetic relationships. This so-called “phylopeptidomics”
principle allows for the calculation of the relative ratios of peptide-specified taxa by the linear combination
of such signatures applied to an experimental metaproteomic dataset. We illustrate its efficiency using
artificial mixtures of two closely related pathogens of clinical interest, and with more complex microbiota
models.

Conclusions: This approach paves the way to a new vision of taxonomic changes and accurate label-free
quantitative metaproteomics for fine-tuned functional characterization.
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Background
Understanding the functioning of microbial consortia
and more sophisticated ecosystems through the ana-
lysis of their structure and biological interactions is
important in many fields, including medicine and en-
vironmental ecology. Metaproteomics has recently
emerged as a powerful analytical tool for studying the
protein content of complex environmental and med-

ical samples [1–4]. Combined with rapidly improving
methods for sample preparation, mass spectrometry
acquisition, and data interpretation [5, 6], metaproteo-
mics has the potential to have a major impact on
ecosystem analysis by establishing the diversity of mi-
croorganisms present in biological samples, estimating
their biomass, and documenting the central metabolic
pathways in each organism. Numerous applications
are expected in the near future, but more robust per-
species and per-function quantitation data are re-
quired [7].
Several generic approaches based on high-throughput

proteomics have been proposed for identifying organ-
isms without a priori knowledge [8–10]. Mixed species
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samples can be analyzed by shotgun proteomics, their
content deciphered in terms of taxonomy, and their rela-
tive abundances roughly estimated, as shown with mix-
tures of bacteria [10, 11]. The taxonomic level at which
each peptide is discriminative can be established with
tools such as Unipept, based on a search of the lowest
common ancestor [12]. Assessment of peptidome simi-
larity is also a potentially powerful technique for
peptide-centric representation of microorganisms and
their identification [13]. Such approaches are gaining
ground, especially with the development of metaproteo-
mics pipelines [6, 14–16].
Identification and quantification methods relying on

discriminative peptides have several limitations.
Ideally, the protein databases used should be con-
structed only with fully sequenced bacterial genomes
rigorously filtered and curated [17]. If a database is
overpopulated, to give a more comprehensive view of
the microbial diversity, then its size dramatically in-
creases, making its search fastidious but also decreas-
ing the number of specific peptides, as previously
demonstrated [18, 19]. Accordingly, database compos-
ition has a strong influence on protein inferences and
additional genomes may lead to cross-species protein
matches and misidentification of microorganisms. Fur-
thermore, when metaproteomics is performed on
complex samples containing a wide diversity of organ-
isms, many species-specific peptides will be present in
lower abundance compared with peptides shared be-
tween taxa, which will be more abundant. Because of
their higher abundance, the latter are systematically
favored and selected for fragmentation by tandem
mass spectrometry in “shotgun” experiments. Conse-
quently, the relative quantification of microorganisms
may be erroneous if based only on a limited set of
discriminative species-specific peptides.
To solve the “less discriminative peptides if the data-

base is more comprehensive” paradox and improve the
relative quantification of microorganisms by metapro-
teomics, we propose to consider peptides shared be-
tween taxa. While being systematically rejected or
outlined as a skew factor in hitherto metaproteomics
methodologies, they contain information to improve dis-
crimination and quantification of taxa. To take advan-
tage of their value, a phylogenetic distance can be
systematically computed for almost (86%) all sequenced
organisms, which allows the use of the full peptidome to
analyze any organism mixture. Here, we describe a
mathematically computed signature profile predicting
the amount of shared peptides in all organisms due to a
given organism, usable to depict the full tandem mass
spectrometry signal in terms of a linear combination of
such organism signatures. We term our approach “phy-
lopeptidomics” as it stems on phylogenetic and

peptidome data at omics level. We illustrate the capacity
of phylopeptidomics to estimate with precision the rela-
tive abundances of organisms used in artificial mixtures
of two closely related pathogens, Salmonella bongori and
Shigella flexneri, and its applicability for more complex
microbiota models.

Results
Shared peptides are informative: from taxonomical
proximity to phylogenetic distance dependency
We assigned the MS/MS spectra recorded on the S.
flexneri proteome against the comprehensive National
Center for Biotechnology Information non-redundant
(NCBInr) database, the largest repertoire of genome-
derived protein sequences. We examined the number
of peptide-to-spectrum matches (PSMs) assigned to
different taxa without the application of parsimony
analysis, such that each MS/MS spectrum can be
assigned to several peptides, and each PSM can be
assigned to various taxa (Fig. 1). We propose to name
those MS/MS spectra assigned to taxa as taxon-to-
spectrum matches (TSMs). We ranked these results
from the highest to the lowest number of TSMs (Fig.
1). Because S. flexneri contains a large fraction of se-
quences similar to other Shigella and Escherichia spe-
cies, these two genera share a large number of TSMs.
For the pure S. flexneri sample, a clear relationship
was found between the number of TSMs between or-
ganisms and their taxonomical relationships. Clearly,
the distribution of TSMs (Fig. 1) will depend on the
number of organisms present in the database, and
new genome-sequenced organisms can be added to
this distribution when they become available. The
chart conveys the idea that the number of shared
PSMs, and thus TSMs, is correlated with the phylo-
genetic distance of the organism present in the sam-
ple to those present in the database and can be
theoretically estimated. To model the abundance of
shared peptides between an organism present in a
sample and any other taxa, we propose to calculate
their phylogenetic distances and display the results
(Fig. 1) along these distances.
To analyze the possible relationship, we plotted taxa

along the horizontal axis with values corresponding to
the phylogenetic distances from taxon S. flexneri esti-
mated with a matrix of distances for 191 organisms
based on clusters of orthologous groups of proteins
(COGs) that are ubiquitous across superkingdoms
[20], and the values corresponding to the number of
TSMs for each taxon along the vertical axis (Fig. 2).
With the vertical axis in logarithmic scale, a bilinear
function (lines in red and in green) could be clearly
observed for the microorganisms, meaning that the
curve can be modeled by the sum of two exponential
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terms. Additional signals are seen at the highest dis-
tance from S. flexneri, corresponding to eukaryotic-
specific signals (mammal keratins, trypsin) that can be
pre-filtered against a contaminant database. This rep-
resentation supports the idea that it is possible to
model the abundance of shared peptides (here evalu-
ated by their spectral counts) between an organism
present in a sample and any other taxa, based solely
on their phylogenetic distance, using the fit of func-
tions—which we have termed phylopeptidomic signa-
tures—to the experimental proteomics data.

Automatic phylogenetic distance matrix computation for
the three domains-of-life
To generate an overall phylogenetic distance matrix
for eukaryotes, archaea, and bacteria, we curated the
multiple sequence alignment (MSA) initially proposed
by Ciccarelli et al. for 180 organisms [20], and auto-
mated a process for incorporating the tens of thou-
sands of sequenced organisms. A global MSA of
supervectors of all concatenated masked COGs was
used to generate a complete percent identity matrix
(PIM) for proteomes of 14,237 taxa. The resulting
multiple alignment considering 8310 amino acid posi-
tions is applicable to inter-domain comparison. Its
performance for estimating phylogenetic distances
compared favorably with 16S rRNA calculated

Fig. 1 Number of taxon-to-spectrum matches for a pure Shigella flexneri sample. MS/MS spectra that can be associated with peptides and
proteins to a selection of taxa available from Ciccarelli et al. [20] were numbered. A key observation is that the number of taxon-to-spectrum
matches attributed to taxa that are not in the sample is directly linked to the taxonomical proximity to Shigella flexneri

Fig. 2 Schematized correlation of the number of taxon-to-spectrum
matches with the phylogenetic distance from Shigella flexneri, for a
pure S. flexneri sample. Distances associated with taxa as in Fig. 1
and calculated from Ciccarelli et al. [20] are reported on the x-axis in
logarithmic scale. The number of TSMs associated with taxa are
reported on the y-axis in logarithmic scale. We noted a possible
correlation between the number of TSMs and the distance. Two
possible exponential terms for this correlation are schematized in
red and green. Some eukaryotic taxa show an additional signal in
relation to proteins actually in the sample (keratins, trypsin…)
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distances for a selection of Shigella, Escherichia, and
Salmonella strains (Supplementary Figure S1). Re-
markably, the COG x-axis allowed a much clearer
separation of pairs of taxa, in full accordance with
the exact taxonomical classification of the species,
suggesting an improvement in precision and accuracy
for this pan-domains-of-life MSA.

Validation of the phylopeptidomic signature concept with
experimental MS/MS datasets
Three biological replicates of the S. flexneri proteome
were analyzed by shotgun tandem spectrometry along a
gradient of 90 min. The resulting dataset comprised
9827, 10,518, and 9540 MS/MS spectra that were tested
against the NCBInr database, resulting in 2794, 3887,
and 3344 PSMs, respectively (Supplementary Table SI).
As expected from such an inflated database, the ratio of
PSMs compared with MS/MS spectra was rather low
(33.5%), but the dataset is sufficiently informative. The
number of unique peptide sequences was 1746, 2512,
and 2088, respectively. TSMs were extracted and, as ex-
pected, the highest value was obtained for S. flexneri,
with 2753, 3806, and 3283 TSMs for the three biological

replicates. TSM values for all the taxa listed in the
NCBInr database were plotted along their phylogenetic
distances from S. flexneri for replicate L00221 (Fig. 3a).
The signature of S. flexneri for describing the ratio of
shared peptides with any other taxon was modeled using
the function:

yi;REF ¼ NREF � AREF � e−
xi;REF
aREF þ 1−AREFð Þ � e−

−
xi;REF
bREF

� �

where REF is the taxon of which the function is the sig-
nature (here, S. flexneri), i any taxon, yi, REF is the num-
ber of TSMs of taxon i due to taxon REF at quantity
NREF, NREF is the number of TSMs assigned to taxon
REF and indicates the quantity of MS/MS-detected REF,
AREF is a coefficient to adjust the proportions of each ex-
ponential term, xi, REF is the phylogenetic distance be-
tween taxon i and taxon REF, aREF is the first decreasing
exponential coefficient, and bREF is the second decreas-
ing exponential coefficient. Proportions of each expo-
nential term depend upon the depth of mass
spectrometry analysis of each experiment and must

Fig. 3 Fit of phylopeptidomics signatures for two experimental proteomic datasets. MS/MS datasets were acquired on a pure Shigella flexneri
sample (a), and a 1:1 S. flexneri:Salmonella bongori mixture (b). Instead of the phylogenetic distances for 191 organisms as available in Ciccarelli
et al. [20], the distances used here are calculated as detailed in the “Methods” section for 14,237 taxa. The phylogenetic distance from taxon S.
flexneri 2a str. 301 is plotted on the x-axis and is calculated as detailed in the “Results” section. The phylopeptidomics signature of a single

organism REF is:yi;REF ¼ NREF1 � ðAREF � e−
xi;REF
aREF þ ð1−AREFÞ � e−

−
xi;REF
bREF Þwith i any taxon, yi, REF the number of TSMs of taxon i due to organism REF,

xi, REF the phylogenetic distance between i and REF, aREF and bREF coefficients for the two exponential terms, AREF a repartition term, and NREF the
term indicating the quantity of organism REF. a Sample L00221 from Supplementary Table SI, corresponding to a 1:0 Shigella:Salmonella ratio. The
display is along xi, REF1 x-axis with REF1 = S. flexneri 2a str. 301, REF2 = S. bongori NCTC 12419, NREF1 = 2697 and NREF2 = 21 as fitted. The S. flexneri
2a str. 301 signature is displayed in a blue filled area. b Sample L00306 from Supplementary Table SI, corresponding to a 1:1 Shigella:Salmonella
ratio. The display is along xi, REF1 x-axis with REF1 = S. flexneri 2a str. 301, REF2 = S. bongori NCTC 12419, NREF1 = 1492, and NREF2 = 1558 as fitted.
The S. flexneri 2a str. 301 and S. bongori NCTC 12419 signatures are displayed respectively in blue- and orange-filled areas. The relative percentage
of S. flexneri calculated using phylopeptidomics signatures is thus 1492/3050 = 49% compared with 50% expected
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therefore be adjustable, using the AREF coefficient. For
the three S. flexneri MS/MS datasets, calculated coeffi-
cients aREF and bREF were similar, 0.013 and 0.082, re-
spectively, and the AREF coefficients were 0.4, 0.44, and
0.45 (Supplementary Table SI). For each specific dataset
involving S. flexneri, the phylopeptidomic signature can
be calculated and used to predict the number of TSMs
of any taxon because of the shared peptides between S.
flexneri and this taxon.

Acquisition of experimental datasets on laboratory-
assembled mixtures of two closely related bacteria and
their accumulated phylopeptidomic signature
We analyzed several laboratory-assembled mixtures of S.
flexneri and S. bongori (1:0, 1:0.1, 1:0.2, 1:0.5, 1:1, 0.5:1,
0.2:1, 0.1:1, and 0:1) in biological triplicates. Both species
belong to the Enterobacteriaceae family and are animal
pathogens. Because of their close phylogenetic distance,
these Gram-negative bacteria are difficult to distinguish,
and their relative quantitation represents a true chal-
lenge, as pathogen clades tend to be densely sequenced
due to their clinical interest. The peptide sequences
identified against the NCBInr database were associated
with all the taxa listed in this database. The number of
MS/MS spectra recorded and TSMs per taxa assigned
for the 27 samples at different taxonomical levels (super-
kingdom, phylum, class, order, family, genus, species,
and strain) are listed in Supplementary Table SI. We
also listed the number of specific peptide sequences and
their spectral counts at all taxonomical levels. A clear
outcome of the spectra to taxa inference was that the
higher the taxonomical level considered, the more nu-
merous were the specific peptides and specific TSMs.
For example, for the 1:1 ratio of S. flexneri and S. bon-
gori, the average ratio of specific TSMs compared with
the total number of PSMs was 47% at the phylum level,
ranged from 34% to 37% between class and family levels,
and dropped to 12% for Salmonella and less than 1% for
Shigella at the genus level.
Considering the presence of S. flexneri 2a str. 301

(REF1) and S. Bongori NCTC 12419 (REF2) as the or-
ganisms present in the laboratory-assembled mixtures,
their global TSM signal was modeled as the sum of two
phylopeptidomic signatures with the following function:

yi;REF1 þ Y i;REF2 ¼ NREF1 � AREF1 � e−
xi;REF1
aREF1 þ 1−AREF1ð Þ � e−

−
xi;REF1
bREF1

� �

þNREF2 � AREF2 � e−
xi;REF2
aREF2 þ 1−AREF2ð Þ � e−

−
xi;REF2
bREF2

� �

This function gives the number of TSMs of any other
taxa due to their shared peptides with the two organisms
present in the sample (REF1 and REF2) and detected at
different levels considering their abundance in the sam-
ple (NREF1 and NREF2). The parameters of this function

were calculated for each experimental dataset to
minimize the quadratic sum of errors between the ex-
perimental yi number of TSMs for taxon i and the sum
of adjusted yi, REF1 and yi, REF2. The parameter adjust-
ment reflecting directly REF1 and REF2 proteomic abun-
dances was that of NREF1 and NREF2. Figure 3b shows the
sum of both signatures automatically adjusted for the
metaproteomics signal of 1:1 S. flexneri:S. bongori mix-
ture from replicate L00273 using xi, REF1 x-axis only.
Similar displays could be plotted using xi, REF2 x-axis. As
shown, the phylopeptidomic global signature fitted per-
fectly with the experimental signals. Such representation
highlights the presence of the two bacteria as discrete
signals detected at their phylogenetic distance. For this
mixture, the MS/MS spectra datasets were 9928, 9327,
and 9426 for the three biological replicates (Supplemen-
tary Table SI). The numbers of PSMs assigned to the
NCBInr database were 3524, 3021, and 3174. The num-
bers of TSMs assigned to S. flexneri 2a str. 301 were
2464, 2157, and 2297, whereas those assigned to S. bon-
gori NCTC12419 were slightly more numerous at 2716,
2363, and 2385. The mean percentage obtained by phy-
lopeptidomic deconvolution of the three replicates for
the S. shigella signal was 47% (± 1%), which is in good
agreement with the theoretical abundance value for this
mixture.

Phylopeptidomic relative quantification gives a linear
response
The relative quantification results obtained by phylopep-
tidomic deconvolution for S. flexneri and S. bongori sam-
ples and the 7 laboratory-assembled mixtures are shown
in Supplementary Table SII. All the replicates corre-
sponded to the same reference quantity of 1.5 × 108 bac-
terial cells. The ratios of both type of organisms were
estimated using three different criteria: (i) the number of
total TSMs for each organism at the strain level; (ii) the
number of specific peptides at the species level, since
there was not a sufficient number of specific peptides at
the strain level due to the genome sequencing density of
these pathogens; and (iii) the NREF quantifications ob-
tained by means of the calculated phylopeptidomic sig-
natures (Fig. 4). The ratio estimated on the basis of the
total TSMs assigned to each of the organisms is strongly
biased by the number of shared peptides between organ-
isms, leading, for example, to an evaluation of the 1:0.1
S. flexneri:S. bongori ratio at 62% instead of 91%, and an
evaluation of the 1:0 S. flexneri:S. bongori ratio at 65%
instead of 100%. Quantification relying on specific pep-
tides is also biased by the strong dependency of specific
peptides on genome sequencing density and taxonomical
proximity of organisms, leading, for example, to an
evaluation of the 1:0.1 S. flexneri:S. bongori ratio at 66%
instead of 91%. A calculation of the relative biomasses of
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Shigella and Salmonella similar to the (2 PUP + Fido)
method from Kleiner et al. [11] was also performed,
using Mascot at 5% p value instead of SEQUEST+Fido
at 5% false-discovery rate and selecting only those pro-
teins with 2 unique peptides in the same NCBInr data-
base containing both strains. The complete set of
proteins identified is shown in Supplementary Table SIII,
which lists for each protein the complete list of taxa as-
sociated with proteins of identical sequence and proteins
matching the same sets of peptides that are undistin-
guishable from the listed proteins. This approach gave
results closer to the expected curve but was still sensitive
mostly to the shared peptides fraction (Fig. 4). The mean
absolute percentage errors were 36.1%, 30.2%, 12.7%,
and 3.5% for the TSMs, specific peptides, Kleiner et al.
[11], and phylopeptidomics methodologies, respectively.
Phylopeptidomics-based quantification is both natively
immune to the sequencing density and shared peptide
effects and applicable to the most resolved taxonomical
level. A linear response was obtained with a rather
performant estimation of the ratio of bacteria. The
coefficient of correlation (R2) at 0.9934 indicated a good
linearity over the range of ratios tested. The standard
deviation estimated with the three biological replicates
was ~ 3%.

Phylopeptidomics is applicable to complex samples
A metaproteomic dataset of 39,363 MS/MS spectra was
acquired on the ZymoBIOMICS Microbial Community
Standard, which comprises five Gram-positive bacteria,
three Gram-negative bacteria, and two fungi. The

corresponding signatures for the ten microorganisms
and the accurate fit to the overall proteomic signal plot
are shown in Supplementary Figure S2. These results
demonstrate the universal applicability of the phylopep-
tidomics signature. The dataset used for the biomasses
quantitation includes 6163 taxa, with TSM values on the
vertical axis, and 10 different phylogenetic distances dis-
played along the horizontal axis. This large dataset in-
creases the statistical significance of the
phylopeptidomics quantitation method and the resist-
ance to outliers. The values obtained by (i) phylopepti-
domics, as well as (ii) the expected biomasses calculated
with an estimation of cell numbers and the mean vol-
ume of cells as proxy, are reported in Table 1. A rela-
tively good correlation (R2 = 0.64) was obtained between
ratios (i) and (ii) for the ten microorganisms. For ex-
ample, Lactobacillus fermentum which is a rod-shaped
bacterium 2 to 9 μm in length has a much larger volume
than Pseudomonas aeruginosa. Thus, while their gen-
omic content is similar, their protein content may
strongly differ. This difference was clearly observed in
the metaproteomics results with an estimated ratio of
proteins of 24.2% and 1.9%, respectively. The exact cell
quantities of each of the ten taxa in the ZymoBIOMICS
Microbial Community Standard are not known, and the
performances of phylopeptidomics cannot be precisely
evaluated with this sample. Therefore, we applied phylo-
peptidomics to a larger MS/MS dataset of 143,804 MS/
MS spectra acquired on a more complex sample com-
prising 22 bacterial species, 1 archaeal species, and 5
phage viruses in known quantities [11]. This large

Fig. 4 Shigella ratios deduced from the contributions of S. flexneri 2a str. 301 and Salmonella bongori NCTC 12419 strain signatures. The Shigella
ratios (black circles) are in very good agreement with sample experimental ratios (linear regression R2, 0.993; slope, 0.97; R2 to expected,
0.992). Ratios calculated from specific peptides (medium blue circles) that (i) can only be calculated at species level and (ii) are biased by
the high sequencing density and the phylogenetic proximity of the Shigella/Escherichia genera, reducing the number of specific peptides
for Shigella flexneri and underestimating Shigella flexneri percentages (R2 to expected, 0.647). Ratios estimated from the number of
peptide-to-spectrum matches for the two strains (light blue circles) are highly biased by the high amount of shared peptides between
both organisms (R2 to expected, 0.666). Ratios estimated using the sum of spectral counts of proteins with more than two unique
peptides (orange circles), as proposed by Kleiner et al. [11], are still biased by the shared peptides fraction (R2 to expected, 0.911). Error
bars are ± 1SD based on biological replicates
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dataset was acquired with an extended chromatography
run time adapted to the complexity of the sample. We
extracted from Supplementary Data 1 [11] the protein
amounts for each strain, in which the signal of four spe-
cies, namely Nitrosospira multiformis, Nitrosomonas
europaea, Nitrosomonas ureae, and Desulfovibrio vul-
garis, was too weak to be quantified. The remaining 19
microorganism species could be quantified after calcula-
tion of their respective signatures and minimization of
their combined signal (Supplementary Table SIV). We
compared the quantitation results of phylopeptidomics
and the Kleiner et al. [11] approach based on protein
abundances (Fig. 5). Of note, a global quantitation ratio
of 1.0 was obtained using the peptide-centric phylopepti-
domics approach, whereas the protein-centric Kleiner
et al. [11] approach tended to slightly overestimate this
ratio. A paired bilateral t test with Supplementary Table
SIV using “Kleiner/Expected ratio” column compared to
a matching column filled with the expected values (1.0)
gave a p value of 0.62, whereas the same statistic applied
to the “Phylopeptidomics/Expected ratio” column gave a

p value of 0.87, indicating a better match with phylopep-
tidomics. Furthermore, the results of phylopeptidomics
were more uniform compared with the Kleiner et al.
[11] method, as shown in the violin plot (Fig. 5).

Discussion
Both identification and estimation of biomass contribu-
tion are crucial objectives that should be achieved with
the best sensitivity and precision to obtain the most
comprehensive view of the structure and the temporal
dynamics of a microbial community. Phylopeptidomics
is a new approach that improves the estimation of bio-
mass contributions by considering both discriminative
peptides and peptides shared between organisms. It re-
lies on a specific signature for a given organism, which
describes the number and abundance of peptides shared
with all other organisms depending on their phylogen-
etic distance. In this sense, the method we propose here
is fundamentally different from the procedure presented
by Kleiner et al. [11], which is protein-centered and not
peptide-centered. Protein inference in metaproteomics is
complex because of the large databases and the multiple
occurrences of a large number of peptide sequences. In
our approach, the higher redundancy introduced into
the database, through the incorporation of additional
new genome sequences, does not increase possible biases
but rather benefits directly for a better fit of the signa-
tures of shared peptides. The same applies to the shared
peptide fractions, which are natively used to best fit the
overall signal instead of introducing quantification bias.
Indeed, quantifications obtained at the finest taxonom-
ical resolution can then be cumulated to quantify higher
taxonomical levels without suffering from multiple
counting of shared peptides, since the deconvolution
yields quantifications cleaned from the shared signal.
The phylopeptidomic signature is based on TSMs

which are MS/MS spectra assigned to taxa. This new
quantitative feature in metaproteomics is the equivalent
of spectral count for proteins but at the taxon level. Fu-
ture improvements could be based for example on the
signal derived from the intensity of the MS signal of
peptides, i.e., extracted ion chromatogram (XIC), rather
than MS/MS spectra. While sometimes providing (i) a
larger quantification range than spectral counts and (ii)
a more linear performance for large values, XIC-based
quantification is sensitive to the signal complexity in the
MS scans, which is a major issue in metaproteomics.
The quality of the phylopeptidomic signature is

dependent on the number of available genome se-
quences for a given taxonomical group, and on their in-
trinsic quality. Thus, we recommend the inclusion of
only high-quality annotated genomes in the generalist
database prior to performing phylopeptidomics. Higher
genome sequencing coverage of closely related species

Fig. 5 Violin plot of the ratios of the biomass percentage relative
to the expected percentage for each species, for the method
based on the protein quantification reported in Kleiner et al. and
for the phylopeptidomics method. The sample used was
Run5_P1_2000ng from Kleiner et al. [11], with an equal protein
amount per organism. Results for strains from the same species
have been cumulated into one species level result for
Staphylococcus aureus and Rhizobium leguminosarum, virus results
are not reported, and Nitrosomonas europaea, Nitrosomonas
ureae, Nitrosomonas multiformis, and Desulfovibrio vulgaris are
ignored as per Kleiner et al. [11] Supplementary Data 1, resulting
in 19 species results compared as displayed in Supplementary
Table SIV. The phylopeptidomics ratio median and distributions
are closer to the target of 1, compared with that of Kleiner et al.
[11] published results
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tends to substantially reduce the number of species-
specific peptide sequences. This on-going trend will fur-
ther degrade the performance of metaproteomic strat-
egies relying on species-specific peptide sequences, in
view of the huge worldwide resources currently devoted
to sequencing organisms and improving genome cover-
age of extended branches of the Tree of Life. By con-
trast, phylopeptidomic signature-based relative
quantification should render improved performances
with the availability of additional genomes of higher
quality, lowering the number of missing sequences that
could degrade distance calculations and number of hits
(PSMs/TSMs) calculations, and allowing the selection of
the best genome representatives for all species.
The possible applications of the “phylopeptidomics”

concept can be drawn based on possible future exten-
sions of the method and its potential limitations.
First, the database used here is the generalist NCBInr
database. The methodology can be used with other
databases including individual reconstructed genomes
and metagenome-assembled genomes (MAGs), as
soon as COGs can be predicted for phylogenetic posi-
tioning (which is possible for any full genomes). The
resolution of phylopeptidomics depends on several pa-
rameters: the nature of the biological sample, the
depth of the experimental dataset, and the database
coverage for the taxa present in the biological sample.
Here, we have shown that a relative biomass quantita-
tion using phylopeptidomics can be obtained at spe-
cies level. Sub-species and even strain-resolved levels
[21] are theoretically possible if enough MS/MS spec-
tra are recorded. The limitations in terms of max-
imum number of quantifiable species in the sample
are an open question. If enough mass spectrometry
time is allowed, mixtures of several hundred species
could be analyzed by phylopeptidomics, rendering the
approach consistent with fecal microbiota analysis
through genome-resolved metagenomics [22]. In order
to assess the limitations of the approach for strain-
resolved level on the one hand, and maximum num-
ber of quantifiable organisms on the other, new ex-
perimental standards are needed. A control of the
nature and exact quantities of microorganisms is re-
quired for synthetic standards representative of real
microbiome samples [23]. While assembling such ex-
perimental datasets is unfortunately time- and
resource-consuming, we urge the scientific community
to join efforts at producing such standards for im-
proving bioinformatic pipelines for metaproteomics in
general.

Conclusions
In conclusion, the improved evaluation of relative bio-
mass contributions of organisms present in a

microbial consortium using a phylopeptidomic signa-
ture opens new horizons for the study of microbiota
and their dynamics. Assessing these biomass contribu-
tions is of considerable interest to decipher taxonom-
ical and functional changes underlying a phenotype
shift in microbiota. Because the phylopeptidomic sig-
nature applies equally well for bacteria, archaea, and
eukaryotes, a large spectrum of applications is
envisioned.

Methods
Biological material, culture conditions, and protein
extraction
S. bongori CIP 82.33T (ATCC43975) and S. flexneri 2a
CIP 107659 (ATCC700930) strains were obtained from
the Pasteur Institute. For each strain, 40 ml of liquid
tryptic soy broth medium was inoculated with a precul-
ture grown in the same medium at an optical density of
0.2 (measured at 600 nm) and grown at 37 °C under 140
rpm agitation. Cells, 99.2 × 106 for S. flexneri and 140.8
× 106 for S. bongori as counted by microscopy using a
Malassez cell (Rogo et Cie), were precipitated 7 h later
when the cultures reached an optical density of 4.0 by
adding 10ml of 50% trichloroacetic acid (w/v) in water
and centrifuging for 15 min at 2500×g (T40 rotor, Joun
CR3i centrifuge). The cell pellet was suspended in 900 μl
of 1× LDS buffer (lithium dodecyl sulfate; Invitrogen-
Life Technologies) and subjected to sonication with a
Vibra Cell 75042 sonicator (Bioblock Scientific) for 30 s
at 40% amplitude and a total energy delivery of 1.5 kJ.
As indicated in Supplementary Figure S3, for each strain
and biological replicate, a volume of 10 μl of the sample
(Tube 1×) was diluted in 1× LDS to obtain a 1:1 dilution
(0.5×), a 1:4 dilution (0.2×), and a 1:9 dilution (0.1×). A
volume of 10 μl of S. flexneri 1× extract was mixed with
either 10 μl of 1× S. bongori to obtain a 1:1 mixture, 0.5×
(1:0.5), 0.2× (1:0.2), or 0.1× (1:0.1). Conversely, either
10 μl of 0.5× S. flexneri extract (0.5:1), 0.2× (0.2:1), or
0.1× (0.1:1) was mixed with a volume of 10 μl of 1× S.
bongori extract. In total, 33 LDS samples were prepared
taking a minimum pipetted volume of 10 μl for opti-
mal accuracy. The samples were heated at 99 °C for 5
min and were subjected to SDS-PAGE for 5 min of
migration, as described [24]. The total soluble prote-
ome of the 33 samples was reduced, treated with
iodoacetamide, and in-gel digested with trypsin. The
final ratios prepared in biological triplicates were 1:0,
1:0.1, 1:0.2, 1:05, 1:1, 0.5:1, 0.2:1, 0.1:1, and 0:1 in
terms of relative cell counts of S. flexneri and S.
bongori.
A volume of 15 μl of ZymoBIOMICS Microbial

Community Standard D6300 (Zymo Research) stored
in DNA/RNA Shield Zymo preservative was treated
as follows: cells from the sample were harvested by
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centrifugation for 10 min at 10,000×g, diluted in 65 μl
of 1× LDS, and subjected to bead-beating with a Pre-
cellys instrument (Bertin Technologies) as described
[25]. After lysis, proteins were heated for 10 min at
99 °C and 25 μl of the sample was subjected to SDS-
PAGE for 5 min. The whole proteome was reduced,
treated with iodoacetamide, and in-gel digested with
trypsin [24].

Tandem mass spectrometry
NanoLC-MS/MS characterization of peptides from S.
bongori / S. flexneri samples was performed with a LTQ-
Orbitrap XL hybrid mass spectrometer (ThermoFisher)
coupled to an UltiMate 3000 LC system (Dionex-LC
Packings), essentially as described [26]. Peptides (10 μl)
were loaded onto a reverse-phase pre-column C18 Pep-
Map 100 column (LC Packings) and desalted online.
Peptides were then resolved on a nanoscale C18 PepMap
100-capillary column (LC Packings) at a flow rate of
0.3 μl/min prior to injection into the ion trap mass spec-
trometer using a 90-min gradient from 4 to 40% solv-
ent B (consisting of 0.1% HCOOH, 99.9% CH3CN)
against solvent A, consisting of 0.1% HCOOH, 99.9%
H2O. Full-scan mass spectra were measured from 300
to 1800m/z in data-dependent mode using a TOP7
strategy. In this strategy, a scan cycle was initiated
with a full scan of high mass accuracy in the Orbitrap
analyzer followed by MS/MS scans in the linear ion
trap on the seven most abundant ions. Peptides from
the ZymoBIOMICS standard (2 μl) were analyzed with
a Q-Exactive HF mass spectrometer (ThermoFisher)
coupled to an UltiMate 3000 LC system (Dionex-LC
Packings), as described [27], using a 60-min gradient
of acetonitrile and a TOP20 data-dependent acquisi-
tion strategy.

Database and MS/MS assignments
For the interpretation of MS/MS spectra, the NCBInr
fasta file was downloaded (13 February 2015) as ftp://ftp.
ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz [28]. This ver-
sion comprises 59,642,736 entries totaling 21,322,359,
704 amino acids. Corresponding taxonomy files gi_
taxid_prot.dmp, names.dmp, and nodes.dmp were down-
loaded the same day as ftp://ftp.ncbi.nlm.nih.gov/pub/
taxonomy/taxdmp.zip [29]. The Mascot search engine
(Matrix Science) was used for peptide inference. Mo-
lecular ion peak lists were extracted with Mascot Dae-
mon software (version 2.5.1; Matrix Science) using the
extract_msn.exe data import filter (ThermoFisher). Data
import filter options were set to 400 (minimum mass),
5000 (maximum mass), 0 (grouping tolerance), 0 (inter-
mediate scans), and 1000 (threshold), as described [26].
Peptide assignation with Mascot was done with the fol-
lowing parameters: full trypsin specificity, maximum of

one missed cleavage, mass tolerances of 5 ppm on the
parent ion and 0.5 Da on the MS/MS, static modification
of carboxyamidomethylated cysteine (+ 57.0215), and ox-
idized methionine (+ 15.9949) as dynamic modification.
The ZymoBIOMICS sample was interpreted using a

recent version (03 January 2018) of the NCBInr data-
base, comprising 108,307,546 entries and 41,817,980,956
amino acids. The taxonomy database was also down-
loaded the same day. Mascot settings were the same as
above except for a MS/MS mass tolerance of 0.02 Da.

Computation of phylogenetic distances
The distance matrix was extracted from the Newick
unrooted tree data [20], using Patristic distances compu-
tation in R (ape package, PatristicDistMatrix<-
cophenetic(tree) command). Distances between all taxids
were computed using a set of hyper-conserved COGs as
described [20], with homolog sequences recovered from
the set of proteins associated with each taxid using a
BLAST-like approach with the DIAMOND v0.8.22.84
tool [30]. More specifically, the set of 31 COGs used
was: COG0012, COG0016, COG0048, COG0049,
COG0052, COG0080, COG0081, COG0087, COG0091,
COG0092, COG0093, COG0094, COG0096, COG0097,
COG0098, COG0099, COG0100, COG0102, COG0103,
COG0172, COG0184, COG0186, COG0197, COG0200,
COG0201, COG0202, COG0256, COG0495, COG0522,
COG0525, and COG0533. A manually curated MSA
based on the COG supervectors provided in Ciccarelli
et al. [20] was used as a template to add new taxa super-
vectors using the following methodology. To obtain a
reference MSA, the original 8090 aligned positions de-
scribed in Ciccarelli et al. [20], corresponding to 191 ref-
erence organisms (23 eukaryotes, 18 archaea, and 150
bacteria), were first in-house curated to fix inter-COGs
anomalies. A MUSCLE (v3.8.31) [31] alignment per
COG and per superkingdom (bacteria, archaea, and
eukaryota) was performed, with an additional Gblocks
(v0.91b) [32] masking with the following parameters: a
conserved position (including flank positions) required
more than 50% of superkingdom sequences representa-
tion, the maximum number of contiguous non-
conserved positions was 8, the minimum length of a
block was 2 and there was no gap limitation. The final
Gblocks mask used was the union of the 3 superking-
dom masks. All aligned and masked COGs were then
concatenated into a supervector that counted 8310
aligned positions and 180 organisms (11 redundant bac-
teria were removed as compared with Ciccarelli et al.
[20]) to be used as a pre-aligned MSA for inter-
organisms sequence similarity evaluation.
For each taxid to be added to the MSA, and for

each COG to recover from its proteome, the full se-
quence of the closest pre-aligned taxon (in terms of
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number of nodes traversed in the taxonomical tree
from the taxid to be added) was used as a DIA-
MOND query. A DIAMOND hit was validated if its
e-value was below 0.001, identity was above 45%, and
coverage was above 94%. If no hit was found fulfilling
these criteria, then the reference COG sequence was used
and the COG was flagged as missing. Taxa with more than
10 missing COGs were excluded from the pool of taxa
with calculated distances. A total of 14,237 taxa out of 16,
548 were retained. For groups of taxa with the same set of
associated COGs, only one representative was retained,
with other taxa in the group inheriting distance results
from this taxon. COG sequences were concatenated into a
supervector, which was aligned using MUSCLE in profile
mode to the predefined masked MSA. Upon complete
taxa addition to the alignment, CLUSTAL W (v2.1) [33],
recompiled as Windows 64 b using MSYS/MinGW, was
used to generate a PIM out of the MSA of all aligned taxa
supervectors. PIM pair results were the distances used to
evaluate the phylogenetic distance between organisms.
We chose not to fix distance inconsistencies by methods
such as maximum likelihood, maximum parsimony,
UPGMA, or neighbor-joining after comparing signature
quality using different phylogenetic tree generation and
seeing degradation or marginal improvement compared
with raw PIM distances, at the cost of very high time and
computer power requirements (data not shown). An sqlite
database was created, with distances associated with taxid
pairs.

Post-processing of Mascot dat files
Mascot dat files were parsed using the Python version of
Matrix Science msparser v2.5.1 with function ms_pepti-
desummary [34]. Peptide-spectrum matches (PSMs)
were validated with a Mascot expectation value below
0.1 using Mascot identity threshold (MIT) and allowing
multiple PSMs per MS/MS spectrum.
Peptides associated with spectra were assigned to taxa

using NCBI databases. In the 2015 version of NCBI data
files, each header of the nr.fasta file was the concaten-
ation of the complete set of protein identifiers matching
the sequence, with a gi identifier per entry. The first gi
entry per non-redundant sequence was called firstgi in
our data process. The taxonomy file gi_taxid_prot.dmp
was used to perform gi to taxid matching. For newly in-
troduced “WP_” RefSeq accessions aiming at identifying
each non-redundant sequence with a single multispecies
accession, file ftp://ftp.ncbi.nlm.nih.gov/refseq/release/
release-catalog/release68.AutonomousProtein2Genomic
[35] dated 06 January 2015 was used to complement gi
to taxa mapping. Corresponding Python sqlite data-
bases created were gi2firstgi.sql and firstgi2taxid.sql,
allowing fast peptide to taxid mapping through gi
identifiers. For post-march 2016 versions, this

database structure has been modified to match Acces-
sion.version-based NCBI files following NCBI phasing
out of sequence gis.
Individual MS/MS spectra (Mascot queries) associated

with peptide sequences (PSM) and protein sequences by
Mascot were directly mapped to taxa using gi2firstgi and
firstgi2taxid databases. In addition to the raw number of
PSMs per taxon obtained, a collation of information was
performed following the NCBI taxonomical tree from dir-
ect assignation to “canonical” taxonomical levels: species,
genus, family, order, class, phylum, and superkingdom.
For each taxon at each level, the total peptide sequences
and total PSMs were counted, as well as specific or unique
peptide sequences and corresponding specific PSMs.
For the 2018 version used to process the ZymoBIOMICS

sample, accessions were used as sequence identifiers, and
the mapping of accessions to taxa was performed using as-
sembly_summary_refseq.txt and assembly_summary_gen-
bank.txt files downloaded from ftp://ftp.ncbi.nlm.nih.gov/
genomes/ASSEMBLY_REPORTS [36], to map taxids to
RefSeq assemblies (GCF) and GenBank assemblies (GCA),
then the GCF/GCA *_assembly_report.txt files to map
GCF/GCA to nucleotides, and the *_genomic.gff.gz files to
map GCF/GCA to protein accessions.

Phylopeptidomics signature fit
Taxa were filtered retaining those with MS/MS attribu-
tion, number of missing COGs lower than 10, and an as-
sembly level quality “Complete genome” as extracted
from file assembly_summary_refseq.txt ([36]). The
matrix of taxa pair distances and the vector of the num-
ber of PSMs per taxon were used to calculate a phylo-
peptidomic signature fit. The two distance vectors for S.
flexneri 2a str. 301 and S. Bongori NCTC 12419 were ex-
tracted from the full matrix, and the corresponding x
values were used to compute the sum of the two theor-
etical signatures (function y = N×[A × exp(−x/a) + (1 −
A) × exp(− x/b)]) compared with actual MS/MS taxa
data points. The “L-BFGS-B” method from the Python
package scipy.optimize was used to best fit the sum
of signature functions y = N×[A × exp(− x/a) + (1 −
A) × exp(− x/b)] to the proteomic signal. Default
values for the variables were A = 0.45, a = 0.013, b =
0.082, and N = #TSMs (taxon). Normalization was
applied to the parameters during search space explor-
ation, using the correction factors 1/A, 1/a, 1/b, and
1/100. Bounds used were: default value ± 0.05 for A,
± 0.001 for a and b, and 0 to #TSMs × 5 for N. The
objective function was the sum of quadratic errors
between taxa data points and the corresponding esti-
mate based on the sum of signatures. The tolerance
for termination was set to 0.01. A similar setup was
used to obtain the fit of the ZymoBIOMICS Microbial
Community Standard D6300. Organisms to be
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quantified were set as Pseudomonas aeruginosa,
Escherichia coli, Salmonella enterica, Lactobacillus fer-
mentum, Enterococcus faecalis, Staphylococcus aureus,
Listeria monocytogenes, Bacillus subtilis, Saccharomy-
ces cerevisiae, and Cryptococcus neoformans.
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