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Abstract

expected differences between these substrates.

membranes and membrane-associated proteins.

comparing dental plaque and calculus.

Background: Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be
used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate
as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plagque
biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in
microbial characteristics between the sample types have not yet been systematically explored. Here, we compare
the microbial profiles of modern dental plague, modern dental calculus, and historic dental calculus to establish

Results: Metagenomic data was generated from modern and historic calculus samples, and dental plaque
metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional
profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons
between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles
between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and
periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling
revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune
response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid

Conclusions: Overall, we find that there are systematic microbial differences between plaque and calculus related
to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies

Keywords: Ancient dental calculus, Oral microbiome, Metagenomics, Metaproteomics, Periodontal disease

Background

Dental calculus is a mineralized oral plaque biofilm that
preserves biomolecules such as DNA and protein over
long periods of time in the archeological record [1-7],
and as such, it has the potential to offer insight into
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human microbiome evolution. Most clinical oral micro-
biome studies focus on dental plaque rather than calcu-
lus, in part because it is easier to study, it represents a
living (and thus active) biofilm, and because dental
plaque is directly responsible for oral pathology [8].
Comparatively less is known about the structure and for-
mation of dental calculus, and studies of modern calcu-
lus are additionally hampered by the fact that deposits
are smaller and less prevalent in living populations prac-
ticing tooth brushing and other forms of active oral
hygiene [9, 10]. Although calculus forms from dental
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plaque, microbial profile differences have been noted be-
tween historic calculus and modern dental plaque [1, 2],
but reasons for these differences, such as degree of biofilm
maturation, have not yet been sufficiently investigated. In
order to advance the studies of oral microbiome evolution,
it is necessary to understand the basis of observed differ-
ences between the microbial profiles of ancient dental
calculus and modern dental plaque.

Oral biofilm development and maturation have been
characterized both in vitro and in vivo, and the micro-
bial succession of dominant species over hours and days
is well-described [11-14]. This has led to the classifica-
tion of some oral taxa as “early colonizers” and others as
“late colonizers” [15], and progressive taxonomic shifts
are correlated with structural and resource changes in
the biofilm through time. Early colonizers, for example,
are typically facultative anaerobes and often saccharoly-
tic, feeding primarily on salivary mucins and other glyco-
proteins [16]. During the course of biofilm growth and
maturation, oxygen is progressively depleted and proteo-
Iytic obligate anaerobes, including methanogens and
sulfate-reducers, rise in abundance [16], thus resulting in
the formation of a fully mature oral biofilm profile. This
mature community is likely the biofilm stage historically
preserved in dental calculus. The microbial profiles of
ancient dental calculus often contain high proportions of
proteolytic obligate anaerobes, including Tannerella,
Porphyromonas, Methanobrevibacter, and Desulfobulbus
[1, 2], and therefore resemble a fully mature oral biofilm.
However, today, frequent removal of supragingival
plaque by tooth brushing and professional dental clean-
ing prevents the biofilm from fully maturing. This po-
tentially makes a direct comparison with contemporary
dental plaque, especially plaque regularly disrupted by
oral hygiene regimens, more complicated.

Several species that characterize mature oral biofilms
are strongly associated with oral disease in dental
plaque. Socransky et al. [17] assessed the subgingival
plaque bacterial profiles by cluster analysis and described
5 now-classic microbial complexes, named by color:
yellow, purple, green, orange, and red. They further de-
termined that the orange, and especially red, complexes
were associated with clinical parameters of periodontal
disease. Consequently, the trio of anaerobic, proteolytic,
and asaccharolytic species known as the “red com-
plex”—Porphyromonas gingivalis, Tannerella forsythia,
and Treponema denticola—have come to be widely
regarded as specific indicators of oral disease [18-22],
despite being more abundant in mature plaque generally.
Whether these species are specifically representative of
disease-associated biofilms in ancient dental calculus is
not yet clear.

Here, we compare microbial community profiles
among modern dental plaque, modern dental calculus,
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and historic dental calculus in order to establish charac-
teristic microbial profile differences between plaque and
calculus, as well as between calculus samples before and
after the twentieth century modernization efforts in oral
hygiene, sanitation, and medicine. In addition, we inves-
tigated the differences in microbial profiles between
calculus from healthy tooth sites and diseased tooth
sites, to understand whether the microbial species
distinctions between healthy tooth biofilm profiles and
disease tooth biofilm profiles reported in dental plaque
are also present in calculus. We found that species pro-
files of plaque and calculus are similar, but with notable
exceptions related to biofilm maturity, while disease-
associated species are generally more abundant in calculus
despite tooth health status. Finally, we demonstrate that
integration of taxonomic, proteomic, and metabolomic
profiles of historic calculus can reveal preservation pat-
terns that would not be clear from single-omics profiling.

Results

Authentication of a preserved oral biofilm in calculus
samples

Overall, source estimation analysis indicates good oral
microbiome preservation across the datasets. Source-
Tracker analysis of historic and modern calculus sam-
ples (Additional file 1: Figure S1) demonstrated that
both sample groups have a predominantly oral microbial
signature. The strong gut signature in several samples is
characteristic of calculus and a known artifact of using
QIIME to classify filtered 16S rRNA metagenomic reads,
whereby several characteristically oral taxa (e.g., Lacto-
bacillales spp.) are systematically misclassified as close
relatives in the gut [23]. Additionally, the strong “un-
known” signature in several samples likely stems from
the presence of similar taxa found in both oral and gut
source samples, such as Methanobrevibacter spp. and
Tisseriellaceae [5]. Prior to analysis, historic calculus
sample sequence reads were assessed for the presence of
damage patterns that characterize ancient DNA. Map-
Damage plots of reads that mapped to the genome of
the oral bacterium Tannerella forsythia, a species both
prevalent and abundant in historic dental calculus, and
to the human genome display elevated C to T
transitions at molecule ends (Additional file 1: Figure
S2), indicative of deamination, a pattern typical of
authentic ancient DNA.

Dental calculus and plaque biofilm communities are
distinct

To investigate whether there are systematic differences
in microbial communities between modern dental
plaque and ancient and modern dental calculus, we
compared the communities found in modern supra- and
subgingival plaque from the Human Microbiome Project
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Table 1 Sample demographics

Plaque Modern calculus Historic calculus

Source HMP This study This study
N 20 10 43
Periodontal disease”

Yes 0 6 18

No 20 4 25

Caries’

Yes 0 10 8

No 20 0 35

“On the tooth/teeth sampled. Detailed sample metadata is presented in
Additional file 2: Table S1

(HMP), modern calculus, and 200-year-old historic cal-
culus (Table 1). A principal component analysis (PCA)
of the species profiles of each group clustered the mod-
ern plaque samples distinctly from the calculus samples,
while the modern and historic calculus samples were
intermixed (Fig. la), suggesting that the differences
between microbial profiles of plaque and calculus are
more pronounced than between historic and modern
calculus. We investigated whether periodontal disease or
caries on the sampled tooth explained the clustering of
the calculus samples, but no clustering was observed
based on the presence or absence of disease in historic
samples (Fig. 1b). The modern samples appear to cluster
by health status with the exception of a single disease
site sample, although additional samples are needed to
confirm this trend. Further, the distribution of calculus
sample points is not related to the sequencing depth or
sequencing run. Among HMP samples, separation was
observed for supra- or subgingival plaque (Additional
file 1: Figure S3).

Because the HMP samples were collected from pa-
tients with no overt evidence of periodontal disease or
caries, we investigated the differences between healthy
tooth site plaque and healthy tooth site calculus by per-
forming a PCA using all HMP samples and only healthy
site calculus from both modern and historic sources.
Again, the HMP samples clustered distinctly from the
calculus samples, with no separation of modern and his-
toric calculus (Fig. 2a), but were not significantly differ-
ent by adonis test. Twenty-six species were significantly
(g < 0.05, effect size > 1) differentially abundant between
plaque and calculus samples (Fig. 2b), with 13 more
abundant in plaque and 13 more abundant in calculus.
Many of the taxa with higher abundance in calculus are
“late colonizers” (i.e., Desulfobulbus, Methanobrevibac-
ter, Tannerella) associated in modern patients with ma-
ture biofilms and periodontal disease. Sparse partial
squares-discriminant analysis (sPLS-DA) of the plaque
and healthy site calculus samples allowed us to visualize
how informative our sample sets are for classifying
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plaque and calculus based on microbial profile and to
select the species that contribute most to classifying
each sample. The two groups clustered tightly in the
PLS-DA (Fig. 2c) indicating that they have distinct pro-
files, which was confirmed by the low classification bal-
anced error rate (BER) (< 0.0001, Additional file 2: Table
S3), and many of the same species that contribute to
classification are differentially abundant (Additional file
1: Figure S4A).

We then tested whether plaque and calculus from a
tooth affected by either caries or periodontal disease
were equally distinct. A PCA plot indicated that the
plaque and calculus samples were clustered mostly dis-
tinctly but with a slight overlap between plaque and
modern calculus (Fig. 2d), but group separation was not
significant by adonis test. Fourteen species were more
abundant in diseased tooth site calculus than healthy site
plaque, and 13 were more abundant in healthy site
plaque (g < 0.05, effect size >1) (Fig. 2e). Of the 14
species with greater abundance in disease site calculus,
11 are also more abundant in healthy site calculus, but
other species including Porphyromonas gingivalis,
Treponema denticola, and Filifactor alocis, all of which
are strongly associated with periodontal disease site
plaque [17, 24], are significantly more abundant only
when comparing disease site calculus to healthy site
plaque. Sparse PLS-DA again demonstrated that our
samples are sufficiently informative to classify healthy
site plaque and disease site calculus based on microbial
profile (Fig. 2f), which was confirmed by the low classifi-
cation balanced error rate (BER) (< 0.0008, Additional
file 2: Table S3), and the species that contribute most to
the classification are differentially abundant between the
two groups (Additional file 1: Figure S4B). We repeated
these analyses comparing healthy site plaque profiles to
calculus only affected by periodontal disease (i.e., exclud-
ing caries) and found nearly identical trends (Additional
file 1: Figure S5A-D).

Health-associated communities of dental plaque and
calculus are distinct

We next explored the microbial profile differences
between healthy site plaque and healthy site modern cal-
culus or healthy site historic calculus samples independ-
ently to look for time-related differences in microbial
communities of the two substrates. Differences would
suggest that there are shared properties of health-
associated communities that are important for maintain-
ing health, which could be further investigated for un-
derstanding host-microbiome interactions that promote
health and prevent disease. Both modern and historic cal-
culus samples independently cluster distinctly from mod-
ern plaque in PCA plots, even with few modern calculus
samples (Fig. 3a, d), supporting that microbial profiles of
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Fig. 1 Dental plaque and dental calculus contain distinct microbial communities. a Principal component analysis (PCA) clusters modern dental
plaque distinctly from modern and historic dental calculus, while calculus samples do not separate by time period. b PCA clustering of calculus
samples is not related to health status
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healthy calculus, both historic and modern, are distinct
from plaque, but group separation was not significant by
adonis test. Twenty-seven species were significantly differ-
entially abundant between plaque and historic healthy site
calculus (g < 0.05, effect size > 1) (Fig. 3b), with 13 more
abundant in historic healthy site calculus and 14 more
abundant in plaque. Most of the species differentially
abundant between plaque and healthy site historic calcu-
lus are the same as those that are differentially abundant
between plaque and all healthy site calculus samples, so
the modern calculus profiles fall within the variation of
the historic samples. In contrast, no species were signifi-
cantly differentially abundant between the plaque and
modern healthy site calculus; however, this may be be-
cause we have only four samples.

Sparse PLS-DA grouped the plaque into a tight clus-
ter compared to the calculus samples (Fig. 3¢, e), while
the calculus samples, both modern and historic, were
more dispersed. In both sPLS-DAs, the BER for plaque
was <0.0001, demonstrating highly accurate sample
classification, and the historic healthy site samples had
a similarly low BER while the modern healthy site
samples were classified less reliably (Additional file 2:
Table S3). Many of the species contributing most
strongly to the grouping are the same as those that
contribute to grouping the calculus samples in our
initial plaque vs. all calculus microbial profile compar-
isons (Additional file 1: Figure S6A,B). When compar-
ing modern plaque profiles to historic healthy site
calculus profiles, many of the species contributing
most to the classification of the groups are the same
as those that are differentially abundant between the
two, yet the species with the strongest contributions
to the classification are not those with the greatest dif-
ferential abundance. Several of the species contribut-
ing to the classification of both modern and historic
healthy site calculus are strongly associated with peri-
odontal disease in modern populations, including the
“red complex” members Porphyromonas gingivalis and

Tannerella forsythia, as well as Filifactor alocis, an
emerging periodontal pathogen [25], again indicating
that the presence and abundance of these species in
calculus cannot be used as indicators of biofilm
pathogenicity.

Signatures of health and of disease are shared in modern
and historic calculus samples

Since we found that plaque and calculus contain distinct
microbial profiles, we tested whether modern and his-
toric calculus microbial profiles are distinct from each
other. Although they are the same substrate, the effects
of modern hygiene practices such as tooth brushing and
fluoridation of drinking water on biofilm development
and calculus formation are not well understood. Princi-
pal component analyses comparing historic and modern
healthy site calculus (Fig. 4a) or historic and modern dis-
ease site calculus (Fig. 4c) microbial profiles did not
cluster the modern and historic samples distinctly. Only
Campylobacter rectus was significantly differentially
abundant between healthy site historic and modern
calculus (Additional file 1: Figure S7A), and no species
were significantly differentially abundant between dis-
ease site historic and modern calculus. Sparse PLS-DAs
clustered historic and modern calculus samples
separately for both healthy site and disease site samples
(Fig. 4b, d), indicating that the microbial profiles can dis-
criminate health status in modern calculus. However,
the BER for historic samples was much smaller than for
modern samples in both sPLS-DAs (Additional file 2:
Table S3), which may be due to the low modern sample
numbers. Several species that contribute most to the
classification of modern calculus, both healthy site and
disease site, are “early colonizer,” health-associated spe-
cies within the genera Actinomyces, Streptococcus, and
Veillonella (Additional file 1: Figure S7B,C), which are
not characteristic of historic calculus samples. Classifica-
tion of historic calculus samples, both healthy site and
disease site, is driven by many of the same species that
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(See figure on previous page.)

Fig. 2 Microbial profile differences between plaque and calculus of differing health status. a Principal component analysis (PCA) clusters plaque
and healthy site calculus distinctly. b Distinct species are significantly more abundant in plaque and healthy site calculus. ¢ Microbial profile
differences between plaque and all healthy site calculus are sufficient for discrimination of sample types by sparse partial least squares-
discriminant analysis (sPLS-DA). Ellipses indicate 95% confidence intervals. d PCA clusters plaque and disease site calculus distinctly. e Distinct
species are significantly more abundant in plaque and disease site calculus. f Microbial profile differences between plaque and all disease site
calculus are sufficient for discrimination of sample types by sPLS-DA. Ellipses indicate 95% confidence intervals
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SPLS-DA. g Historic healthy and disease site calculus microbial profiles are not distinctly different and are not separated by PCA. h Modern healthy and
disease site calculus do not contain sufficient discriminatory taxa for distinct clustering by sPLS-DA. Ellipses indicate 95% confidence intervals
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are differentially abundant in historic calculus compared
to plaque (Fig. 2b) and that contribute to the classifica-
tion of historic samples compared to plaque (Additional
file 1: Figure S5D), including C. rectus, Desulfobulbus sp.
oral taxon 041 (aka Desulfobulbus oralis [26]), and F.
alocis (Additional file 1: Figure S7B,C).

Microbial community differences between health and
disease in calculus are poorly resolved

Modern healthy site plaque and periodontal disease site
plaque or caries site plaque often contain distinct micro-
bial profiles that are considered signatures of health and
disease. We examined modern and historic calculus
samples to investigate if the microbial communities of
these samples, like plaque, are distinct. Healthy site and
periodontal disease site calculus samples did not cluster
separately in PCA plots for either modern or historic
samples (Fig. 4e, g). Neither historic nor modern calcu-
lus samples had significantly differentially abundant spe-
cies between healthy site and periodontal disease site
samples. Sparse PLS-DA clustered modern disease site
calculus samples tightly, while healthy site samples were
more dispersed but still a distinct cluster (Fig. 4f);

however, the BER for both sPLS-DAs (Additional file 2:
Table S3) was high, which may be due to the low mod-
ern sample numbers and/or high variability. In contrast,
sPLS-DA clustering of historic healthy site and peri-
odontal disease site calculus did not tightly or distinctly
cluster the groups (Fig. 4h), suggesting the microbial
communities of healthy and disease site historic samples
are more similar to each other than are modern calculus
healthy and disease site communities.

The species that contribute most to the classification
of healthy site and disease site calculus largely do not
overlap with those species that distinguish calculus from
plaque, or healthy site and disease site plaque, as re-
ported in the literature (Additional file 1: Figures S7D,
S7E). For example, Bacteriodetes oral taxon 274, Cam-
pylobacter gracilis, and Pseudopropionibacterium propio-
nicum distinguish modern healthy site calculus, while
Gemella hemolysans characterized modern periodontal
disease site calculus. While P. gingivalis and T. forsythia
characterized historic periodontal disease site from his-
toric healthy site calculus as they do in modern plaque,
additional species that did so are not well-characterized
in modern healthy and disease site plaque, such as “early
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colonizer” Actinomyces cardiffensis and A. timonensis, as
well as several unnamed species in the genera Bacteroi-
detes, Neisseria, and Atopobium (Additional file 1: Figure
S7E). The four historic calculus samples collected from
the teeth with both caries and periodontal disease did
not appear to have microbial profiles distinct from the
samples collected from the teeth with only periodontal
disease, as they were distributed throughout the other
samples in both the PCA and sPLS-DA plots (Additional
file 1: Figure S8).

Absence of caries-specific microbial profiles in dental
calculus

We additionally examined the differences in microbial
profiles of historic caries and healthy site calculus. The
caries and healthy site samples did not cluster distinctly
in PCA (Additional file 1: Figure S9A) nor were there
any significantly differentially abundant species between
the groups. Healthy site and caries site calculus sample
clusters overlapped in sPLS-DA plots (Additional file 1:
Figure S9B), and the classification BERs were >0.1
(Additional file 2: Table S3), indicating that classifying
the groups with our data is not reliable. Many of the
species that contribute most to the classification of the
caries site samples are species that classify historic
periodontal disease site from healthy site calculus
(Additional file 1: Figure S9C). Three of the five samples
with both caries and periodontal disease are the furthest
points from the healthy site samples in the sPLS-DA
plot (Additional file 1: Figure S9B), so it is likely that the
signature of periodontal disease and not of caries is
responsible for the clustering and classification.

Microbial co-exclusion patterns in plaque and calculus
reflect biofilm maturity

To further investigate the differences in microbial profiles
between plaque and calculus, we compared the patterns
of species co-exclusion within each substrate using the
program CoEx [27]. Species co-exclusion, or a negative
correlation between the presence and abundance of two
species, may indicate competition, antagonistic interac-
tions, or different environmental preferences and may
offer insights into the microbial community differences
we observed between plaque and calculus. We visualized
co-exclusion patterns in plaque, modern calculus, and his-
toric calculus samples using network graphs (Fig. 5,
Additional file 1: Figure S10A,B), with nodes representing
species and edges representing co-exclusion, with stronger
co-exclusions indicated by thicker, darker lines. Nodes
were colored based on oxygen tolerance (aerobe, faculta-
tive anaerobe, anaerobe), use of sugars as a carbon source
(saccharolytic, asaccharolytic), Gram stain (positive, nega-
tive), and phylum, to determine if co-exclusion was related
to these characteristics.
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No clear relationship was observed with Gram stain or
phylum for plaque, modern calculus, or historic calculus
(Additional file 1: Figure S10B). However, the majority
of most strongly supported co-exclusions, those visual-
ized in our graphs (Fig. 5), are between species with
different oxygen tolerance (85% in plaque, 91% in mod-
ern calculus, 96% in historic calculus), different carbon
source utilization (48% plaque, 51% modern calculus,
75% historic calculus), or both (43% plaque, 51% modern
calculus, 73% historic calculus). The co-exclusion pat-
terns between plaque and calculus are largely unique to
the sample type (plaque, modern calculus, or historic
calculus), with only 1.5% of all co-exclusions in modern
calculus and 0.54% of all co-exclusion in historic
calculus also reported in plaque, while these shared co-
exclusions make up only 0.8% of all plaque co-
exclusions (Additional file 2: Table S5). Historic and
modern calculus samples have more shared co-exclusion
patterns with each other than with plaque, with 19% of
all co-exclusions in modern calculus and 6.8% of all co-
exclusion in historic calculus reported in both, suggest-
ing different environmental conditions in calculus
compared to plaque.

Microbial complexes in plaque and calculus
The majority of species detected in plaque and calculus
samples were shared between the groups, with 109 of
199 species detected in all three groups (Fig. 6a). The
average number of species detected in historic calculus
was less than in modern calculus or plaque (Additional
file 2: Table S4), and the wide standard deviation in each
group may be partially related to the sequencing depth
(Additional file 1: Figure S11). Because the proportions
of several species in our calculus samples deviated
strongly from those in the plaque samples, we next
investigated the differences in species profiles using
Socransky’s microbial complexes scheme [17]. These
complexes, named by color, consist of species from sub-
gingival plaque that were significantly associated with
each other by cluster analysis, and the clusters are
associated with clinical periodontal parameters of health
(purple, yellow, and green complexes) and disease
(orange and red complexes). For each complex, we
summed the proportion of all of the species that com-
prise it within the plaque, all modern calculus, and all
historic calculus, as well as separating the calculus
samples by disease status, presented as a bubble chart
(Fig. 6b). Separately, we summed the proportion of all
Veillonella, Actinomyces, Streptococcus, and Capnocyto-
phaga species (Fig. 6b), as they are closely related to the
species making up the purple, yellow, and green com-
plexes, and assessed these groups in parallel.

The differences in the proportions of each complex as
well as the species groups between plaque, modern
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calculus, and historic calculus indicate that modern cal-
culus profiles are intermediate between plaque and his-
toric calculus. Overall proportions of yellow, green, and
orange complex species are similar across the three
groups, while the purple complex is far lower in abun-
dance in historic calculus than plaque, and the red com-
plex is greater in both historic and modern calculus than
in plaque. The proportions of the yellow complex and all
Streptococcus species are significantly different in all
calculus samples than modern plaque (p < 0.05), while
the proportions of the red complex, Veillonella species,
and Actinomyces species are significantly different be-
tween historic calculus and modern plaque (p < 0.05).
The relative proportion of each species in each complex
(Additional file 1: Figures S12, S13) demonstrates that
the patterns of species abundance are different between
plaque, modern calculus, and historic calculus, while
there is very little difference in the proportions between
healthy site and disease site historic calculus samples.

Notably, the red complex species are much higher in
calculus than plaque (Additional file 1: Figure S12), par-
ticularly Tannerella forsythia, a difference that we found
that drives the classification of calculus from plaque
(Additional file 1: Figure S4A,B), while disease site his-
toric calculus has higher levels of red complex species
than healthy site calculus, a pattern also seen in plaque
of periodontal disease patients.

Functional prediction in calculus is poorly predictive of
health status

Predicting metabolic functional capacity of a microbial
community through gene content analysis is a way of in-
ferring its potential activity in the absence of transcripto-
mics, proteomics, or metabolomics profiling. Differences
in metabolic functions of microbial communities may
indicate shifts in community activity associated with a
changing environment, often linked to disturbed host
physiology [28, 29]. Here, we compared the metabolic
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functional profiles of our historic calculus and modern
plaque samples based on SEED subsystem classification
to determine if the microbial communities in these two
substrates were systematically enriched or depleted in
any metabolic pathway categories (Additional file 2:
Table S6). A PCA of the SEED profiles of plaque and
historic calculus show some separation of the substrates
(Fig. 7a, Additional file 1: Figure S14A), but group separ-
ation was not significant and no SEED categories were
significantly differentially abundant between them. The
sPLS-DA plot indicates that the sample types are

discriminative, but the calculus samples are more vari-
able than the plaque samples (Fig. 7b), which is reflected
in the BER between the sample types (Additional file 2:
Table S3). The SEED categories Iron Acquisition and
Potassium Metabolism, which are associated with
healthy site plaque in our results, and Protein Me-
tabolism and Sulfur Metabolism, which are associ-
ated with healthy site calculus in our results
(Additional file 1: Figure S14B), are associated with
periodontal disease through clinical and laboratory
studies [28, 30]. This was unexpected, given that we
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Fig. 7 Potential metabolic functional profiles differ by sample type but not health status. a SEED metabolic functional category profiles separate
plaque and historic calculus in a principal component analysis. b SEED profiles of plaque and historic calculus are sufficiently discriminatory to
cluster samples by type in the sparse partial least squares-discriminant analysis (sPLS-DA). ¢ Healthy and periodontal disease site historic calculus
SEED profiles overlap and are not distinctly separated by PCA. d Historic healthy and disease site calculus SEED profiles overlap and are not

sufficiently discriminatory for distinct clustering by sPLS-DA
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have demonstrated that the microbial profile of
calculus contains microbial signatures characteristic
of periodontal disease, and we expected the SEED
profiles to similarly reflect signatures of disease in
calculus but not plaque.

Because previously published transcriptomic analyses
of plaque from healthy and periodontitis sites indicate
differential expression of specific metabolic pathways in
each condition, even when microbial profiles vary be-
tween samples of the same condition [31, 32], we further
assessed if potential metabolic profiles differ between
our historic calculus samples from periodontitis-affected
and healthy sites. However, a PCA of SEED categories
between healthy site and disease site calculus showed no
separation of these groups (Fig. 7c). Furthermore, sPLS-
DA was not able to sufficiently distinguish between the
sample types for distinct classification (Fig. 7d), the BER
for sample classification was high for both sample types
(Additional file 2: Table S3), and only five SEED categories
were informative enough for classification (Additional file
1: Figure S14C). Sulfur metabolism and potassium metab-
olism in our data contribute to the classification of healthy
site samples but in plaque are associated with periodon-
titis [28, 33]. The differences in SEED profiles between
plaque and calculus and our inability to distinguish
between SEED profiles of healthy and disease site calculus
results are consistent with the taxonomic profile differ-
ences we observed. Both results support that calculus
samples contain species and gene content profiles distinct
from plaque, but differences in disease and healthy site
profiles are not evident at the taxonomic/genetic level.
This is reinforced by the consistent relative abundance of
the top 15 most abundant SEED categories across all
historic calculus samples despite health status (Additional
file 1: Figure S15).

Proteomic profiles of historic healthy site calculus

In contrast to genetic data, proteins dynamically reflect
biofilm and host processes and may be more useful for
understanding active cellular processes in the oral envir-
onment. Therefore, to gain insight into the protein
profile of our historic calculus samples, we performed
shotgun proteomics on a subset of healthy site historic
dental calculus samples (# = 10) and manually annotated
the functional properties of all proteins. This dataset was
previously assessed for the presence of dietary proteins,
but none were identified [6]. We found that the majority
of proteins (94.9%) were derived from bacteria, and the
remaining 5.9% were from the human host (Additional
file 2: Table S7). Consistent with previous studies [2, 34],
immune response proteins make up nearly 50% of all hu-
man proteins identified in each calculus sample (Fig. 8a),
with innate response-related molecules (e.g., myeloperoxi-
dase, cathepsin G) more prevalent and abundant than
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immunoglobulins of the adaptive response. Many of the
identified blood-associated proteins (e.g., antithrombin-
III) are known to be involved in clotting and likely come
from the gingival crevicular fluid. Alpha-amylase, the sole
protein in the digestion category, was found to be the
third most abundant protein after the innate immune pro-
tein alpha-1-antitrypsin and the blood protein serum albu-
min; however, none of the human proteins was detected
in all 10 samples (Fig. 8b).

Bacterial protein categories were represented more
evenly across the samples than the human protein
categories (Fig. 8c). Those involved in central carbon
metabolism dominate the bacterial protein profile, while
membrane proteins are the second most abundant cat-
egory, accounting for approximately 12% of the bacterial
proteins in each sample. When including membrane-
associated proteins involved in virulence, such as the
Porphyromonas gingivalis gingipains and fimbrial pro-
teins, the membrane-bound proteins make up 16% of all
bacterial proteins. Proteins related to virulence were the
fourth most abundant category, and we looked at these
in more detail to understand why we observed a robust
immune response signal in samples from apparently
healthy teeth. Flagellar proteins were abundant in nine
samples, as were the immunogenic Tannerella forsythia
surface layer proteins A and B (Fig. 8d). Samples with
gingipains, including either or both of arginine gingipain
Gingipain R1, a highly antigenic Porphyromonas
gingivalis protease [35], or lysine gingipain, also had P.
gingivalis-specific major and minor fimbriae and
hemagglutinin, which are involved in adherence to host
epithelial cells.

Correlations between taxonomic, proteomic, and
metabolomic profiles

Previous research has shown that a wide range of small
molecule metabolites preserve in dental calculus, pos-
sibly enabling integrative multi-omic studies of historic
dental calculus. The metabolite profiles of a subset of
our historic dental calculus samples were previously
studied in Velsko et al. [5], and we incorporated these
results into this study by testing for correlations between
our genomic, proteomic, and metabolomic data in the
samples for which we have overlapping datasets. We per-
formed regularized canonical correlation analysis (rCCA)
between the taxonomic and protein profiles (n = 9), taxo-
nomic and metabolomic profiles (# = 11), proteomic and
metabolomic profiles (n = 7), and bacterial and human
protein profiles (n = 10) and visualized the strongest cor-
relations (~ 350 edges with the highest correlation values)
with network graphs (Fig. 9, Additional file 1: Figures S16-
S19). The nodes indicate the species/proteins/metabolites,
and the edges are the canonical correlation value, where
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smaller darker lines are lower values and the thicker,
lighter lines are higher values.

All of the ~ 350 strongest correlations between taxonomy
and metabolites, proteins and metabolites, and bacterial
and human proteins were positive, and all but four of the
strongest correlations between taxonomy and proteins were

positive. The biological basis for the correlations between
taxonomy and proteins or metabolites is unclear, but the
protein and metabolite correlations appear to be related to
immunological interactions and biomolecule preservation
patterns. For example, in examining the strongest bacterial-
human protein correlations (Fig. 9a), just over half of the



Velsko et al. Microbiome (2019) 7:102

Page 13 of 20

are included in Additional file 1: Figures S18-519

Fig. 9 Canonical correlations between historic sample proteins and metabolites. The strongest canonical correlations in historic calculus are
presented as network graphs where the nodes are proteins/metabolites and edges represent canonical correlations, with darker, thinner lines
lower values and thicker, lighter lines higher values. Nodes are sized by the number of edges they have and are colored based protein on
metabolite category. a Bacterial and human protein correlations = 0.9. b All protein and metabolite correlations = 0.9. Graphs with node names
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bacterial proteins (19/36) are membrane-associated and
half of the human proteins (9/18) are involved in the im-
mune response, which may be because surface proteins are
exposed for immune system interactions. In the strongest
metabolite-protein correlations, the majority of metabolites
in the network are lipids, which is consistent with the ob-
servation that lipids are the most abundant metabolite class
in historic dental calculus [5]. Of the 33 proteins in the net-
work graph, 23 are from bacteria, and 10 of these (43%) are
membrane-associated. This is the highest proportion of all

bacterial protein classes represented in the strongest corre-
lations. Nine of the 17 lipid metabolites are known compo-
nents of bacterial membrane lipids, and therefore,
membrane-associated proteins may be stably preserved by
the relatively chemically inert lipid membranes.

Discussion

We have demonstrated that microbial profiles of historic
and modern calculus are highly similar to each other,
albeit with several notable differences, and both are
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distinct from dental plaque. The systematic microbial
profile differences observed between plaque and calculus
complicate our ability to infer microbial population
shifts related to dietary, social, medical, or geographic
changes in populations, and studies should take care
when comparing microbial profiles between the two sub-
strates, as this can lead to inappropriate data interpret-
ation [36]. For example, microbial species profiles
between dental plaque and calculus can be strikingly dif-
ferent, such that substantial community shifts appear to
have occurred over the last several hundred years, con-
current with industrialization in Western societies [1].
To overcome this challenge, we strongly recommend
using reference datasets derived from modern dental
calculus, such as the one provided in this study, rather
than dental plaque, when performing investigations of
oral microbiome ecological and evolutionary change.

Our results suggest that species strongly associated
with periodontal disease today may in part be more fre-
quently detected and more abundant in archeological
calculus simply because past oral biofilms represent
more mature microbial communities. The modern
calculus samples examined in this study contain high
proportions of “early colonizer” Veillonella and Capno-
cytophaga species similar to those in plaque, yet the his-
toric calculus samples have very little Veillonella and
lower proportions of Capnocytophaga, while proportions
of “early colonizer” Actinomyces in modern calculus ap-
pear intermediate between plaque and historic calculus.
Similarly, the proportions of “orange complex” and “red
complex” species in modern calculus are intermediate
between historic calculus, in which they are high, and
plaque, in which they are low. Notably, the “red com-
plex” species P. gingivalis, T. denticola, and T. forsythia
are found in substantially higher proportions in dental
calculus compared to plaque, whether the calculus is
modern or historic and from a healthy site or a disease-
affected site. The presence/absence and abundance in
archeological calculus of P. gingivalis, T. forsythia, and S.
mutans have been used as proxies for the presence of
oral disease and biofilm pathogenicity [1, 2], yet this is
unlikely to be reliable.

In contrast to red complex bacteria, S. mutans, a
species strongly associated with dental caries, is often
difficult to detect in historic calculus, even from samples
collected from teeth with severe carious lesions, and we
did not detect it in our samples (Additional file 2: Table
S2). This may be related to S. mutans biofilm physiology,
which is now being clarified with next-generation
sequencing [37-39]. Although this species grows prolifi-
cally in a laboratory setting and can thrive under a range
of environmental conditions [40], it is less common in
biofilms from early compared to advanced caries lesions
[37-39]. If S. mutans grows best in deep, advanced
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lesions that have reached the dentin or pulp, it may be
infrequently detected in calculus from the tooth surface
and subsequently lost during decomposition of the soft
tissues of the pulp. Additionally, S. mutans produces
acids that demineralize the tooth enamel and dentin;
these acids will also inhibit biofilm mineralization, such
that biofilms with abundant acid-producing S. mutans
may not calcify (and therefore not preserve) to the
extent of biofilms without S. mutans.

Examining the potential metabolic functional profile of
the microbial gut [41] and subgingival plaque [42] com-
munities has revealed the differences in enriched gene
classes between health- and disease-associated commu-
nities. Such gene content differences potentially explain
which bacterial metabolic pathways are altered concomi-
tant with host disease, providing possible explanations
for disease development and progression. Dental calcu-
lus microbial gene content does not appear to be
similarly reflective of health status, as healthy and peri-
odontitis site calculus samples had highly congruent
SEED category profiles. Rather, for dental calculus, gene
expression measured by proteomics and/or metabolo-
mics may be a more accurate and reliable method of dis-
tinguishing healthy and disease site biofilm metabolic
activity [5, 29, 31, 32, 43].

In this study, we were unable to explore protein-level
differences in healthy site and disease site historic calcu-
lus, however, as all ten of the calculus samples we used
for proteomic profiling came from teeth with no evi-
dence of periodontal disease. These samples still aid our
understanding of health-associated biofilm environ-
ments, which is crucial to differentiating health from
disease states, and for understanding disease develop-
ment and progression. A robust immune response
characterizes periodontal disease, and an innate inflam-
matory response is conventionally associated with early
disease, while an adaptive response is associated with ad-
vanced disease [44]. Gingivitis, an early stage soft tissue
inflammatory condition, is likely to have affected many,
if not all, of the teeth from which healthy site calculus
was collected, and we saw a protein profile that reflected
an early inflammatory response. Innate immune re-
sponse proteins dominated the host response protein
profile, and as has been reported previously in calculus
[2], many of these proteins are produced by neutrophils.
Several proteins involved in regulating immune re-
sponses were also detected in the calculus samples, in-
cluding leukocyte elastase inhibitor and serpins B3, B6,
and B10 and may indicate appropriate control of inflam-
mation at healthy tooth sites.

There are correlations between detection of species-
specific proteins and the relative abundance of a given
species by DNA sequencing. Samples in which P.
gingivalis-specific proteins or T. forsythia-specific
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proteins were detected have a higher relative abundance
of those species as determined by genetic sequencing
than the samples in which no P. gingivalis- or T. for-
sythia-specific proteins were detected. This may indicate
a minimum relative abundance of a species for its pro-
teins to be reliably detected in shotgun proteomics, as
well as suggesting that the activity of these species was
not disproportionate with their relative abundance. It
will be of interest in future studies to determine if the
proportion of proteins detected (i.e., the apparent activ-
ity level) from periodontal disease-associated species
such as P. gingivalis or T. forsythia is disproportionately
higher in samples collected from teeth with evidence of
periodontal disease.

Conclusions

Ancient dental calculus is an exceptional substrate that
allows the direct investigation of oral microbiome evolu-
tion, host immune responses, and dietary change
through time. Clinical studies of the oral microbiome
typically focus on dental plaque, the living biofilm from
which calculus forms, rather than calculus, and to date,
many studies have treated the two substrates inter-
changeably. We have shown, however, that while these
two substrates share considerable taxonomic overlap,
they are microbiologically distinct from each other.
Modern oral hygiene practices that disrupt natural oral
biofilm development and maturation may be responsible
for the major differences we observed, and thus caution
should be exercised when quantitatively comparing the
two substrates. To more accurately study how the oral
microbiome has evolved through time in relation to hu-
man cultural and dietary changes, we recommend using
modern calculus rather than plaque biofilms as a refer-
ence. In addition, studies of ancient dental calculus that
incorporate metagenomic, metaproteomic, and/or meta-
bolomic data have the potential to reveal substantial
insight into the oral biofilm and host physiology,
approximating the detailed profiles that can be generated
on modern microbiome samples. Such multi-omic stud-
ies would provide an authentic historic example of
human-microbiome co-evolution and could offer unique
insights into health and disease processes.

Materials and methods

Historic and modern calculus sample collection

Fresh dental calculus samples (# = 10) were obtained
from a private dental office in Jaén, Spain, during routine
dental cleaning. Calculus was collected by dental profes-
sionals using a dental scaler following standard calculus
removal procedures. The collection site (healthy or dis-
eased) was selected arbitrarily by the dentist. All samples
were obtained under informed consent, and this re-
search was reviewed and approved by the University of
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Oklahoma Health Sciences Center Institutional Review
Board (IRB #4543). Historic dental calculus (ca. 1770—
1855) (n = 48) was collected from the skeletons in the
Radcliffe Infirmary Burial Ground collection [45], housed
at Oxford Archaeology in Oxford, UK. All of the skeletons
were excavated from earth-cut graves and had either been
contained within wooden coffins, subsequently decom-
posed, or had been buried in shrouds without coffins, and
the skeletons are not personally identifiable.

The oral health of each skeleton was recorded with
reference to the presence or absence of caries and peri-
odontal disease following previous guidelines [46, 47].
Briefly, periodontal disease refers to the inflammatory
loss of the alveolar bone and was recorded following
Ogden [47]. This method involves a 4-point scoring
system (1-4 in which 1 is “no disease” and 4 is “severe
periodontitis”) and controls for confusion with compen-
satory eruption by focusing on the morphology of the
alveolar margin, rather than the amount of tooth root
exposed (ibid).

The sex and approximate age at death for each skel-
eton were estimated following established osteological
criteria [48—53] and are presented in Additional file 2:
Table S1. Genetic sex was assessed through high-
throughput sequencing (HTS) of DNA extracted from
the calculus fragments (see below) following previously
described methods [54—56]. Genetic sex determinations
were consistent with those made using osteological ap-
proaches for most of the samples (Additional file 2:
Table S1). In the four cases of conflicting assignments
between genetic and osteological analyses, the osteo-
logical assessment was noted as uncertain, and genetic
sex was used for all subsequent analyses. In several
instances, insufficient human DNA was recovered for
genetic sex determination, and the osteologically deter-
mined sex was used for subsequent analyses.

Historic calculus samples were collected on site as
follows: surfaces of the teeth and calculus were cleaned
with Kimwipes moistened with 5% NaOCI followed by
water prior to sampling to remove traces of burial soil.
The jaws, or individual teeth if they were loose, were
photographed, and sampling was performed wearing
gloves and a mask over the nose and mouth. Calculus
was collected from each individual using a dental scaler
onto a clean piece of aluminum foil and then transferred
into a sterile 1.5 mL tube. Between individuals, the scaler
was cleaned using 5% NaOCI and rinsed with ultra-pure
water. The samples were transferred to the Research La-
boratory for Archaeology and the History of Art at the
University of Oxford for DNA and protein extraction.
Metadata collected for each sample are presented in
Additional file 2: Table S1 and include the following: es-
timated age and sex (see below), mandible/maxilla,
tooth, tooth surface (buccal/lingual), deposit location on



Velsko et al. Microbiome (2019) 7:102

tooth (crown, root, cemento-enamel junction), deposit
density (thick or thin), deposit spread (contained ring or
“blanket” over the tooth surface), single tooth sample or
pooled sample, presence of caries and/or periodontitis
on the sampled tooth, and presence of caries and/or
periodontitis on non-sampled teeth (whole mouth caries
or whole mouth periodontal disease)

DNA extraction

All Radcliffe calculus sample DNA extraction and library
building were performed in the PalacoBARN dedicated
ancient DNA laboratory at the University of Oxford Re-
search Laboratory for Archaeology and the History of
Art. The Radcliffe calculus samples were sectioned, and
pieces of approximately the same size as a previously
weighed 40 mg piece of calculus were selected for DNA
extraction. The modern calculus samples were extracted
using the DNeasy PowerSoil kit (QIAGEN) as used in
the Human Microbiome Project extractions. For details,
see Additional file 1: Supplemental Methods.

DNA library construction and high-throughput
sequencing

Shotgun Illumina libraries of the Radcliffe calculus
samples were constructed following previously de-
scribed methods [57] with the AccuPrime PFX (Invi-
trogen) and KAPA HiFi Uracil+ (Roche) polymerases.
Libraries were dual-indexed with one internal 6bp
index and one external 6 bp index. The proof-reading
capability of the AccuPrimePFX enzyme impairs PCR
amplification from templates with DNA damage
(cytosine deamination), while the KAPA HiFi Uracil+
enzyme does not have this capability. Four samples
failed to build successful libraries with the AccuPrime
PEX polymerase, which was later determined to be
due to an error with the internal index on those sam-
ples, and these libraries are not included in the
downstream microbial profiling analyses. The four
samples were successfully built into libraries with the
KAPA HiFi Uracil+ polymerase using different in-
ternal indices and were included in damage pattern
assessment analysis. For details, see Additional file 1:
Supplemental Methods.

DNA sequence processing

Prior to analysis, reads were de-multiplexed, quality-
checked, and trimmed of adapters using AdapterRemoval
v.1 (Lindgreen 2012) with the following non-default pa-
rameters: --maxns 0, --trimns, --trimqualities --minquality
30, --minlength 25, --collapse, and --minalignmentlength
10. The AccuPrimePFX enzyme-generated reads were
used for all subsequent analyses, while the KAPA HiFi
Uracil+ enzyme-generated reads were used for DNA dam-
age pattern analysis with mapDamage?2 [58, 59].
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For the 10 modern calculus samples, sequencing reads
were processed using the EAGER pipeline v1.92.55 [60].
In brief, reads were quality checked with FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fas
tqc/). Forward and reverse reads were trimmed and
merged using AdapterRemoval2 [61], with the following
parameters: --trimns —trimqualities —minlength 30 —
minquality 20 —minadapteroverlap 1. Merged reads were
then mapped to the human reference genome (HG19,
http://hgdownload.cse.ucsc.edu/downloads.html#human)
using bwa aln [62] v0.7.12, with -n 0.01 -1 32. Samtools
v1.3 [63] was then used to convert to bam format, gener-
ate mapping statistics, and extract unmapped reads
using the view function’s -f4. The samtools fastq func-
tion was then used to convert the unmapped reads back
to fastq format for downstream taxonomic profiling.

Ten supragingival plaque samples and ten subgingival
plaque samples from the Human Microbiome Project
(HMP) cohort were downloaded from the HMP web
server. Only the pairl/pair2 files were processed, and
singletons were excluded. The samples were quality-
checked and trimmed of adapters using AdapterRemoval
with the same settings as for the historic calculus
samples above.

Genetic assessment of historic calculus sample
preservation

Preservation was assessed by damage pattern
characterization and microbial source profiling. Damage
patterns were assessed using mapDamage2 [59] on the
Radcliffe calculus libraries that were generated with the
KAPAHIFi Uracil+ polymerase. For mapDamage, all
calculus sample reads were mapped to the Tannerella
forsythia 92A2 genome (assembly GCA_000238215.1)
using bwa aln with the flags -1 1024 -n 0.03 [64], and du-
plicates were removed from the alignment using sam-
tools [63]. The mapped, non-duplicate reads were
assessed for cytosine to thymine transitions and break-
points coinciding with depurination in mapDamage2,
run with default parameters. The Bayesian analysis-
based program SourceTracker [65] was used to estimate
the source composition of the AccuPrimePFX enzyme-
generated library microbial communities as assessed
from 16S rRNA gene reads processed in QIIME, exactly
as described in [5]. Human reads were identified as de-
scribed in [5].

Genetic microbial taxonomic profiling

The microbial profile of the Radcliffe historic calculus,
Human Microbiome Project supra- and subgingival
plaque samples, and modern calculus samples were deter-
mined by MetaPhlAn2 [66, 67], a profiler selected based
on Velsko et al. [23]. All analysis-ready reads from the
Radcliffe historic and Spanish modern datasets were
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profiled using MetaPhlAn2 in default parameters, while
the HMP samples were subset to 10,000,000 analysis-
ready reads using seqtk sample (https://github.com/1h3/
seqtk) before profiling, to keep the number of input reads
within the range of the historic calculus samples. The
species-level assignments were extracted from the
MetaPhlAn2 output tables (Additional file 2: Table S2)
and used for all further analyses. Bubble charts of the rela-
tive abundance of species or species complexes (defined
by Socransky et. al [17]) were generated with ggplot2
(https://ggplot2.tidyverse.org/) in R.

Principal component analysis

Principal component analysis (PCA) was performed
using the R package mixOmics [68]. The species-level
relative abundance tables generated by MetaPhlAn2
were filtered to include only species present at >0.02%
relative abundance and used as an input. Within the
mixOmics package, the tables were offset by + 1 to allow
the use of the centered-log ratio (CLR) transformation,
followed by total sum scaling (TSS) normalization. Prin-
cipal component analysis was run with 10 components,
CLR data transformation (Gloor), and data centering.
Scree plots were visually inspected to assess the vari-
ation explained by each component. Plots of each PCA
were generated with mixOmics. Group differences were
tested on the distance matrices using adonis in the vegan
R package, with 999 permutations, and p < 0.05 consid-
ered significant. No groups tested were significantly
different. Analyses were also performed without total
sum scaling normalization and all results were identi-
cal—the proportion of variance explained by each of the
components was identical between TSS-normalized and
non-TSS-normalized datasets.

Assessment of differentially abundant taxa

Differential abundance of species between selected sam-
ple groups was determined using the program Statistical
Analysis of Metagenomic Profiles (STAMP) [69, 70].
Tables filtered to include only species at > 0.02% relative
abundance were analyzed by White’s non-parametric
two-sided ¢ test with bootstrapping to determine the dif-
ference between proportion (DP) with cutoff 95% and
Storey’s FDR. Corrected p values (g values) of <0.05 to-
gether with an effect size > 1 were considered significant.
To determine if the proportion of species complexes
(Fig. 6b) were different between plaque and calculus
samples, an ANOVA with multiple comparisons and
uncorrected Dunn’s test was performed, and p < 0.05
was considered significant.

Sparse partial least squares-discriminant analysis
Sparse partial least squares-discriminant analysis (sPLS-
DA) was performed for each metadata category of
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interest (sample source, sample health status) with the
species tables using the R package mixOmics [68], fol-
lowing the example Case Study sPLSDA: SRBCT avail-
able on the mixOmics website (http://mixomics.org/
case-studies/splsda-srbct/). sSPLS-DA is a method of data
analysis that starts with the knowledge of the classifica-
tion of each sample. It then looks for the data (in this
case species) that maximize the differences between the
sample categories, i.e., the data that discriminate the
sample categories from each other. sPLS-DA is used for
sample classification, unlike PCA, which is used for data
exploration, and can be applied to biomarker discovery,
and further for classification of samples from unknown
sources in the future.

The input tables and data pre-processing were identi-
cal to that in the PCA section described above (offset by
+1, TSS). In brief, a PLS-DA was run with 5 compo-
nents and CLR transformation to assess the number of
components to be included in the sPLS-DA. The sPLS-
DA was tuned using the tune.splsda function to deter-
mine the optimal number of variables to select, then the
sPLS-DA was run with the selected number of variables.
Plots of each sPLS-DA were generated in mixOmics
with plotVar. The top 20 species or genera contributing
to the loadings of components 1 and 2 were plotted with
plotLoadings function. These are the taxa that contrib-
ute the most to the separation of the two groups being
compared. The balanced error rate (BER) of group clas-
sification for each sPLS-DA (Additional file 2: Table S3)
was calculated with the tune.splsda function in mixO-
mics. The BER is a measure of performance calculated
from sensitivity and specificity, and lower numbers
indicate more accurate classification.

Assessment of microbial co-exclusion patterns

We assessed microbial species co-exclusion patterns in
our sample groups using the program CoEx [27].
Relative abundance tables filtered to include only
species/genera at >0.02% were used as input, with the
following parameters: -n 50 -f 100 -t 10000 -p 0.05 -z
0.6 -norm. For graphical assessment of co-exclusion pat-
terns, the data were visualized as network graphs with
the species/genera as nodes and the co-exclusion value
as edges, using Gephi [71]. To make the network graphs
readable, only the top 60 species-level co-exclusion inter-
actions and top 40 genus-level co-exclusion interactions
that met the following criteria were plotted: p < 0.05, co-
exclusion value <0.1, false discovery rate for the given p
value <1%. The nodes were colored by Gram stain
(positive, negative, unknown), oxygen tolerance (aerobe,
facultative anaerobe, anaerobe, unknown), utilization of
sugars as a carbon source (saccharolytic, asaccharolytic),
and by phylum, to look for characteristics that play a role
in co-exclusion patterns.
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Gene functional categorization with SEED

To generate SEED protein category classification [72] for
the Radcliffe calculus and HMP plaque samples, the
analysis-ready reads for both were profiled using MALT-
X [36] in default mode with a custom database of
NCBI RefSeq genomes of bacteria, viruses, archaea, and
plasmids from Velsko et al. [23]. SEED categorization
was added in MEGAN v. 6.10 [73] using the acc2seed-
May2015XX mapping file. SEED tables were exported
from MEGAN (Additional file 2: Table S6), and categor-
ies that were present at less than 0.02% abundance were
removed for analysis, for consistency with taxonomic
profiling. The highest level of SEED categorization was
used for all analyses, which included PCA, differential
abundance assessment, and sPLS-DA as described above
for analysis of taxonomic profiles.

Proteomics

The historic Radcliffe Infirmary proteomic data pre-
sented here are from Hendy et al. [6], and sample pro-
cessing is described therein. The 10 historic samples
were selected based on having sufficient material for
protein extraction after pieces were used for DNA
extraction and include both males and females. All den-
tal calculus samples were obtained from teeth without
evidence of periodontal disease. Peptides were extracted
using the GASP method, and shotgun sequenced at the
Oxford Target Discovery Institute. Mass spectrometry
data were analyzed according to Jeong et al. [74] with
minor changes. Briefly, spectral data generated via MS/
MS were converted to Mascot generic format using the
application MSConvert [75]. The resulting files were
searched for peptide spectral matches using Mascot
(Matrix ScienceTM, version 2.6) against SwissProt and a
database made up of 463 annotated bacterial genomes
from the Human Oral Microbiome Database [76] (down-
loaded 2017). Each database also contained a reverse
decoy of every sequence which was used in the down-
stream analysis to calculate the false discovery rate (FDR).
Duplicate peptides were removed, and only the proteins
supported by a minimum of two peptides, each with an E
value <0.01, were used to calculate FDR at both the
protein and peptide level across the dataset [74].

For data analysis, all protein names were manually
checked and variations on the same protein were made
consistent (i.e., variations of “GroEL” such as “chaperone
GroEL” were re-named “GroEL”). Proteins were manu-
ally assigned to a broad-level category based on KEGG
orthology when available, and based on functional de-
scriptions when no KEGG entry was found, to examine
active cellular processes (Additional file 2: Table S7).
Graphs showing the relative abundance of protein
categories were generated in R.
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Metabolomics

The historic Radcliffe Infirmary and modern metabolite
data presented here are from Velsko et al. [5]. All me-
tabolites detected in at least one historic calculus sample
were included in regularized canonical correlation
analyses described below.

Regularized canonical correlation analysis

We used the mixOmics R package [68] to perform regu-
larized canonical correlation analyses on the taxonomic,
proteomic, and metabolomic datasets. The tables used
for analysis were filtered using the same criteria as
above: only species present at greater than 0.02% abun-
dance, only proteins detected at least twice by independ-
ent peptides, and metabolites detected in at least one
historic sample. The input tables were offset by + 1, and
the rCCA was run using the shrinkage method to esti-
mate penalization parameters. The matrix of canonical
correlation values was exported, and the strongest corre-
lations were visualized as network graphs with Gephi as
above for co-exclusion patterns. Nodes are species, pro-
teins, or metabolites, and edges are canonical correlation
values. Cutoff correlation values for network graph
visualization were selected as follows because these were
round numbers that left similar numbers of edges (343—
368 edges): 0.9 for proteins-metabolites and bacterial-
human proteins, 0.82 for species-proteins, and 0.75 for
species-metabolites.

Additional files

Additional file 1: Supplementary Materials and Methods and
Supplementary Figures. (PDF 8386 kb)

Additional file 2: Supplemental Tables S1-S7. (XLSX 313 kb)
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