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Abstract

Background: The interplay between hosts and their associated microbiome is now recognized as a fundamental
basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of
multicellular organisms as “metaorganisms.” The goal of the Collaborative Research Center “Origin and Function of
Metaorganisms” is to understand why and how microbial communities form long-term associations with hosts from
diverse taxonomic groups, ranging from sponges to humans in addition to plants.

Methods: In order to optimize the choice of analysis procedures, which may differ according to the host organism
and question at hand, we systematically compared the two main technical approaches for profiling microbial
communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa.
This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five
different microbial profiles per host sample.

Conclusion: While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many
aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the
selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step
amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S
rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we
provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the
transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated
microbial composition.
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Background
Dynamic host-microbe interactions have shaped the evo-
lution of life. Virtually all plants and animals are colo-
nized by an interdependent complex of microorganisms,
and there is growing recognition that the biological pro-
cesses of hosts and their associated microbial communi-
ties function in tandem, often as biological partners
comprising a collective entity known as the metaorgan-
ism [1]. For instance, symbiotic bacteria contribute to
host health and development in critical ways, ranging
from nutrient metabolism to regulating whole life cycles
[2] and in turn benefit from habitats and resources the
host provides. Moreover, it is well established that per-
turbations of the microbiome likely play an important
role in many host disease states [3]. However, re-
searchers have yet to elucidate the mechanisms driving
these interactions, as the exact molecular and cellular
processes are only poorly understood.
An integrated view on the metaorganism encompasses

a cross-disciplinary approach that addresses how and
why microbial communities form long-term associations
with their hosts. Despite widespread agreement that the
interdependencies of microbes and their hosts warrant
study, there remains considerable incongruity between
researchers regarding the best methodologies to study
host-microbe interactions. The development of stan-
dardized protocols for characterizing and analyzing
host-associated microbiomes across the tree of life is
thus crucial to understand the evolution and function of
metaorganisms without the issues of technical inconsist-
encies or data quality.
The rapidly growing interest in microbiome research

has been bolstered by the ability to profile diverse micro-
bial communities using next-generation sequencing
(NGS). This culture-free, high-throughput technology
enables identification and comparison of entire micro-
bial communities, so-called metagenomics [4]. Metage-
nomics typically encompasses two particular sequencing
strategies: amplicon sequencing, most often of the 16S
rRNA gene as a phylogenetic marker; or shotgun se-
quencing, which captures the complete breadth of DNA
within a sample [4].
The use of the 16S ribosomal RNA gene as a phylo-

genetic marker has proven to be an efficient and cost-
effective strategy for microbiome analysis and even al-
lows for the imputation of functional content based on
taxon abundances [5]. However, PCR-based phylogenetic
marker protocols are vulnerable to biases through sam-
ple preparation and sequencing errors. The choice of
which hypervariable regions of the 16S rRNA gene are
targeted for sequencing seems to be among the biggest
factors underlying technical differences in microbiome
composition [6–8]. Furthermore, 16S rRNA gene ampli-
con sequencing is typically limited to taxonomic
classification at the genus level depending on the data-
base and classifiers used [9], and provides only limited
functional information [5]. These well-recognized limita-
tions of amplicon-based microbial community analyses
have raised concerns about the accuracy and reproduci-
bility of 16S rRNA phylogenetic marker studies and have
led to an increased interest in developing more reliable
methods for amplicon library preparation and sequen-
cing [8, 10].
Shotgun metagenomics, on the other hand, offers the

advantage of species- and strain-level classification of
bacteria. Additionally, it allows researchers to examine
the functional relationships between hosts and bacteria
by determining the functional content of samples dir-
ectly [9, 11], and enables the exploration of yet unknown
microbial life that would otherwise remain unclassifiable
[12]. However, the relatively high costs of shotgun meta-
genomics and more demanding bioinformatic require-
ments have precluded its use for microbiome analysis on
a wide scale [4, 9].
In this study, we set out to systematically compare ex-

perimental and analytical aspects of the two main tech-
nical approaches for microbial communities profiling,
16S rRNA gene amplicon and shotgun sequencing,
across a diverse array of host species studied in the Col-
laborative Research Center 1182, “Origin and Function
of Metaorganisms.” The ten host species range from
basal aquatic metazoans [Aplysina aerophoba (sponge)
and Mnemiopsis leidyi (comb jelly)]; to marine and lim-
nic cnidarians (Aurelia aurita, Nematostella vectensis,
Hydra vulgaris), standard vertebrate (Mus musculus),
and invertebrate model organisms (Drosophila melano-
gaster, Caenorhabditis elegans); to Homo sapiens; and in
addition to wheat (Triticum aestivum) and a standard-
ized mock community. This setup provides a breadth of
samples in terms of taxonomic composition and diver-
sity. Conducting standardized data generation proce-
dures on these diverse samples on the one hand
provides a unique and powerful opportunity to systemat-
ically compare alternative methods, which display con-
siderable heterogeneity in performance. On the other
hand, this information enables researchers working on
these or similar host species to choose the experimental
(e.g., hypervariable region) or analytical pipelines that
best suit their needs, which will be a valuable resource
to the greater community of host-microbe researchers.
Finally, we identified a number of interesting, broad-
scale patterns contrasting the aquatic and terrestrial en-
vironment of metaorganisms, which also reflect their
evolutionary trajectories.

Results
Our panel of hosts includes ten species, for which five
biological replicates each were included (see
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Additional file 1: Figure S1). The majority of hosts are
metazoans, including the “golden sponge” (Aplysina
aerophoba), moon jellyfish (Aurelia aurita), comb jelly-
fish (Mnemiopsis leidyi), starlet sea anemone (Nematos-
tella vectensis), fresh-water polyp Hydra vulgaris,
roundworm (Ceanorhabditis elegans), fruit fly (Drosoph-
ila melanogaster), mouse (Mus musculus), human
(Homo sapiens), and the inclusion of wheat (Triticum
aestivum), which can serve as an outgroup to the meta-
zoan taxa. Drosophila melanogaster was additionally
sampled using two different methods targeting feces and
intestinal tissue. Nucleic acid extraction procedures were
conducted according to the needs of the individual host
species (see the “Methods” section and Additional file 1),
after which all DNA templates were subjected to a
standard panel of sequencing procedures. For 16S rRNA
gene amplicon sequencing, we used primers flanking
two commonly used variable regions, the V1 V2 and V3
V4 regions. Further, for each region, we compared a
single-step fusion-primer PCR to a two-step procedure
designed to improve the accuracy of amplicon-based
studies [8]. Finally, all samples were also subjected to
shotgun sequencing, such that five different sequence
profiles were generated for each sample. While a single
classification pipeline was employed for all four 16S
rRNA gene amplicon sequence profiles, community
composition based on shotgun data was evaluated using
MEGAN [13], due to the advantage of simultaneously
performing taxonomical and functional classification of
shotgun reads and an overall good performance (for
additional description, see Additional file 1).

Performance of data processing and quality control
All data generated from amplicons were subject to the
same stringent quality control pipeline including read-
trimming, merging of forward and reverse reads, quality
filtering based on sequence quality and estimated errors,
and chimera removal (see the “Methods” section). The
one-step V1 V2 amplicon data showed the highest rate
of read-survival (62.13 ± 23.90%; mean ± sd) followed by
the corresponding two-step method (49.85 ± 23.90%;
mean ± sd), in large part due to the greater coverage of
this comparatively shorter amplicon (~ 312 bp). In con-
trast, 42.02 ± 16.41% and 36.88 ± 23.89% of the total
reads were included in downstream analysis for the one-
step and two-step V3 V4 data, respectively. The longer
V3 V4 amplicon (~ 470 bp) was more affected by drops
in quality at the end of the reads, which decreases the
overlap of forward and reverse reads and thus increases
the chances of sequencing errors (Additional file 1: Fig-
ure S2; for final sample sizes, see Additional file 2: Table
S1). Overall, aside from chimera removal, each quality
control step resulted in a comparatively greater loss of
V3 V4 compared to V1 V2 data. On the other hand, the
V3 V4 one-step method yields the lowest number of chi-
meras, suggesting a lower rate of chimera formation
and/or detection in this approach (variable region
F1,214 = 3.8881, P = 0.0499; PCR protocol F1,214 = 8.1751,
P = 0.0047; variable region × PCR protocol F1,214 =
6.4733, P = 0.0117; linear mixed model with organism as
random factor). Among all host taxa, we observe the
highest proportion of retained reads in the V1 V2 one-
step method and the lowest in the V3 V4 two-step
method (Additional file 1: Figure S2B; variable region
F1,215 = 74.9989, P < 0.0001; PCR protocol F1,215 =
21.0743, P < 0.0001; linear mixed model with organism
as random factor). After quality filtering and the identifi-
cation of bacterial reads, an average of 0.46 Gb of shot-
gun reads per sample was achieved (range 0.03–2.1 Gb)
(Additional file 1: Figure S3A; for final sample sizes, see
Additional file 2: Table S1). To provide an initial assess-
ment and comparison between the amplicon and
shotgun-based techniques, we plotted the discovered
classifiable taxa and functions for the entire pooled data-
set. Although the methods differ distinctly, each method
shows a plateau in the number of discovered entities
(see Additional file 1: Figures S3C, S3D).

Mock community
The analysis of standardized mock communities is an
important measure to ensure general quality standards
in microbial community analysis. In this study, we
employed a commercially available mixture of eight bac-
terial and two yeast species. Comparison among the
amplification procedures (one- and two-step PCR), 16S
rRNA gene regions (V1 V2, V3 V4), and shotgun data re-
veals varying degrees of similarity to the expected micro-
bial community composition (Fig. 1). One discrepancy is
apparent due to the misclassification of Escherichia/Shi-
gella, whose close relationship makes delineation at the
genus level difficult based on the V1 V2 region and is
subsequently classified to Enterobacteriaceae (Fig. 1a,
Additional file 1: Figure S4). Classification of this bacter-
ial group also differs based on the shotgun analysis
employed, due to different naming and taxonomic stan-
dards of the respective databases (Escherichia, Shigella,
and Enterobacteriaceae refer to the Escherichia/Shigella
cluster) [14]. However, overall, the amplicon-based pro-
files show the closest matches to the expected commu-
nity. The V3 V4 one-step method shows the lowest
degree of deviation between observed and expected
abundances of the focus taxa (Table 1; Additional file 1:
Figure S4). In addition, the relative abundances of fungi
in the mock community were relatively well predicted by
MEGAN (see Fig. 1).
Next, we evaluated alpha and beta diversity across the

different technical and analytical methods. Interestingly,
most methods overestimate taxon richness but



Fig. 1 Average community composition of bacteria (a) and fungi (b) in the mock community samples sequenced via metagenomic shotgun and
16S rRNA gene amplicon techniques (amplicon: V1 V2, V3 V4, one-step, two-step; shotgun: MEGAN based classification (short reads)). c Bacterial
genus-level alpha diversity estimates in comparison to the expected community value. d Principle coordinate analysis of the Bray-Curtis distance
between methods and the expected community. Ellipses represent standard deviations of points within the respective groups. Sample sizes for
the different approaches are Nshotgun = 4, NV1V2-one-step = 3, NV1V2-two-step = 3, NV3V4-one-step = 3, and NV1V2-two-step = 3
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underestimate complexity (as measured by the Shannon
index) of the mock community, which could reflect
biases arising from grouping taxon abundances based on
slightly differing taxonomies (Fig. 1c, Additional file 1:
Figures S4, S5A and Additional file 2: Table S2). Overall,
the amplicon methods appear to more accurately reflect
alpha diversity, although significant differences are
present with regard to the amplified region (species rich-
ness: variable region F1,10 = 6.3657, P = 0.0302; Shannon
H: method F1,9 = 3.330, P = 0.1014, variable region F1,9 =
6.110, P = 0.0354; ANOVA best model). With regard to
beta diversity, the largest distance to the expected com-
position is observed for the shotgun-based data, while
the amplicon-based techniques, in particular V3 V4,
show the lowest distance (Fig. 1d, Additional file 1: Fig-
ure S5B). Pairwise tests show almost no differences be-
tween the amplicon-based techniques, while the
shotgun-based data significantly differs from all ampli-
con profiles (Additional file 2: Table S3). Thus, in con-
clusion, shotgun-based analysis yields a higher degree of
error compared to the amplicon-based approaches for
the simple mock community used in our study.

Taxonomic diversity within and between hosts
To evaluate the performance of our panel of metage-
nomic methods over the range of complex host-
associated communities in our consortium, we next
employed a series of alpha and beta diversity analyses to



Table 1 Differences between expected and observed genus abundances in the mock communities (Nshotgun = 4, Namplicon = 3) via a
one-sample t test (two-sided) of relative abundances (P values are adjusted via Hommel procedure)

Shotgun Amplicon

Members mock community MEGAN V1 V2 one-step V3 V4 one-step V1 V2 two-step V3 V4 two-step

Staphylococcus 0.00002 0.52446 0.09200 0.03994 0.21564

Listeria 0.00395 0.34964 0.53267 0.03003 0.00545

Bacillus 0.00006 0.21420 0.02818 0.29671 0.30589

Pseudomonas 0.13668 0.36721 0.05776 0.38147 0.59037

Escherichia/Shigellaa NA 0.00462 0.45612 0.00237 0.59037

Shigellaa 4.6372 × 10−10 NA NA NA NA

Escherichiaa 0.00001 NA NA NA NA

Enterobacteriaceaea NA 0.87898 0.00004 0.19274 0.00055

Salmonella 3.8092 × 10−6 0.34964 0.05838 0.09712 0.08851

Lactobacillus 0.00297 0.87898 0.53267 0.38147 0.59037

Enterococcus 0.00012 0.04816 0.03746 0.01159 0.00954
aEscherichia/Shigella relatives counted as equivalent
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these samples, which also provides an opportunity to
infer broad patterns across animal taxa based on a stan-
dardized methodology. Measures of alpha diversity dis-
play overall consistent values with respect to host
species, although many significant differences between
methods are present, which are mostly host-specific
(Fig. 2a, b). However, several host taxa display high
levels of consistency across methods including A. aurita,
C. elegans, D. melanogaster, and H. sapiens, which show
almost no significant differences between methods. Dis-
crepancies and individual recommendations for each
host species are discussed in Additional file 1: Figures
S6–S16 and Additional file 2: Table S4. An intriguing
observation is the tendency of aquatic hosts to display
higher alpha diversity values than those of terrestrial
hosts, which is supported by average differences between
aquatic and terrestrial hosts and by relative consistent
comparisons among single host species as well (Fig. 2c,
d; Additional file 2: Table S5).
In order to investigate broad patterns of bacterial com-

munity similarity according to metagenomic procedure
and host species, we performed beta diversity analyses in-
cluding all host samples and each of their five different
methodological profiles. This analysis reveals an overall
strong signal of host species, irrespective of the method
used to generate community profiles (Table 2; Fig. 3).
Pairwise comparisons between hosts are significant in all
cases except for samples derived from the V3V4 two-step
protocol, which did not consistently reach significance
after correction for multiple testing (Additional file 2:
Table S6). Further, complementary to the observations
made for alpha diversity, we also find strong signals of
community differentiation between the aquatic and terres-
trial hosts (Table 2; Fig. 3b, d). The separation between
these environments appears to be stronger based on
amplicon data, whereas the separation between hosts is
stronger based on shotgun-derived data (Table 2). To fur-
ther evaluate the variability among biological replicates,
we evaluated intra-group distances according to host spe-
cies, which reveals organisms with generally higher com-
munity variability (i.e., C. elegans, A. aurita, H. sapiens, H.
vulgaris, T. aestivum, and M. leidyi) than other host or-
ganisms in our study (N. vectensis, M. musculus, D. mela-
nogaster, and A. aerophoba; Additional file 1: Figure S17A
and C). Interestingly, intra-group distances also signifi-
cantly differ between the aquatic and terrestrial environ-
ments, whereby aquatic organisms tend to display less
variable communities than terrestrial ones (Add-
itional file 1: Figure S17B and D). Thus, this suggests
higher sample sizes may be necessary for experimental
analysis of the higher variability/terrestrial taxa. The low
performance of T. aestivum in subsequent analyses pos-
sibly originates from its commercial origin and low bacter-
ial biomass relative to host material.
To identify individual drivers behind patterns of beta

diversity, we performed indicator species analysis [15] at
the genus level with respect to method, host species, and
environment. Based on the amplicon data, we identified
56 of 313 indicators to display consistent associations
across all four amplicon techniques, such as Bacteroides,
Barnesiella, Clostridium IV, and Faecalibacterium in H.
sapiens and Helicobacter and Mucispirillum in M. mus-
culus, whereas other associations were limited to, e.g.,
only one variable region (Additional file 2: Tables S7 and
S8). However, the overall pattern of host associations is
largely consistent across methods (Additional file 1: Fig-
ure S18). We also identified numerous indicator genera
for aquatic and terrestrial hosts (Additional file 2: Tables
S9 and S10). Indicator analyses based on shotgun data
reveals a smaller and less diverse set of host-specific in-
dicators, which however show many congruencies with
the amplicon-based data.



Fig. 2 Comparison of bacterial genus richness (a) and Shannon H (b) based on 16S rRNA gene amplicon and shotgun derived genus profiles
based on MEGAN highlighting the differences between variable regions, amplification methods, and metagenomic classifier, as well as between
the different host organisms. Colors show significance of amplification methods (a, c) or pairwise comparisons of methods (b, d) based on
pairwise t tests with Hommel P value adjustment (a, b), and approximate Wilcoxon test for the comparison between environmental categories (c,
d). Mean values are shown in gray symbols in plots a and b. Sample sizes are indicated below the samples
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Functional diversity within and between hosts
To examine the diversity (gene richness) of metage-
nomic functions across host species, we evaluated Egg-
NOG annotations (evolutionary genealogy of genes:
Non-supervised Orthologous Groups [16]) to obtain a
general functional spectrum (assembly-based and
MEGAN), in addition to annotations derived from a
database dedicated to functions interacting with carbo-
hydrates (CAZY—Carbohydrate-Active enZYmes) [17].
Overall, the individual host communities differ



Table 2 Taxonomic distance-based PERMANOVA results for differences in community composition (genus level) between host
species and host environments based on shared abundance (Bray-Curtis) and shared presence (Jaccard), based on whole genome
shotgun and different amplicon strategies (P values are adjusted via Hommel’s procedure)

Distance Factor Data Classifier DF F P PHommel R2 adj. R2

Bray-Curtis Organism Shotgun MEGAN 10,49 6.3517 0.0001 0.0001 0.5645 0.4756

Amplicon V1 V2 one-step 10,43 7.1026 0.0001 0.0001 0.6229 0.5352

V1 V2 two-step 10,42 4.2297 0.0001 0.0001 0.5018 0.3831

V3 V4 one-step 10,43 7.8964 0.0001 0.0001 0.6474 0.5654

V3 V4 two-step 10,41 3.7917 0.0001 0.0001 0.4805 0.3538

Environment Shotgun MEGAN 1,58 5.8958 0.0001 0.0004 0.0923 0.0766

Amplicon V1 V2 one-step 1,52 6.1588 0.0001 0.0001 0.1059 0.0887

V1 V2 two-step 1,51 4.6185 0.0001 0.0001 0.0830 0.0651

V3 V4 one-step 1,52 5.4975 0.0001 0.0001 0.0956 0.0782

V3 V4 two-step 1,50 3.3349 0.0001 0.0001 0.0625 0.0438

Jaccard Organism Shotgun MEGAN 10,49 4.7458 0.0001 0.0001 0.4920 0.3883

Amplicon V1 V2 one-step 10,43 3.6867 0.0001 0.0001 0.4616 0.3364

V1 V2 two-step 10,42 2.9760 0.0001 0.0001 0.4147 0.2754

V3 V4 one-step 10,43 4.0248 0.0001 0.0001 0.4835 0.3633

V3 V4 two-step 10,41 2.9343 0.0001 0.0001 0.4171 0.2750

Environment Shotgun MEGAN 1,58 4.3872 0.0001 0.0004 0.0703 0.0543

Amplicon V1 V2 one-step 1,52 3.8714 0.0001 0.0001 0.0693 0.0514

V1 V2 two-step 1,51 3.6541 0.0001 0.0001 0.0669 0.0486

V3 V4 one-step 1,52 4.3213 0.0001 0.0001 0.0767 0.0590

V3 V4 two-step 1,50 3.6646 0.0001 0.0001 0.0683 0.0497
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drastically in gene richness (EggNOG genes (MEGAN)
χ2 = 52.202, P < 2.10 × 10−16; EggNOG genes (assembly)
χ2 = 49.986, P < 2.10 × 10−16; CAZY χ2 = 48.815, P <
2.10 × 10−16; approximate Kruskal-Wallis test). Although
the values also differ considerably between methods,
overall, the functional repertoires are most diverse in the
vertebrate hosts, while only H. vulgaris and A. aerophoba
as aquatic hosts carry comparably diverse functional rep-
ertoires (Fig. 4a, : Figure S19). Interestingly, in contrast
to taxonomic diversity, we observe no difference in func-
tional diversity between aquatic and terrestrial hosts.
Next we examined community differences (beta diver-

sity) at the functional level, which are overall more pro-
nounced (average adj. R2 = 0.5084; Fig. 4) than those
based on taxonomic (genus level) classification (shotgun
adj. R2 = 0.4756, amplicon average adj. R2 = 0.4594; see
Tables 2 and 3; Figs. 3 and 4, Additional file 1: Figure
S20). On the functional level, aquatic and terrestrial
hosts are considerably less distinct than observed at the
taxonomic level (taxonomic shotgun data R2 = 0.0766,
taxonomic amplicon average adj. R2 = 0.0690, functional
shotgun data R2 = 0.0441; see Tables 2 and 3; Fig. 4,
Additional file 1: Figure S20). Variability of the func-
tional repertoires was lowest in A. aerophoba, D. mela-
nogaster feces, and M. musculus gut contents, while H.
vulgaris, C. elegans, and D. melanogaster gut samples
displayed the highest intra-group distances, which trans-
lates to a higher amount of functional heterogeneity be-
tween replicates (Additional file 1: Figure S21). This
reflects in large part the patterns we observed in taxo-
nomic variability of those host-associated communities
(Additional file 1: Figure S17).

Indicator functions
To identify specific functions that are characteristic of in-
dividual hosts, we applied indicator analysis to genomic
functions. General functions in EggNOG reveal several in-
teresting patterns, including CRISPR-related genes in A.
aerophoba, H. sapiens, and H. vulgaris, suggesting a par-
ticular importance of viruses in these communities. Fur-
ther, most species show characteristic genes mainly
involved in energy production and conversion, amino acid
transport and metabolism, replication, recombination, and
repair, as well as cell wall/membrane/envelope biogenesis
(Additional file 2: Tables S11–S13).
Analysis of carbohydrate-metabolizing functions based

on CAZY [17] (Carbohydrate-Active enZYmes) reveals
the highest number of characteristic glycoside hydrolases
(GH) in H. sapiens and M. musculus, whereas polysac-
charide lyases (PLs) for non-hydrolytic cleavage of



Fig. 3 Non-metric multidimensional scaling of Bray-Curtis distances based on genus abundance profiles derived from the different 16S rRNA
gene amplicon methods (V1 V2/V3 V4, one-step/two-step) and shotgun-derived genus profiles highlighting a host differences and b differences
between host environments (terrestrial/aquatic; see Table 2). Non-metric multidimensional scaling of Jaccard distances based on genus presence/
absence profiles derived from the different 16S rRNA gene amplicon methods and shotgun-derived genus profiles highlighting c host taxon
differences and d differences between host environments (terrestrial/aquatic; see Table 2). Both panels show a separation based on host
organisms and environments and not by method. Large symbols indicate the centroid of the respective host groups and vertical lines help to
determine their position in space. Sample sizes are equal to Fig. 2 (see also Additional file 2: Table S1)
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glycosidic bonds are present in A. aerophoba and H.
sapiens (Additional file 2: Table S14). Interestingly,
parts of the cellulosome are only associated to A.
aerophoba, while the freshwater polyp H. vulgaris car-
ries characteristic auxiliary CAZYs involved specific-
ally in lignin and chitin digestion, which may reflect
adaptations of the host microbial communities to
their diets (e.g., Artemia nauplii).
Performance of metagenome imputation from 16S rRNA
gene amplicon data using PICRUSt across metaorganisms
Researchers often desire to obtain the insight gained
from functional metagenomic information despite being
limited to 16S rRNA gene data, for which imputation
methods such as PICRUSt can be employed [5]. How-
ever, due to their dependence on variable region and
database coverage [5], these imputations should be



Fig. 4 Functional diversities were derived from the number and abundances of MEGAN-based EggNOG annotations. Functional richness between
a host organisms and b host environmental groups based is displayed, as well as functional differences between hosts (c) and environmental
groups (d). Non-metric multidimensional scaling is based on Bray-Curtis distances on the differences in functional composition between the host
organisms displayed (c, d; see Table 3). Large symbols indicate the centroid of the respective groups. Functional variation of communities based
on pairwise Bray-Curtis distances within host organism groups and environmental groups. Sample sizes for the host taxa are N = 5, except for D.
melanogaster gut tissue (N = 10; see Additional file 2: Table S1)
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viewed with caution. Given our dataset of both 16S
amplicon and shotgun metagenomic sequences, we sys-
tematically evaluated the performance of PICRUSt pre-
dictions across hosts and amplicon data type (V1 V2/V3
V4, one-step/two-step protocol). Beginning with the
mock community, the V1 V2 region displays lower per-
formance for imputing functions compared to V3 V4, as
indicated by a higher weighted Nearest Sequenced
Taxon Index (NSTI) (t = 17.812, P = 1.119 × 10−7; Add-
itional file 1: Figure S22A). High NSTI values imply low
availability of genome representatives for the respective
sample, due to either large phylogenetic distance for
each OTU to its closest sequenced reference genome or
a high frequency of poorly represented OTUs [5]. Com-
paring the distribution of functional categories based on
Clusters of Orthologous Groups (COG) [18] between



Table 3 Functional distance-based PERMANOVA results for differences in general functional community composition (EggNOG) and
carbohydrate-active enzymes (CAZY) between host species and host environments based on shared abundance (Bray-Curtis) and
shared presence (Jaccard) of functions (P values are adjusted via Hommel procedure)

Distance Factor Data DF F P PHommel R2 adj. R2

Bray-Curtis Organism CAZY 10,47 7.3323 0.0001 0.0001 0.6094 0.5263

EggNOG categories 10,49 5.6088 0.0001 0.0001 0.5337 0.4386

EggNOG gene + description 10,49 4.4454 0.0001 0.0001 0.4757 0.3687

EggNOG (MEGAN categories) 10,49 12.2594 0.0001 0.0001 0.7144 0.6562

EggNOG (MEGAN gene) 10,49 8.2788 0.0001 0.0001 0.6282 0.5523

Environment CAZY 1,56 5.4257 0.0001 0.0007 0.0883 0.0721

EggNOG categories 1,58 2.5429 0.0195 0.0195 0.0420 0.0255

EggNOG gene + description 1,58 3.0662 0.0001 0.0007 0.0502 0.0338

EggNOG (MEGAN categories) 1,58 3.7703 0.0015 0.0030 0.0610 0.0448

EggNOG (MEGAN gene) 1,58 3.7271 0.0002 0.0012 0.0604 0.0442

Jaccard Organism CAZY 10,47 3.9098 0.0001 0.0001 0.4541 0.3380

EggNOG categories 10,49 3.7179 0.0001 0.0001 0.4314 0.3154

EggNOG gene + description 10,49 2.5275 0.0001 0.0001 0.3403 0.2057

EggNOG (MEGAN categories) 10,49 7.7781 0.0001 0.0001 0.6135 0.5346

EggNOG (MEGAN gene) 10,49 5.4989 0.0001 0.0001 0.5288 0.4326

Environment CAZY 1,56 2.5866 0.0003 0.0021 0.0442 0.0271

EggNOG categories 1,58 1.4180 0.1442 0.1442 0.0239 0.0070

EggNOG gene + description 1,58 1.9535 0.0004 0.0024 0.0326 0.0159

EggNOG (MEGAN categories) 1,58 3.0425 0.0460 0.0920 0.0498 0.0335

EggNOG (MEGAN gene) 1,58 3.1222 0.0001 0.0009 0.0511 0.0347

Fig. 5 a Differences in the Nearest Sequenced Taxon Index (imputation success) between variable regions (average: Z = 0.3869, P = 0.7017,
approximate Wilcoxon test; probability: odds ratio = 1.5941, P = 0.1402, Fisher’s test) and amplification method (Z = 0.0667, P = 0.9472, approximate
Wilcoxon test; probability: odds ratio = 1.5511, P = 0.1436, Fisher’s test). b Procrustes correlation of imputed- and shotgun-based COG categories
among different techniques, with significantly higher correspondence between imputed and measured functional profiles in the V1 V2 compared
to the V3 V4 region (F1,18 = 7.8537, P = 0.0118, ANOVA). c Non-metric multidimensional scaling displays Bray-Curtis distances based on functional
category abundances (COG categories) derived from PICRUSt (V1 V2/V3 V4, one-step/two-step) and shotgun-based approaches (MEGAN, single
assembly). Ellipses represent standard deviations of points within the respective groups
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the different imputations (no cutoff applied) and the ac-
tual shotgun-based repertoires reveals considerable over-
lap except categories R (general function prediction
only) and S (function unknown) (Additional file 1: Fig-
ure S22B).
Next we evaluated functional imputations for the dif-

ferent host species and amplification methods. We found
no significant difference in average NSTI values or pre-
diction success (NSTI < 0.15) between amplification pro-
tocols or variable region. However, approximately a
third (31.8%) of the samples are lost due to incomplete
imputation (NSTI > 0.15; Fig. 5a). Notable problematic
host taxa are A. aerophoba and H. vulgaris, for which no
sample remained below the NSTI cutoff value. Other
host taxa displayed clear differential performance with
regard to the variable region used, whereby H. sapiens,
N. vectensis, and T. aestivum were successfully predicted
based on V3 V4, but not V1 V2. However, when we em-
ploy Procrustes tests to compare community functional
profiles based on shotgun sequencing (single assembly,
MEGAN) and functional imputations at the COG-
category level, we find a lower correspondence of the
V3 V4-based imputations compared to those based on
V1 V2 (Fig. 5b), while the amplification methods dis-
played no significant difference. A similar pattern is ob-
served when we correlate community differences based
on shotgun results and lower level (single functions)
COG annotations based on PICRUSt, although the dif-
ference is not significant (F1,18 = 0.6172, P = 0.4423;
ANOVA).
To investigate the similarities among methods in more

detail, we merged shotgun and PICRUSt based annota-
tions at the level of COG categories. Principle coordinate
analysis reveals only small differences between impu-
tations with regard to amplification method or vari-
able region (Fig. 5c). However, large differences exist
between the PICRUSt and shotgun-based functional
repertoires, as well as between the shotgun techniques
(MEGAN, single assembly). Differences between the
shotgun techniques were significant but smaller than
their distance to the imputed functional spectra
(Fig. 5c; Additional file 2: Table S15), a pattern also
found in the relative abundances of functional cat-
egories (Additional file 1: Figure S23).
In summary, the PICRUSt-imputed functional reper-

toires significantly differ from actual shotgun profiles.
While variation in imputation success is largely
dependent on the composition of the particular host
community, V3 V4 appears to more often yield success-
ful imputations. However, when successful, V1 V2-
derived imputations display closer similarity to actual
functional profiles. Finally, the amplification method
(one-step, two-step) appears to have no significant effect
on the quality of functional imputations. These data
therefore support the notion that metagenome imputa-
tions should be evaluated with care, as they depend on
the underlying variable region and sample source.

Phylogenetic patterns in microbial community
composition
The term “phylosymbiosis” refers to the phenomenon
where the pattern of similarity among host-associated
microbial communities parallels the phylogeny of their
hosts [19]. Highly divergent hosts with drastic differ-
ences in physiology and life history might be expected to
overwhelm the likelihood of observing phylosymbiosis,
which can typically be observed within a given host clade
[19]. However, the factors driving differences in compos-
ition among our panel of hosts may also be expected to
vary in terms of the bacterial phylogenetic scale at which
they are most readily observed [20]. Thus, we evaluated
the degree to which bacterial community relationships
(beta diversity) reflect the underlying phylogeny of our
hosts at a range of bacterial taxonomic ranks, spanning
from the genus to the phylum level.
In order to assess the general overlap between beta di-

versity and phylogenetic distance of the host species, we
performed Procrustes analysis [21]. These analyses reveal
that the strongest phylogenetic signal is observed when
bacterial taxa are grouped at the order and/or family
level, whereby the one-step protocols and the V3 V4 re-
gion display greater correlations to phylogenetic distance
(Fig. 6). A similar pattern is observed for shotgun-based
community profiles (i.e., MEGAN), although its fit in-
creases again at the genus level. Measuring beta diversity
based on co-occurrence of bacterial taxa between hosts
(Jaccard; Fig. 6a) displays a weaker correspondence to
host phylogeny than the abundance-based measure
(Bray-Curtis; Fig. 6b).
To assess the fit of individual host taxa, we examined

the residuals of the correlation between community
composition and phylogenetic distance. This reveals a
large variation in correspondence among host taxa, with
M. musculus, M. leidyi, H. sapiens, and D. melanogaster
(feces) displaying the highest, while H. vulgaris, C. ele-
gans, and A. aerophoba display the lowest correspond-
ence between their microbiome composition and
phylogenetic position (largest residuals; Additional file 1:
Figure S24), pointing towards increased environmental
influences on these microbial communities. Further-
more, terrestrial hosts display an overall better corres-
pondence between co-occurrences of bacterial genera
and host relatedness (V1 V2 one-step: Z = 2.9578, P =
0.0025), as do measurements based on V3 V4 (one-step:
Z = 2.7496, P = 0.0054; two-step: Z = 2.8097, P = 0.0046;
approximate Wilcoxon test).
Next, given the peak of correspondence between bac-

terial community composition and host phylogeny



Fig. 6 Multivariate correlation (Procrustes analyses) of phylogenetic distance among host organisms and community distances based on (a)
shared presence among samples or (b) differences in abundance in 16S rRNA gene amplicon or shotgun-derived community profiles at different
taxonomic cutoffs (Phylum to Genus, additional species level OTUs for amplicon-based profiles). Similar results are shown for the correspondence
between phylogenetic distances among samples and their distances based on (a) shared presence or (b) abundance differences in their
functional composition. The functional composition was derived from COGs and COG categories imputed from PICRUSt, EggNOG-derived COG
categories and genes, and CAZY functions. All correlations are significant at P ≤ 0.05 (10,000 permutations)
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observed at the order and/or family level, we set out to
identify individual community members whose abun-
dances best correlate to host phylogenetic distance using
Moran’s I eigenvector method [22]. This reveals 41 bac-
terial families and 36 orders with significant phylogen-
etic signal based on one or more amplicon data set,
whereby 16 families and 18 orders display repeated asso-
ciations across methods (e.g., Clostridia, Bacteroidales,
Desulfovibrionales; Additional file 2: Table S16; Add-
itional file 1: Figures S25 and S26). Analyzing communi-
ties based on shotgun data on the other hand identifies
75 bacterial families and 19 orders associated with
phylogenetic distances, whereby 17 and 20 display re-
peated associations, respectively (Additional file 2: Table
S16; Additional file 1: Figure S27). The combined results
of these analyses identify several families and orders
with strong and consistent phylogenetic associations,
in particular for the vertebrate hosts (e.g., Bacteroida-
ceae/Bacteroidales, Bifidobacteriaceae/Bifidobacteriales,
Desulfovibrionaceae/Desulfovibrionales, Ruminococca-
ceae/Clostridiales; see Additional file 2: Table S16).
Other individual examples include bacteria related to Heli-
cobacteraceae/Campylobacterales in A. aurita, which are
observed in other marine cnidarians and may be involved
in sulfur oxidation [23]. Alcanivoracaceae, an alkane-
degrading bacterial group, is strongly associated to the
coastal cnidarian N. vectensis. This association might ori-
ginate from adaptation to a polluted coastal environment
[24]. Acidobacteria Gp6 and Gp9 specifically occur in A.
aerophoba and are commonly associated to the core mi-
crobial community of sponges [25].

Phylogenetic patterns in functional community composition
In order to contrast the patterns observed at the taxo-
nomic level to those based on function, we used Pro-
crustes correlation to measure the overlap between
phylogenetic distance and community distance based on
the panel of functional categories in our analyses. Inter-
estingly, the two functional categories displaying the
greatest correspondence to host phylogeny are the
CAZY and single EggNOG-based functions (Fig. 6). The
remainder of patterns between phylogeny and bacterial
functional spectra differed among the host species and
functional categories (Additional file 1: Figure S28), and
T. aestivum and D. melanogaster (feces) display the low-
est correspondence, while C. elegans, M. musculus, and
H. sapiens display the best correspondence (smallest re-
siduals; Additional file 1: Figure S24) between their func-
tional repertoire and phylogenetic position. As observed
for the taxonomic analyses, terrestrial hosts again display
a slightly better correlation than aquatic hosts (smaller
residuals), in particular for the co-abundance of
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EggNOG categories (Z = 2.2116, P = 0.0267), CAZY (Z =
2.0393, P = 0.0414), and the co-occurrence of EggNOG
categories (Z = 2.7377, P = 0.0061) and genes (Z = 3.3062,
P = 0.0007; approximate Wilcoxon test) among hosts.
Finally, to reveal individual functions correlating to

host phylogeny, we used the aforementioned Moran’s I
eigenvector analyses with additional indicator analyses
to narrow the potential clade associations. Interestingly,
most functions that correlate to a specific host taxon/
clade (1–3 host taxa) are mainly restricted to vertebrate
hosts or in combination with a vertebrate host (Add-
itional file 2: Tables S17–S20). This pattern is repeated
across all functional annotations used in this study. Ex-
amples include fucosyltransferases, fucosidases, and
polysaccharide-binding proteins, as well as different ly-
ases for hyaluronate, xanthan, and chondroitin that stem
from CAZY (see Additional file 1: Figure S28; Add-
itional file 2: Table S17). These functions are related to
glycan and mucin degradation and interaction, which
mediate many intimate host-bacterial interactions and
are also observed in subsequent analyses based on gen-
eral functional databases (EggNOG; Additional file 2:
Tables S18–S20). Many other phylogenetically correlated
functions appear to be driven by the vertebrate hosts as
well, which likely reflects the high functional diversity
within this group (Fig. 4 and Additional file 1: Figure
S21). Only LPXC and LPXK (EggNOG), genes involved
in the biosynthesis of the outer membrane, are exclu-
sively associated to the non-vertebrate hosts (LPXC,
UDP-3-O-acyl-N-acetylglucosamine deacetylase; LPXK,
Tetraacyldisaccharide 4′-kinase), as is an oxidative dam-
age repair function (MSRA reductase) associated to H.
vulgaris (Additional file 2: Table S19; Additional file 1:
Figure S28). Finally, antibiotic resistance genes and viru-
lence factors also show frequent phylogenetic and host-
specific signals (Additional file 2: Tables S18 and S19;
Additional file 1: Figure S28).

Discussion
Despite the great number of metagenomic studies pub-
lished to date, which range in their focus on technical,
analytical, or biological aspects, our study represents a
unique contribution given its breadth of different host
samples analyzed with a panel of standardized methods.
In particular, the trade-offs between 16S rRNA gene
amplicon and shotgun sequencing concerning amplifica-
tion bias, functional information, and both monetary
and computational costs warrant careful consideration
when designing research projects. While 16S rRNA gene
amplicon-based analyses are subject to considerable
skepticism and criticism, we demonstrate that in many
aspects similar, if not superior characterization of bacter-
ial communities is achieved by these methods. We also
show, however, that important insight can be gained
through the combination of taxonomic and functional
profiling, and that imputation-based functional profiles
significantly differ from actual profiles. Our findings thus
provide a guide for selecting an appropriate method-
ology for metagenomic analyses across a variety of
metaorganisms. Finally, these data provide novel insight
into the broad-scale evolution of host-associated bacter-
ial communities, which can be viewed as particularly re-
liable given the repeatability of observations (e.g.,
differences between aquatic and terrestrial hosts, indica-
tor taxa) across methods.
Given the concerns regarding the accuracy of 16S

rRNA gene amplicon sequencing, other studies such as
that of Gohl et al. [8] performed systematic comparisons
of different library preparation methods and found su-
perior results for a two-step amplification procedure.
This method offers the additional advantage that one
panel of adapter/barcode sequences can be combined
with any number of different primers. Our first analyses
were based on a standard mock community including
Gram-positive and Gram-negative bacteria from the Ba-
cilli and Gamma-Proteobacteria (eight species), as well
as two fungi, which did not support an improvement of
performance based on the two-step protocol. However, a
number of changes were made to the Gohl et al. [8]
protocol to adapt it to our lab procedures (e.g., larger re-
action volumes, polymerase, variable region, heterogen-
eity spacers) that may contribute to these discrepancies,
in addition to our different and diverse set of samples
and other factors with potential influence on the per-
formance of amplicon sequencing [6–8, 26–28]. The
complexity of the mock community, i.e., the number of
taxa, distribution, and phylogenetic breadth, may also
have an influence on the discovery of clear trends in
amplification biases or detection limits for certain taxo-
nomic groups [29]. Thus, the even and phylogenetically
shallow mock community in our study may be less
suited than the staggered and diverse mixtures used in
other studies [8] but still provides valuable information
on repeatability, primer biases, and accuracy [29]. None-
theless, when applied to our range of complex host-
associated communities, we also found that significant
differences in most parameters were due to the variable
region rather than amplification method, and in many
cases, biological signals were either improved or limited
to the one-step protocol. Thus, in combination with the
less complex laboratory procedures associated with the
one-step protocol, we would generally recommend this
procedure over two-step protocols.
Additional sources of variation influencing the out-

come of our 16S rRNA gene amplicon-based community
profiling are nucleic acid extraction procedures and the
bioinformatic pipelines we employed. For the former, ex-
traction procedures differed between host species due to
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specific optimizations required for individual host spe-
cies. Thus, certain differences in taxonomic and func-
tional composition may be influenced by the specific
protocols employed, as observed elsewhere [30]. Differ-
ences in the latter range from trimming and merging to
clustering and classification, which are stringent and in-
corporate more reliable de novo clustering algorithms
[31] as well as different classification databases [32]. Het-
erogeneity among the different amplicon approaches is
however smaller than the differences between the ampli-
con and shotgun methods, as observed in other bench-
marking studies [27]. Differences between shotgun
approaches have been investigated in detail and also
yield varying performances among classifiers, but in gen-
eral, find a comparatively high performance of MEGAN-
based approaches [9, 33, 34], which we also confirm in
our study.
Given the limited number of studies that have com-

pared imputed- and shotgun-derived functional reper-
toires [5, 35], our study also provides important
additional insights. As imputation by definition is data-
dependent, the differential performance and prediction
among hosts in our study may in large part be explained
by the amount of bacteria isolated, sequenced, and de-
posited (16S rRNA or genome) from these hosts or their
respective environments. This seems to be most critical
for the aquatic hosts. Furthermore, we observe a clear
effect of variable region on the prediction performance,
which is most obvious based on the mock community.
The PICRUSt algorithm was developed and tested using
primers targeting V3 V4 16S rRNA, and thus
optimization of the imputation algorithm might be
biased towards this target over the V1 V2 variable re-
gion. Although these performance differences, in par-
ticular the bias towards model organisms compared to
less characterized communities (e.g., hypersaline micro-
bial mats), were previously shown [5], our study provides
additional, experimentally validated guidelines for a
number of novel host taxa.
Interestingly, the strongest correspondence between bac-

terial community similarity and host genetic distance was
detected at the bacterial order level for most of the
employed methods. This may on the one hand reflect the
deep phylogenetic relationships between our host taxa, such
that turnover of bacterial taxa erodes phylosymbiosis over
time [19, 20]. On the other hand, some of the more striking
observations made among our host taxa are the differences
between aquatic and terrestrial hosts, both at the level of
alpha and beta diversity. Based on a molecular clock for the
16S rRNA gene of roughly 1% divergence per 50 million
years [36], bacterial order level divergence corresponds well
with the timing of animal terrestrialization (425–500 MYA)
[37, 38]. Although evolutionary rates can widely vary
among bacteria species [39], other studies of individual gut
microbial lineages such as the Enteroccoci indicate that ani-
mal terrestrialization was indeed a likely driver of diversifi-
cation [40]. Specifically, the changing availability of
carbohydrates in the host gut can be seen as a main driver
of this diversification, which is consistent with the associ-
ation of CAZY-based functional repertoires correlating to
phylogenetic distance in our data set [19, 41].
In contrast to the patterns observed based on 16S

rRNA gene amplicon-based profiles, the differentiation
of bacterial communities according to host habitat was
less pronounced based on functional genomic reper-
toires. This raises the possibility that the colonization of
land by ancient animals required the acquisition of new,
land-adapted bacterial lineages to perform some of the
same ancestral functions. The overall observation of in-
creased beta diversity among terrestrial compared to
aquatic hosts (Additional file 1: Figure S19) could in part
reflect differential acquisition among host lineages after
colonizing land, although dispersal in the aquatic envir-
onment may on the other hand act as a greater hom-
ogenizing factor among aquatic hosts. The stronger
correspondence between bacterial community and host
phylogenetic distance among terrestrial hosts is also gen-
erally consistent with this hypothesis. However, the
higher alpha diversity and the slightly lower correspond-
ence with the phylogenetic patterns in aquatic hosts may
also indicate a higher influence of environmental bac-
teria or a lack of physiological control over bacterial
communities.
Bacterial taxa and functions involved in carbohydrate

utilization were among the most notable associations to
individual hosts, groups of hosts, and/or host phylogen-
etic relationships. Taxa such as Bacteroidales, Rumino-
coccaceae/Ruminococcales, and Clostridia associated to
humans and/or mice include members known for a mu-
cosal lifestyle, and these hosts also display the most di-
verse and abundant repertoire of carbohydrate-active
enzymes (particularly glycosylhydrolases) in their micro-
biome. Other examples include sialidases, esterases, and
fucosyltransferases, as well as different extracellular
structures that appear to be specific to aquatic hosts, in-
dicating differences in mucus and glycan composition
according to this host environment. Glycan structures
provide a direct link between the microbial community
and the host via attachment, nutrition, and communica-
tion [42, 43], and the composition of mucin and glycan
structures themselves show strong evolutionary patterns
and are distinct among taxonomic groups [41]. Thus, a
high diversity of glycan structures within and between
hosts may determine the specific sets carbohydrate-
facilitating enzymes of the respective microbial
communities.
In addition to the bacterial carbohydrate hydrolases

that digest surrounding host and dietary carbohydrates,
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we also identified a number of glycosyltransferases asso-
ciated with capsular polysaccharide synthesis (Add-
itional file 2: Tables S19 and S20). This type of
glycosylation is an important facilitator for host associ-
ation and survival [44] and plays a crucial role in infec-
tions [45] in mutualists and pathogens alike [44, 46].
Thus, capsular and excreted glycan structures are im-
portant for the successful colonization and persistence
in different environments [47, 48] and host organisms
[44, 48].

Conclusions
In summary, the systematic comparison of five different
metagenomic sequencing methods applied to ten differ-
ent holobiont yielded a number of novel technical and
biological insights. Although important exceptions will
exist, we demonstrate that broad-scale biological pat-
terns are largely consistent across these varying
methods. As many aspects of differential performance in
our study are host-specific (more detailed description of
individual hosts can be found in Additional file 1), future
development and benchmarking analyses would also
benefit from including a range of different host/environ-
mental samples.

Methods
DNA extraction and 16S rRNA gene amplicon sequencing
Protocols for each host type are described in Add-
itional file 1: Figures S18–S28. Each library (16S rRNA
gene amplicon, shotgun) included at least one mock
community sample based on the ZymoBIOMICS™ Mi-
crobial Community DNA Standard (Lot.: ZRC187324,
ZRC187325) consisting of eight bacterial species
(Pseudomonas aeruginosa (10.4%), Escherichia coli
(9.0%), Salmonella enterica (11.8%), Lactobacillus fer-
mentum (10.3%), Enterococcus faecalis (14.1%), Staphylo-
coccus aureus (14.6%), Listeria monocytogenes (13.2%),
Bacillus subtilis (13.2%)) and two fungi (Saccharomyces
cerevisiae (1.6%), Cryptococcus neoformans (1.8%)).
The 16S rRNA gene was amplified using uniquely bar-

coded primers flanking the V1 and V2 hypervariable re-
gions (27F–338R) and V3 V4 hypervariable regions
(515F–806R) with fused MiSeq adapters and heterogen-
eity spacers in a 25-μl PCR [28]. For the traditional one-
step PCR protocol, we used 4 μl of each forward and re-
verse primer (0.28 μM), 0.5 μl dNTPs (200 μM each),
0.25 μl Phusion Hot Start II High-Fidelity DNA Poly-
merase (0.5 Us), 5 μl of HF buffer (Thermo Fisher Scien-
tific, Inc., Waltham, MA, USA), and 1 μl of undiluted
DNA. PCRs were conducted with the following cycling
conditions (98 °C, 30 s; 30 × [98 °C, 9 s; 55 °C, 60 s; 72
°C, 90 s]; 72 °C, 10 min; 10 °C, infinity) and checked on
a 1.5% agarose gel. Using a modified version of the re-
cently published two-step PCR protocol by Gohl et al.
2016, we employed for the first round of amplification
fusion primers consisting of the 16S rRNA gene primers
(V1 V2, V3 V4) and a part of the Illumina Nextera
adapter with the following cycling conditions in a 25- μl
PCR reaction (98 °C, 30 s; 25 × [98 °C, 10 s; 55 °C, 30 s;
72 °C, 60 s]; 72 °C, 10 min; 10 °C, infinity) [8]. Following
the PCR, the product was diluted 1:10 and 5 μl were
used in an additional reaction of 10 μl (98 °C, 30 s; 10 ×
[98 °C, 9 s; 55 °C, 30 s; 72 °C, 60 s]; 72 °C, 10 min; 10 °C,
infinity) utilizing the Nextera adapter overhangs to ligate
the Illumina adapter sequence and individual MIDs to the
amplicons, following the manufacturer’s instructions. The
PCR protocol we used was 1 μl of each forward and re-
verse primer (5 μM), 0.3 μl dNTPs (10 μM), 0.2 μl Phusion
Hot Start II High-Fidelity DNA Polymerase (2 U/μl), 2 μl
of 5 ×HF buffer (Thermo Fisher Scientific, Inc., Waltham,
MA, USA), and 5 μl of the diluted PCR product. The con-
centration of the amplicons was estimated using a Gel
Doc™ XR+ System coupled with Image Lab™ Software
(BioRad, Hercules, CA USA) with 3 μl of O’GeneRulerTM
100 bp Plus DNA Ladder (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA) as the internal standard for band in-
tensity measurement. The samples of individual gels were
pooled into approximately equimolar sub-pools as indi-
cated by band intensity and measured with the Qubit
dsDNA br Assay Kit (Life Technologies GmbH, Darm-
stadt, Germany). Sub-pools were mixed in an equimolar
fashion and stored at − 20 °C until sequencing.
Library preparation for shotgun sequencing was per-

formed using the NexteraXT kit (Illumina) for fragmen-
tation and multiplexing of input DNA following the
manufacturer’s instructions. Amplicon sequencing was
performed on the Illumina MiSeq platform with v3
chemistry (2 × 300 cycle kit), while shotgun sequencing
was performed on an Illumina NextSeq 500 platform via
2 × 150 bp Mid Output Kit at the IKMB Sequencing
Center (CAU Kiel, Germany).

Amplicon analysis
The respective V1 V2 and V3 V4 PCR primer sequences
were removed from the sequencing data using cutadapt
(v.1.8.3) [49]. Sequence data in FastQ format was quality
trimmed using sickle (v.1.33) in paired-end mode with
default settings and removing sequences dropping below
100 bp after trimming [50]. Forward and reverse read
were merged into a single amplicon read using
VSEARCH allowing fragments with a length of 280–350
bp for V1 V2 and 350–500 bp for V3 V4 amplicons [51].
Sequence data was quality controlled using fastq_qual-
ity_filter (FastX Toolkit) retaining sequences with no
more than 5% of per-base quality values below 30 and
subsequently with VSEARCH discarding sequences with
more than one expected error [51, 52]. Reference-guided
chimera removal was performed using the gold.fa
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reference in VSEARCH (v2.4.3). The UTAX algorithm
was used for a fast classification of the sequence data in
order to remove sequences not assigned to the domains
Bacteria or Archaea and exclude amplicon fragments
from Chloroplasts [53]. Notably, only a total of 15 se-
quences were assigned to the domain Archaea, all found
in two samples of human feces, accounting for less than
0.1% of the clean reads in these samples. The entire
cleaned sequence data was concatenated into a single file
and dereplicated and processed with VSEARCH for
OTU picking using the UCLUST algorithm [54] using a
97% similarity threshold. OTUs were again checked for
chimeric sequences, now using the de novo implementa-
tion of the UCHIME algorithm in VSEARCH [51, 54,
55]. All clean sequence data of the samples were mapped
back to the cleaned OTU sequences using VSEARCH.
OTU sequences and clean sequences mapping to the
OTUs were taxonomically annotated using the RDP
classifier algorithm with the RDP training set 14 [56,
57]. Sequence data were normalized by selecting 10,000
random sequences per sample. Taxon-by-sample abun-
dance tables were created for all taxonomic levels from
Phylum to Genus, as well as for OTUs.

PICRUSt functional imputations
Species-level OTUs (97% similarity threshold) were fur-
ther classified using the GreenGenes (August 2013)
database [58] via RDP classifier as implemented in
mothur (v1.39.5) and merged with the abundances into
a biome file which was uploaded to the Galaxy PICRUSt
v1.1.1 pipeline (http://galaxy.morganlangille.com/) to de-
rive functional imputations (COG predictions) [5]. To
achieve accurate functional predictions, samples with
NSTI ≤ 0.15 (weighted Nearest Sequenced Taxon Index)
were pruned from the data set, as recommended by the
developers.

Shotgun sequencing
Raw demultiplexed sequences were trimmed via Trim-
momatic (v0.36) for low-quality regions with a minimum
length of 50 bp as well as for adaptor and remaining
MID sequences [59]. After trimming reads were mapped
to host-specific genome databases and ΦX with add-
itional retention databases containing all fully sequenced
bacterial and metagenomic genomes (5 September 2015)
via DeconSeq (v0.4.3) [60]. Single and paired sequences
were repaired using the BBTools (v37.28) repair function
[61]. Combined sequences were searched against the
non-redundant NCBI database (28 July 2017) via DIA-
MOND [62] with (E value cutoff 0.001, v0.8.28) and
MEGAN [13] classifying hits by functions (EggNOG—
October 2016) and taxa (May 2017) (v6.6.1). For assem-
blies of single samples, we used metaSPADES [63]
(v3.9.1) using paired reads in addition to unpaired reads
left from the previous steps. PROKKA (v1.12) was used
for gene calling and initial genome annotation [64] using
the metagenome option with additional identifying
rRNA and snRNA via barnap, ARAGORN [65], and In-
fernal [66]. ORFs were further annotated via EggNOG
annotation via HMMER models implemented in the
EggNOG-mapper (v0.12.7) [16, 67], CAZY database via
dbCAN (v5, July 24, 2016), and HMMER3 [17, 68]. Gene
abundances were derived from mapping the all reads
back to the predicted ORF via bowtie2 (v2.2.6) [69] and
calculated TPM (transcripts per kilobase million) via
SamTools (v1.5) [70].
18S rRNA genes were obtained from NCBI GeneBank

and aligned via ClustalW (v1.4) [71] for host tree con-
struction, which includes A. aerophoba (gi:51095211,
AY5917991), M. leidyi (gi:14517703, AF2937001), H.
vulgaris (gi:761889987, JN5940542), A. aurita (gi:
14700050, AY0392081), N. vectensis (gi:13897746,
AF2543821), T. aestivum (gi:15982656, AY0490401), M.
musculus (gi:374088232, NR_0032783), H. sapiens (gi:
36162, X032051), D. melanogaster (gi:939630477, NR_
1335591), and C. elegans (gi:30525807, AY2681171).
Phylogenetic distance was calculated via DNADIST
(v3.5c) [72] and a maximum likelihood tree was con-
structed via FastTree v2.1 CAT+Γ model [73]. Accuracy
was improved via increased minimum evolution rounds
for initial tree search [−spr 4], more exhaustive tree
search [−mlacc 2], and a slow initial tree search
[−slownni].

Statistical analysis
Statistical analyses were carried out via R (v3.4.3) [74].
Alpha diversity indices (richness, Shannon-Weaver
index) and beta diversity metrics based on the shared
presence (Jaccard distance) or abundance (Bray-Curtis
distance) of taxa were calculated in the vegan package
[75] and ordinated via Principal Coordinate Analysis
(PCoA, avoiding negative eigenvalues), or via non-metric
multidimensional scaling (NMDS) using a maximum of
10,000 random starts to obtain a minimally stressed con-
figuration in three dimensions. Clusters were fit via an
iterative process (10,000 permutations) and tested for
separation by direct gradient analysis via distance-based
redundancy analyses and permutative ANOVA (10,000
permutations) [76, 77]. Univariate analyses were carried
out with approximate Wilcoxon/Kruskal tests as imple-
mented in coin [78] (10,000 permutations). Procrustes
tests were used to relate pairwise community distances
based on either different data sources such as functional
repertoires or taxonomic composition, as well as phylo-
genetic distances [21, 79]. Moran’s I eigenvector tech-
nique was employed to correlate bacterial community
members and their functions to phylogenetic divergence,
as implemented in ape (10,000 permutations) [22, 80].

http://galaxy.morganlangille.com/
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Indicator species analysis, employing the generalized in-
dicator value (IndVal.g), was used to assess the predict-
ive value of a taxon for each respective host phenotype/
category as implemented in indicspecies [15]. Linear
mixed models, as implemented in nlme were used to
compare the influence of amplification method or vari-
able region without the influence of the organism of ori-
gin [81]. We employed the Hommel and Benjamini-
Yekutieli adjustment of P values when advised [82, 83].
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