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Abstract

Background: It is now possible to comprehensively characterize the microbiota of the lungs using culture-
independent, sequencing-based assays. Several sample types have been used to investigate the lung microbiota,
each presenting specific challenges for preparation and analysis of microbial communities. Bronchoalveolar lavage
fluid (BALF) enables the identification of microbiota specific to the lower lung but commonly has low bacterial
density, increasing the risk of false-positive signal from contaminating DNA. The objectives of this study were to
investigate the extent of contamination across a range of sample densities representative of BALF and identify
features of contaminants that facilitate their removal from sequence data and aid in the interpretation of BALF
sample 16S sequencing data.

Results: Using three mock communities across a range of densities ranging from 8E+ 02 to 8E+ 09 16S copies/ml,
we assessed taxonomic accuracy and precision by 16S rRNA gene sequencing and the proportion of reads arising
from contaminants. Sequencing accuracy, precision, and the relative abundance of mock community members
decreased with sample input density, with a significant drop-off below 8E+ 05 16S copies/ml. Contaminant OTUs
were commonly inversely correlated with sample input density or not reproduced between technical replicates.
Removal of taxa with these features or physical concentration of samples prior to sequencing improved both
sequencing accuracy and precision for samples between 8E+ 04 and 8E+ 06 16S copies/ml. For the lowest densities,
below 8E+ 03 16S copies/ml BALF, accuracy and precision could not be significantly improved using these
approaches. Using clinical BALF samples across a large density range, we observed that OTUs with features of
contaminants identified in mock communities were also evident in low-density BALF samples.

Conclusion: Relative abundance data and community composition generated by 16S sequencing of BALF samples
across the range of density commonly observed in this sample type should be interpreted in the context of input
sample density and may be improved by simple pre- and post-sequencing steps for densities above 8E+ 04 16S
copies/ml.
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Background
The human microbiome is composed of organ-specific
microbiota, the composition and function of which have
been associated with a broad array of human diseases
[1–5]. Complex microbial communities with specific ex-
posure/disease associations have been identified in the
lungs, even in individuals where the lung was previously

considered to be sterile [6–10]. Importantly, much of
what we understand of the microbiota in lung diseases is
derived from populations with relatively high bacterial
burden, such as those with infections or suppurative
lung diseases including cystic fibrosis and bronchiectasis.
The total biomass observed in samples from individuals
with suppurative lung diseases is generally high, with
low bacterial diversity and domination by a single taxon
in a significant proportion of individuals [11, 12]. Less
extensively studied samples collected from individuals
with non-suppurative lung diseases can have much lower
bacterial biomass but higher relative diversity [13].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: pierre.schneeberger@gmail.com;
bryan.coburn@utoronto.ca
1Departments of Medicine and Laboratory Medicine & Pathobiology,
University of Toronto, Toronto M5G 1L7, Canada
Full list of author information is available at the end of the article

Schneeberger et al. Microbiome           (2019) 7:141 
https://doi.org/10.1186/s40168-019-0755-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-019-0755-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:pierre.schneeberger@gmail.com
mailto:bryan.coburn@utoronto.ca


Samples used to infer or directly measure the compos-
ition of the lung microbiota include oropharyngeal swabs
or washes, sputum samples, bronchial aspirates, broncho-
alveolar lavage fluids (BALF), and endobronchial biopsies
[13]. The microbial community of sputum samples and
bronchial aspirates is commonly contaminated with bac-
terial taxa present in the oral cavity [14, 15]; as such, these
may not be the optimal sample types to study
microbiome-disease interactions of the lower respiratory
tract. BALF and bronchial mucosa biopsy samples usually
present bacterial density 2–4 logs lower than the upper
airway but harbour bacterial communities which are spe-
cific to the lower respiratory tract [13, 16].
Analysis of the bacterial communities from BALF

samples is challenging, especially due to the low bio-
mass commonly observed in these samples, making
them more susceptible to artefacts introduced during
sample processing and sequencing [17–19]. The rela-
tive contribution of contaminating taxa to BALF
microbiota across the range of bacterial densities has
not been systematically addressed, despite significant
potential implications for the analysis of lung micro-
biota in a range of diseases.

Using bacterial communities with defined composition
(‘mock communities’) across the range of bacterial dens-
ities observed in BALF, we quantified the accuracy and
precision of 16S rRNA gene sequencing for the
characterization of bacterial communities, characterized
the features of contaminants and mock community taxa,
analysed the impact of simple pre- and post-sequencing
techniques on these performance characteristics, and de-
veloped post-sequencing filtering approaches based on
our observations. Our goal was to assess the perform-
ance of 16S rRNA gene sequencing across the range of
densities observed in human BALF samples to calibrate
the interpretation of observational studies from human
cohorts.

Results
Sequencing accuracy and precision over a range of input
bacterial densities
Density range of BALF samples and mock communities
In order to calibrate the input densities of our mock
communities, we measured the densities of a set of
BALF samples obtained from the Toronto Lung Trans-
plant Program (TLTP) Biobank by 16S qPCR (Fig. 1).

Fig. 1 Comparison of bacterial load in BALF samples from patients with different conditions and mock communities tested in this study. 16S
rRNA gene density in BALF samples and cultured mock communities. BALF, bronchoalveolar lavages fluids; rRNA, ribosomal ribonucleic acid;
COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; LTX, lung transplant. Population mean for each reference (in
brackets) is indicated with a star. MC = mock communities; BAL = study subset of BAL samples; [20] = Healthy; [21] = Healthy/COPD/IPF; [22]
= Healthy/LTX
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BALF samples ranged from 1E+ 05 to 4.2E+ 08 16S
rRNA copies per millilitre (16S copies/ml, median
1.68E+ 06 16S copies/ml) and mock communities ~ 103–
1010 16S copies/ml.

Composition and alpha diversity measure over density
range
The proportion of reads assigned to genera within the
input community increased with increasing sample dens-
ity until an input bacterial density of ~ 8E+ 06 16S cop-
ies/ml for community 1 and 8E+ 07 16S copies/ml for
communities 2 and 3 (Fig. 2a). Below an input density of
8E+ 04 (mock 1 and 2) and 8E+ 05 (mock 3) 16S copies/
ml, the majority of reads were of non-mock community
members (contaminants).
Below an input bacterial density of 8E+ 07 16S copies/

ml, the number of observed genera was inversely corre-
lated with input bacterial density (Fig. 2b). At densities
< 8E+ 06 16S copies/ml, the number of observed genera
approximated the number observed in no-template se-
quencing controls.
The relative abundance z-score of the 20 most abun-

dant taxa across the range of input densities is shown in
Fig. 3. The most abundant genera in no-template con-
trols were Acinetobacter and Bifidobacterium. Acineto-
bacter, Pseudomonas (not identified as aeruginosa), and
Rhizobium were the most abundant contaminating taxa
in mock community samples with an input density
below 8E+ 05 16S copies/ml for mock community 1 and
8E+ 06 16S copies/ml for mock communities 2 and 3.
These three genera cumulatively represented 81.3% of
the contaminating taxa in the mock samples across the
whole dataset. We assessed the relationship between
relative abundance of each operational taxonomic unit
(OTU) and sample input density (measured with 16S
qPCR) using a Spearman correlation and summarized
the 45 most abundant OTUs in all 3 communities in
Table 1. Taxa which were members of the mock com-
munity were positively correlated with sample density
(0.81 < rs < 0.98), whereas contaminants were negatively
correlated (− 0.98 < rs < − 0.67), in agreement with prior
studies [23]. Notably, OTUs which were mock commu-
nity members but also commonly contaminants (e.g. S.
maltophilia) were positively correlated in samples in
which they were mock community members, and nega-
tively correlated in communities where they were
contaminants.

Sequencing accuracy
We assessed sequencing accuracy by comparing taxo-
nomic composition of a sample compared to the expected
community composition (33/33/33% for community 1,
50/50% for community 2, and 55/24/15/5.5/0.5% for com-
munity 3) using Bray-Curtis dissimilarity (Fig. 4a). The

mean degree of dissimilarity is low (BCI < 0.3) for input
densities ≥ 8E+ 06 16S copies/ml for all mock communi-
ties. The mean dissimilarity is 0.59 at a density of 8E+ 05
16S copies/ml and ≥ 0.75 for densities less than 8E+ 05
16S copies/ml. This drop-off in accuracy occurs at the
same density as a marked increase in the relative abun-
dance of mock community taxa (Fig. 4b).

Sequencing precision
We assessed sequencing precision by comparing taxo-
nomic composition between technical replicates using
Bray-Curtis dissimilarity (Fig. 5). In this case, technical
replicates are DNA extractions performed in parallel,
using the same biological sample as input for DNA extrac-
tion. Composition of technical replicates was similar
(BCI < 0.25) for all mock communities at all input dens-
ities except at 8E+ 03 and 8E+ 05 16S copies/ml for the
first mock community (BCI = 0.35 and 0.37, respectively)
and 8E+ 06 16S copies/ml for the third mock (BCI = 0.28).
At a density above 8E+ 07 16S copies/ml, the composition
between replicates is highly concordant (BCI < 0.05), for
the 3 mock communities.

Effect of pre-sequencing sample concentration on
sequencing accuracy and precision
We tested the effect of concentration on the sequencing
accuracy for mock communities 1 and 3 (Fig. 6). Bron-
choscopies are commonly performed with 50–100ml of
saline but recovery is highly variable and resulting samples
often range between 1 and 50ml of fluid. Most common
DNA extraction methods, such as those recommended for
the Human Microbiome Project, have an upper limit for
sample input volume, and this is particularly limiting for
samples presenting low bacterial load such as BALF. We
tested the impact of physical concentration on sequencing
accuracy on a range of densities prepared from mock
communities 1 and 3. At sample densities between 8E+ 03
16S copies/ml and 8E+ 05 16S copies/ml, concentration
alone improved taxonomic similarity to the expected dis-
tribution of the input sample (Wilcoxon signed rank test
comparing BCI from untreated and concentrated samples;
P < 0.05), but not at higher (> 8E+ 06 16S copies/ml) and
the lowest (< 8E+ 03 16S copies/ml) input densities.

Features of contaminating OTUs
Since our approach allows us to definitively label taxa as
a mock community member or a contaminant, we were
able to identify features specific to contaminants, with
the goal of using them to subsequently filter tables and
improve sequencing accuracy and precision. Contami-
nants had several features that distinguished them from
mock community members.
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Fig. 2 Taxonomic composition and alpha diversity indices of mock communities. a Histograms displaying the relative abundance of bacterial
species from the mock community members versus contaminants over a range of input bacterial density. b Alpha diversity indices measured for
mock communities at each input bacterial density. The solid line indicates the average value, for each input density. ml =millilitre
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Contaminant relative abundance is inversely correlated to
input sample 16S density
One hundred and thirty-four out of 159 contaminant
OTUs with a prevalence in the dataset above 50% were
negatively correlated with sample input density (Fig. 7a).
At prevalence below 50%, 103 out of 736 contaminant
OTUs were negatively correlated with density. We refer
to this feature of contaminating taxa as ‘Feature 1’.

Contaminants have low reproducibility in technical
replicates
The number of non-reproducible OTUs across the range
of densities increases with decreasing sample density
(Fig. 7b). The number of non-reproducible contaminants
ranges from 59 to 325 OTUs across mock communities.
We refer this feature of contaminating taxa as ‘Feature
2’.

Contribution of OTUs with Features 1 and 2 to mock
communities across input sample densities and the
impact of their removal on precision and accuracy
Between 47 and 64% of contaminants demonstrated Fea-
ture 1, accounting for 76–99% of the cumulative relative
abundance of all contaminating OTUs (Fig. 8a). No mock
community taxa demonstrated this feature (Fig. 8b). Be-
tween 51 and 64% of contaminating OTUs demonstrated

Feature 2, accounting for between 0.1 and 6.5% of the cu-
mulative relative abundance of all contaminating OTUs
(Fig. 8c). Two mock community members (Streptococcus
and Gemella) demonstrated Feature 2, but only in low
abundance samples (< 8E+ 05 16S gene copies/ml, Fig. 8d).
Removal of OTUs with Feature 1 improved accuracy in

samples with a density below 8E+ 07 16S copies/ml (Fig.
8e) but worsened precision for samples at lower input dens-
ities (< 8E+ 05 16S copies/ml, Fig. 8f). Removal of OTUs
with Feature 2 had no impact on accuracy but retained or
slightly improved precision at low densities. Combining the
filters improved accuracy with a smaller trade-off in preci-
sion at lower density than removal of taxa with Feature 1
only (Fig. 8f). Importantly, sequencing accuracy at a sample
density below 8E+ 03 16S copies/ml remained low (BCI >
0.5) after treatment and filtering, indicating the data ob-
tained from clinical samples presenting similar bacterial
densities should be interpreted with caution.

Features of taxa that are both common contaminants and
known colonizers of the human airway
Multiple bacterial taxa such as Pseudomonas, Acineto-
bacter, and Stenotrophomonas are both common lung
pathogens/colonizers and frequent reagent contami-
nants. Since no single mock community taxon was
present in all three input communities, we were able to

Fig. 3 Heatmap showing the Z-scores of mock community species (n = 8) and the 12 most prevalent contaminating taxa across the complete
dataset. Mock community species are highlighted with an asterisk (*)
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Table 1 Spearman correlation analysis to identify relations between relative abundances of bacterial taxa and sample input densities
measured with qPCR

rs (all) P (all) rs (M1) P (M1) rs (M2) P (M2) rs (M3) P (M3)

Mock community members OTUs

OTU: s_Pseudomonas aeruginosa 0.84 0.0001 0.81 0.0002 0.83 0.0001 − 0.43 0.1014

OTU: g_Burkholderia 0.99 0.0001 0.97 0.0001 0.98 0.0001 − 0.41 0.1146

OTU: g_Staphylococcus 0.91 0.0001 − 0.94 0.0001 − 0.62 0.0122 0.91 0.0001

OTU: s_Stenotrophomonas maltophilia 0.91 0.0001 0.92 0.0001 − 0.93 0.0001 − 0.89 0.0001

OTU: g_Bacillus 0.79 0.0005 − 0.67 0.0053 − 0.37 0.1627 0.85 0.0001

OTU: g_Fusobacterium 0.94 0.0001 0.06 0.8380 N.A N.A 0.94 0.0001

OTU: s_Streptococcus
anginosus subsp. whileyi

0.93 0.0001 − 0.28 0.2895 N.A N.A 0.93 0.0001

OTU: s_Gemella haemolysans 0.75 0.0014 − 0.55 0.0305 − 0.26 0.3351 0.81 0.0002

Contaminants OTUs

OTU: g_Acinetobacter − 0.93 0.0001 − 0.96 0.0001 − 0.92 0.0001 − 0.79 0.0005

OTU: g_Pseudomonas − 0.97 0.0001 − 0.92 0.0001 − 0.93 0.0001 − 0.97 0.0001

OTU: f_Comamonadaceae − 0.93 0.0001 − 0.97 0.0001 − 0.88 0.0001 − 0.86 0.0001

OTU: s_Acinetobacter indicus − 0.85 0.0001 − 0.85 0.0001 − 0.87 0.0001 − 0.81 0.0002

OTU: f_Enterobacteriaceae − 0.97 0.0001 − 0.84 0.0001 − 0.96 0.0001 − 0.65 0.0082

OTU: g_Rhizobium − 0.79 0.0004 − 0.94 0.0001 − 0.81 0.0002 − 0.86 0.0001

OTU: s_Shewanella xiamenensis − 0.98 0.0001 − 0.85 0.0001 − 0.93 0.0001 − 0.67 0.0062

OTU: g_Comamonas − 0.91 0.0001 − 0.89 0.0001 − 0.81 0.0002 − 0.89 0.0001

OTU: o_Bacillales 0.33 0.2098 − 0.25 0.3521 − 0.32 0.2259 0.90 0.0001

OTU: g_Novosphingobium − 0.94 0.0001 − 0.81 0.0002 − 0.91 0.0001 − 0.49 0.0546

OTU: g_Sphingobium − 0.98 0.0001 − 0.84 0.0001 − 0.94 0.0001 − 0.40 0.1216

OTU: s_Alcaligenes faecalis
subsp. parafaecalis

− 0.96 0.0001 − 0.84 0.0001 − 0.85 0.0001 − 0.82 0.0002

OTU: g_Paracoccus − 0.83 0.0001 − 0.84 0.0001 − 0.73 0.0019 − 0.48 0.0647

OTU: s_Stenotrophomonas rhizophila − 0.95 0.0001 − 0.83 0.0001 − 0.95 0.0001 − 0.76 0.0011

OTU: g_Bifidobacterium − 0.82 0.0001 − 0.86 0.0001 − 0.71 0.0028 − 0.18 0.5035

OTU: f_Rhodobacteraceae − 0.90 0.0001 − 0.92 0.0001 − 0.89 0.0001 − 0.76 0.0010

OTU: g_Stenotrophomonas − 0.95 0.0001 − 0.84 0.0001 − 0.91 0.0001 − 0.75 0.0013

OTU: s_Pseudomonas beteli − 0.93 0.0001 − 0.83 0.0001 − 0.89 0.0001 − 0.63 0.0107

OTU: s_Brevundimonas mediterranea − 0.92 0.0001 − 0.90 0.0001 − 0.81 0.0002 − 0.81 0.0002

OTU: s_Pseudomonas psychrotolerans − 0.93 0.0001 − 0.76 0.0009 − 0.90 0.0001 − 0.68 0.0052

OTU: s_Rhizobium cellulosilyticum − 0.92 0.0001 − 0.80 0.0003 − 0.92 0.0001 − 0.41 0.1153

OTU: g_Sphingomonas − 0.97 0.0001 − 0.85 0.0001 − 0.82 0.0002 − 0.60 0.0163

OTU: g_Brevundimonas − 0.94 0.0001 − 0.88 0.0001 − 0.83 0.0001 − 0.79 0.0004

OTU: s_Sphingomonas aestuarii − 0.90 0.0001 − 0.82 0.0001 − 0.74 0.0016 − 0.71 0.0028

OTU: s_Pseudomonas peli − 0.87 0.0001 − 0.83 0.0001 − 0.93 0.0001 − 0.81 0.0002

OTU: o_Lactobacillales 0.85 0.0001 − 0.36 0.1693 − 0.17 0.5305 0.85 0.0001

OTU: g_Dietzia − 0.89 0.0001 − 0.76 0.0011 − 0.75 0.0012 − 0.52 0.0428

OTU: s_Enhydrobacter aerosaccus − 0.45 0.0815 − 0.40 0.1216 − 0.27 0.3155 0.25 0.3516

OTU: f_Staphylococcaceae 0.47 0.0652 − 0.24 0.3763 N.A N.A 0.52 0.0432

OTU: s_Hydrogenophaga bisanensis − 0.91 0.0001 − 0.91 0.0001 − 0.89 0.0001 − 0.70 0.0035

OTU: s_Massilia aurea − 0.86 0.0001 − 0.85 0.0001 − 0.83 0.0001 − 0.72 0.0025

OTU: s_Bifidobacterium − 0.85 0.0001 − 0.93 0.0001 − 0.60 0.0161 N.A N.A
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assign mock community OTUs contaminant or true-
positive status in each sample and assess their relative
abundance across the full input density range (Fig. 9).
The likelihood that an OTU represented a true posi-
tive varied by OTU and by input density. Burkhol-
deria, Fusobacterium, and Streptococcus anginosus
were consistently true positives across the full density
range. True-positive Pseudomonas aeruginosa was
generally distinguishable from the distinct contamin-
ant Pseudomonas with our sequencing methods, and,
if identified at the species level, was likely to be a

true positive at a relative abundance of > 0.001. Sev-
eral other taxa, however, including Gemella, Stenotro-
phomonas maltophilia, Bacillus, and Staphylococcus
were reliably true positives only at higher relative
abundance (> 0.001) and only in higher density sam-
ples (> 8E+ 04 16S copies/ml), indicating that relative
abundance and input sample density must both be
incorporated into interpretation of these taxa in
BALF and that lack of control for input sample dens-
ity may lead to a biased interpretation of relative
abundance of these taxa.

Table 1 Spearman correlation analysis to identify relations between relative abundances of bacterial taxa and sample input densities
measured with qPCR (Continued)

rs (all) P (all) rs (M1) P (M1) rs (M2) P (M2) rs (M3) P (M3)

animalis subsp. lactis

OTU: s_Pseudomonas zhaodongensis − 0.91 0.0001 − 0.66 0.0063 − 0.64 0.0086 − 0.75 0.0013

OTU: s_Pseudomonas zeshuii − 0.79 0.0004 − 0.40 0.1216 − 0.88 0.0001 − 0.65 0.0077

OTU: f_Oxalobacteraceae − 0.88 0.0001 − 0.47 0.0686 − 0.77 0.0008 − 0.65 0.0077

OTU: s_Massilia namucuonensis − 0.87 0.0001 − 0.85 0.0001 − 0.81 0.0002 − 0.61 0.0139

OTU: g_Bradyrhizobium − 0.89 0.0001 − 0.91 0.0001 − 0.73 0.0018 − 0.67 0.0057

M1-3 mock communities 1–3, rs Spearman’s rho

Fig. 4 Sequencing accuracy across a range of densities. a Scatter plot showing the Bray-Curtis dissimilarity between the expected community
composition and all input densities. Mock community 1 is shown on the left panel, mock community 2 is shown on the middle panel, and mock
community 3 on the right panel. b. Plot of the relative abundance of members from the 3 mock communities (solid blue line) in comparison
with the cycle threshold observed in the 16S qPCR (solid red line). ml =millilitre
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Fig. 5 Sequencing precision across a range of densities. This plot shows the degree of dissimilarity between technical replicates, for all mock
communities, measured using the Bray-Curtis dissimilarity index at each input density. ml =millilitre

Fig. 6 Treatment effect on Bray-Curtis dissimilarity between reference communities and all tested input densities. a Scatter plot showing the
effect of pre-sequencing treatment on sequencing accuracy. The difference in dissimilarity to reference (ΔBCI) between each treatment is shown
as a ruler for each dilution (if ΔBCI > 0). For reference, densities observed in our set of BALF samples are shown as a box chart at the bottom of
the graph (the left and right of each box represent 75th and 25th percentiles, respectively; the left and right of each whisker represent 90th and
10th percentiles, respectively; line across inside of each box represents the median value, and the diamond beyond whiskers means outliers). b.
Scatter plot showing the effect of pre-sequencing treatment on sequencing precision between replicates across a range of input densities

Schneeberger et al. Microbiome           (2019) 7:141 Page 8 of 16



Features of OTUs across density ranges in BALF samples
We next analysed 50 post-transplant BALF samples ob-
tained from surveillance bronchoscopies to identify whether
OTUs in BALF in this population reflect the features of
contaminants observed in our mock communities. Using
50 BALF samples, we assessed the correlation between

relative abundance of each OTU and samples input density
to identify contaminants.
The relative abundance across input densities of OTUs

representing at least 1% of the overall sequence abundance
are shown in Fig. 10a. Four OTUs (Acinetobacter, Bacilla-
ceae, Bacillales, and Commamonadaceae) were negatively

Fig. 7 OTU features in mock communities. a Relative abundances of OTUs correlated with sample input density (Feature 1). Each dot indicates an
OTU, coloured by correlation with sample densities. b Scatter plot showing irreproducible OTUs across a range of sample densities (Feature 2).
OTUs which are consistent between replicates are coloured in green, non-reproducible OTUs in orange
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Fig. 8 (See legend on next page.)
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correlated with density, consistent with contaminant Fea-
ture 1, while taxa known to colonize the airways (Prevo-
tella, Veillonella dispar, Streptococcus, and Neisseria) were
positively correlated with density. Interestingly, Urea-
plasma was detected at high relative abundance in a single
sample but lacked either feature of contaminants. All
OTUs with positive or negative correlation with sample
density are shown in Fig. 10b. Negatively correlated OTUs
largely represent common contaminants in low biomass
samples, whereas positively correlated taxa represent
known colonizers of the human airway.
We then assessed which OTUs presented the second

feature of contaminants across the set of BALF samples
(Fig. 10c). Above a relative abundance of 1E− 3, (the
threshold above which OTUs were more reliably true
positive taxa in our mock communities), 89% of the
OTUs were reproducible between technical replicates,

but below this threshold, the majority of OTUs were not
reproducible (Additional file 1).
Using dilution series of two BALF samples presenting

a density of ~ 4E+ 08 16S copies/ml, we assessed the ef-
fect of the removal of taxa with contaminant Features 1
or 2, or either feature combined filters on sequencing
accuracy and precision (Fig. 10d). Sequencing accuracy
is significantly improved at 4E+ 06 16S copies/ml with a
BCI dissimilarity to reference decreasing to 0.13, instead
of 0.41 for the unfiltered sample (Mann-Whitney U test;
P < 0.01). At 4E+ 07 16S copies/ml, accuracy is slightly
improved with a BCI of 0.09 for the filtered samples in-
stead of 0.14 for the unfiltered samples. At the highest
density (4E+ 08 16S copies/ml), filtered samples are
similar to the unfiltered references. The dissimilarity be-
tween replicates remained similar across tested dilutions
between filtered and unfiltered replicates.

(See figure on previous page.)
Fig. 8 Quantitative effects of removing OTUs with features of contaminants on mock community samples. a–d. Bar chart showing the proportion
of OTUs that are negatively correlated with density (Feature 1, F1) or that were not reproducible between technical replicates (Feature 2, F2),
along with the proportion they represent within their target groups (contaminant or true taxa). The black line indicates the cumulative amount
within each target group (contaminants or true taxa) corresponding to the OTUs identified with each filtering approach. e Comparison of post-
filtering effect on sequencing accuracy across a range of densities. f Sequencing precision across range of densities before and after removal
by feature

Fig. 9 Status of mock species and two known contaminants in each community. a Scatter plot showing the sum of true positives against
contaminants across a range of densities. b–d Plot showing the status of two true contaminants in each mock community. e–l Plot showing the
status of each true taxon in the three mock communities
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Discussion
Unlike stool or other samples with consistently high bacter-
ial loads, BALF have input bacterial densities that range
over several orders of magnitude and include very low
densities. The analysis of the microbiome present in low-
density samples is particularly challenging due to the ubi-
quitous presence of contaminants [18, 19, 24]. Using three
different mock communities over a density range represen-
tative of BALF across numerous health/disease states, we
ascertained the features of contaminating OTUs across a
representative range of input sample densities, determined
density-specific accuracy and precision, and determined the
effect of simple pre-sequencing and contaminant removal

strategies on sequencing accuracy and precision. We then
confirmed the observations from our mock communities
using BALF samples.
We found strong sample density-dependence of se-

quencing accuracy and precision. At a density below ~
8E+ 06 16S copies/ml in unfiltered samples, the observed
signal was derived from both bacterial taxa from the
mock communities and contaminants. We identified fea-
tures that distinguished contaminants from true positive
taxa, including that they were negatively correlated with
input density and that they showed low inter-replicate
reproducibility. These features facilitated identification
of a large proportion of contaminating OTUs and reads

Fig. 10 Contaminant features in a set of BALF samples. a Taxa representing more than 1% of the total set of BALF samples, coloured by whether
they are negatively correlated (red), positively correlated (green), or not correlated (blue) with input sample bacterial density. The shaded area
represents the locally weighted scatterplot smoothing (LOWESS). b. The heatmap of relative abundance z-score for OTUs which were correlated
with samples input density. Positively correlated OTUs (putative true positives) are represented with a gradient of green while negatively
correlated OTUs (suspected contaminants) are represented with a gradient of red. c Reproducibility of OTUs in BALF samples plotted by sample
density and log relative abundance. d Effect of post-sequencing filtering on sequencing accuracy and precision of a dilution series of a single
BALF sample, comparing dilutions to the composition of the highest density sample
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but could not be used to distinguish between taxa that
are both common contaminants and airway pathogens/
colonizers, indicating that current, commonly used
amplicon sequencing methods will be limited for the
quantitation of these taxa, especially in low-relative
abundance or in low-density samples. In spite of these
limitations, however, identification and removal of reads
from these OTUs based on these features can improve
accuracy without a significant impact on precision for
samples with an input density above ~ 8E+ 04 16S cop-
ies/ml. It is important to note that with relative abun-
dance compositional data, samples that are dissimilar
based on density and relative abundance of contami-
nants may appear compositionally similar if reads from
contaminants are removed. While this form of filtering
may improve accuracy and precision, it potentially ob-
scures differences between samples that may be inform-
ative, particularly those due to differences in the
abundance of ‘true positive’ taxa that are lower in rela-
tive abundance in only one group of interest. This is an
inherent limitation of relative abundance data but is an
important consideration in the interpretation of samples
of variable density and may need to be addressed with
complementary methods (such as absolute quantitation
of taxa or quantitative normalization).
Our study has several important limitations. Not all

known colonizers of the human airway nor all commu-
nity composition types (e.g. taxon number or distribu-
tion) were represented in our mock communities. Our
experiments represent only a single centre, and contami-
nants may vary by site and protocol-specific factors. Im-
portantly, our method will not distinguish between
contaminants introduced at the time of sample collec-
tion and those introduced during sample handling and
processing.

Conclusions
Based on our observations, the following factors should
be considered when analysing BALF, especially when
bacterial density is low in some samples:

1. We recommend pre-screening of sample bacterial
densities to predict expected sequencing accuracy
and precision for any given sample set.

2. For samples with densities comprised between 8E+
04 and 8E+ 06 16S copies/ml BALF, we recommend
sample concentration as well as the use of
sequencing replicates and dilution series.

3. Identification of OTUs inversely correlated with
density or with poor technical replicability is a
useful strategy to improve sequencing accuracy and
precision. However, removal of reads should be
considered within the context of analytical goals
and the limitations associated with the use of

relative abundance data. We suggest that removal
of OTUs with features of contaminants be
combined with other analytical approaches such as
absolute quantitation of key taxa (e.g. by qPCR),
quantitative normalization (e.g. with 16S qPCR), or
comparisons of relative abundance data of only
‘true-positive’ taxa without removal of putative
contaminants.

4. Given the high precision between biological
replicates for samples above 8E+ 06 16S copies/ml,
sequencing replicates might not be necessary for all
samples, and the sequencing strategy and costs can
be optimized depending on input bacterial density.

5. Finally, we encourage each laboratory to identify
the specific performance characteristics of their
own experimental environment and methods, using
dilution series of samples with known composition
or high input density, covering the entire range of
sample densities in their sample set.

Methods
Density of BALF samples
To calibrate the range of densities of our mock commu-
nities, we retrieved a set of 51 selected post-
transplantation BALF samples obtained from bronchos-
copies from the Toronto Lung Transplant Program
(TLTP) biobank, reasoning that this population is both
highly sampled and has a diversity of both infectious and
non-infectious complications of transplantation. Raw,
unspun, and unfiltered, BALF samples were used for
analyses. Our programme’s collection protocol was pub-
lished previously [25].

Mock community
Bacterial isolates were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Glycerol
stocks were prepared upon arrival as recommended by
ATCC. Pseudomonas aeruginosa str. PAO1, Burkholderia
multivorans (ATCC 17616), Stenotrophomonas malto-
phila (ATCC 13637), Staphylococcus aureus (ATCC
12600), Fusobacterium nucleatum (ATCC 23726), Strepto-
coccus anginosus (ATCC 33397), Bacillus halodurans
(ATCC BAA-125), and Gemella haemolysans (ATCC
10379) were grown (aerobically or anaerobically) over-
night in Tryptic-Soy broth (TSB) at 37 °C and subse-
quently quantified on Tryptic-Soy agar plates. Culture
broths were pooled to a density of ~ 8E+ 09 16S copies/
ml. A series of seven tenfold dilutions was prepared result-
ing in sample densities ranging from 8E+ 09 to 8E+ 02
16S copies/ml. Three mock communities were prepared,
the first being composed of an equimolar ratio of P. aeru-
ginosa, B. multivorans, and S. maltophilia. The second
community was composed of P. aeruginosa and B. multi-
vorans, each accounting for 50% of the community
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composition. The third community was composed of S.
aureus (55%), F. nucleatum (24%), B. halodurans (15%), S.
anginosus (5.5%), and G. haemolysans (0.5%).

Sequencing controls
Four types of negative controls were used in this study.
The first was an aliquot of the elution buffer (H2O) used
in the extraction protocol (NTC1-2). The second control
was an aliquot of TSB medium used to cultivate the
mock species (NTC3-4). The third was elution buffer
(H2O) which was extracted along other samples (NTC5-
6). The final control was H2O which was concentrated
and subsequently extracted (NTC7-8). All controls were
sequenced in duplicate. All species included in the mock
communities were also sequenced individually, and the
resulting OTUs were used to differentiate mock species
from contaminating taxa.

DNA isolation and quantification
Nucleic acids were isolated from 250 μl of sample using
a PowerSoil DNA isolation kit (MO-BIO; Carlsbad, CA,
USA) following the manufacturer’s instructions except
for the elution step which was done in 60 μl purified
water. Densities were measured using a 16S quantitative
polymerase chain reaction (qPCR [26];) and a standard
(Pseudomonas aeruginosa str. PAO1), and the number of
16S copies/ml was inferred using the URI Genomics &
Sequencing Center online calculator (http://cels.uri.edu/
gsc/cndna.html). 16S qPCR primers and conditions are
described in Additional file 2. qPCR reactions were car-
ried out in a volume of 11 μl using the TaqMan Gene
Expression Master Mix (Applied Biosystems, Foster City,
CA, USA) according to the manufacturer’s protocol.

Concentration
Samples were concentrated using Amicon Ultra-15 Cen-
trifugal Filter Units with the 30-kDa filter (Millipore-
Sigma, Darmstadt, Germany). A tenfold concentration
factor was obtained by concentrating 5 ml of sample into
a volume of 500 μl.

16S rRNA gene sequencing
The V4 hypervariable region of the 16S rRNA gene was
amplified using a universal forward sequencing primer
and a uniquely barcoded reverse sequencing primer to
allow for multiplexing [27]. Amplification reactions were
performed using 12.5 μl of KAPA2G Robust HotStart
ReadyMix (KAPA Biosystems), 1.5 μl of 10 μm forward
and reverse primers, 8 μl of sterile water, and 1.5 μl of
DNA. The V4 region was amplified by cycling the reac-
tion at 95 °C for 3 min, 30× cycles of 95 °C for 15 s, 50 °C
for 15 s, and 72 °C for 15 s, followed by a 5-min 72 °C ex-
tension. All amplification reactions were done in tripli-
cate, checked on a 1% agarose TBE gel, and then pooled

to reduce amplification bias. Pooled triplicates were
quantified using Quant-it PicoGreen dsDNA Assay
(Thermo Fisher Scientific) and combined by even con-
centrations. The final library was purified using Ampure
XP beads (Agencourt), selecting for the bacterial V4
amplified band. The purified library was quantified using
Qubit dsDNA Assay (Thermo Fisher Scientific) and
loaded on to the Illumina MiSeq for sequencing, accord-
ing to manufacturer instructions (Illumina, San Diego,
CA, USA). Sequencing was performed using the V2
(150 bp × 2) chemistry. Sequencing depths are reported
in Additional file 3.

Analysis of the bacterial microbiome
The UNOISE pipeline, available through USEARCH ver-
sion 10.0.240, was used for sequence analysis [28–30].
The last base, typically error-prone, was removed from
all the sequences. Sequences were assembled and quality
trimmed using –fastq_mergepairs and –fastq_filter, with
a –fastq_maxee set at 1.0 and 0.5, respectively. Assem-
bled sequences less than 233 bp were removed. Follow-
ing the UNOISE pipeline, unique sequences were
identified from the merged pairs and sorted. Sequences
were denoised and chimaeras were removed using the
unoise3 command in USEARCH. Assembled sequences
were then mapped back to the chimaera-free denoised
sequences at 97% identity OTUs using the –usearch_glo-
bal command. Taxonomy assignment was executed
using SINTAX [31], available through USEARCH, and
the SINTAX-compatible Ribosomal Database Project
(RDP) database version 16, with the default minimum
confidence cut-off of 0.8 [32]. OTU sequences were
aligned using PyNast accessed through QIIME [33]. Se-
quences that did not align were removed from the data-
set and a phylogenetic tree of the filtered aligned
sequence data was made using FastTree [34].

Removal of OTUs with features of contaminants as a
filtering strategy for BALF samples
We applied three different filtering strategies based on fea-
tures observed in contaminating OTUs. This included (1)
the identification and removal of contaminating taxa
based on the negative correlation between their relative
abundances and sample input densities (Feature 1), (2) the
identification and removal of singletons in technical repli-
cates (Feature 2), or (3) the combined removal of OTUs
with either of these features. To apply Filter F1, we
converted raw absolute abundance tables to relative abun-
dances. We subsequently measured the Spearman correl-
ation between relative abundances and sample input
density and tested for significance for both the mock sam-
ple set and the BALF set, independently. OTUs presenting
significant negative correlation were labelled as contami-
nants. For filter F2, we assessed whether each bacterial
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taxon was present in both technical replicates and subse-
quently removed those which were found to be singletons.
For filter F3, we first applied F1, followed by F2.

Statistical analysis
Bray-Curtis dissimilarity indices were calculated using the
‘dissimilarity’ function from the Vegan R package version
2.5-2 [35]. Wilcoxon signed rank tests and Spearman cor-
relations were calculated using XLSTAT 2019 (Addinsoft:
Paris, France). Plots were generated using OriginPro 2017
(Northampton, MA, USA) and the R packages ggplot2
version 3.0.0 [36] and reshape2 version 1.4.3 [37].

Supplementary information
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1186/s40168-019-0755-x.
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