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established by a systematic study.

microbiota interplay in atherosclerotic pathogenesis.

Background: Coronary artery disease (CAD) is associated with gut microbiota alterations in different populations.
Gut microbe-derived metabolites have been proposed as markers of major adverse cardiac events. However, the
relationship between the gut microbiome and the different stages of CAD pathophysiology remains to be

Results: Based on multi-omic analyses (sequencing of the V3-V4 regions of the 165 rRNA gene and metabolomics) of
161 CAD patients and 40 healthy controls, we found that the composition of both the gut microbiota and metabolites
changed significantly with CAD severity. We identified 29 metabolite modules that were separately classified as being
positively or negatively correlated with CAD phenotypes, and the bacterial co-abundance group (CAG) with
characteristic changes at different stages of CAD was represented by Roseburia, Klebsiella, Clostridium 1V and
Ruminococcaceae. The result revealed that certain bacteria might affect atherosclerosis by modulating the metabolic
pathways of the host, such as taurine, sphingolipid and ceramide, and benzene metabolism. Moreover, a disease
classifier based on differential levels of microbes and metabolites was constructed to discriminate cases from controls
and was even able to distinguish stable coronary artery disease from acute coronary syndrome accurately.

Conclusion: Overall, the composition and functions of the gut microbial community differed from healthy controls to
diverse coronary artery disease subtypes. Our study identified the relationships between the features of the gut
microbiota and circulating metabolites, providing a new direction for future studies aiming to understand the host-gut
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Background

Despite the widespread use of medical therapy in the last
decade, cardiovascular diseases (CVDs) remain the leading
causes of mortality and morbidity in many developed and
developing countries, CVDs remain responsible for 17.7
million deaths every year (constituting 31% of all global
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deaths), and this number corresponds to one of every three
deaths in the US and one of every four deaths in Europe
[1]. Coronary artery disease (CAD) refers to the myocardial
dysfunction and/or organic lesions caused by coronary ar-
tery stenosis and insufficient blood supply. Based on clinical
symptoms, the extent of arterial blockage and the degree of
myocardial injury, CAD is divided into different categories:
stable coronary artery disease (SCAD), unstable angina
(UA) and myocardial infarction (MI) [2]. SCAD refers to
the syndrome of angina pectoris including recurrent, transi-
ent episodes of chest pain reflecting demand-supply mis-
match [3]. Patients with spontaneous attacks of prolonged
angina-type chest discomfort occurring at rest that are
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associated with vulnerable plaques are categorized as pa-
tients with UA [4]. MI is usually accompanied by severe
and persistent chest pain, typical ECG changes, and ele-
vated serum biomarkers of myocardial necrosis like cardiac
troponins [5]. UA and MI are also referred to as acute cor-
onary syndrome (ACS) (detailed diagnostic criteria are
summarized in Additional file 3). The progression of ath-
erosclerotic plaque is considered to be dynamic and com-
plicated, and the detailed mechanisms underlying the
formation, development and dislodgement of plaque are
largely unknown. Identifying biomarkers of the risk of
plaque destabilization and rupture in patients is important
for preventing the transition from coronary stability to in-
stability and the occurrence of thrombosis events.

Recently, multiple studies have suggested that the
structure and composition of the gut microbiota in CAD
patients exhibit significant alterations. According to a
study conducted in Sweden [6], which involved 12 pa-
tients and 13 controls, the gut microbiota composition
of patients with atherosclerosis (AS) contains relatively
high levels of Collinsella, whereas that of the normal
control group has relatively higher abundance of Rose-
buria and Eubacterium. Koren et al. identified Chryseo-
monas, Veillonella and Streptococcus in AS plaque
samples, and several bacterial phylotypes from the gut
are common to the atherosclerotic plaque and are corre-
lated with the cholesterol levels [7]. A metagenome-wide
association study showed that the abundance of Entero-
bacteriaceae and Streptococcus spp. were higher in pa-
tients with atherosclerotic cardiovascular disease than in
healthy controls [8]. We hypothesize that the reason
why discrepancies on microbial signatures of different
atherosclerotic populations are due to the intrinsic flaw
of taxon-based analysis, which overlooks the variations
of the bacterial strains belonging to the same taxon.
Moreover, the resident microbial communities in the in-
testinal tract act as key “metabolic filters” of the diet as
these species can convert common nutrients to metabo-
lites, and specific microbial-associated metabolites, such
as trimethylamine-N-oxide (TMAO), short-chain fatty
acids (SCFAs) and secondary bile acids, have been
shown to affect the progression of CVD [9-13]. For ex-
ample, TMAOQO, an independent marker for predicting
clinical vascular events, has been mechanistically linked
with the development of atherosclerosis in humans and
mice. This substance is generated when a toxic metabol-
ite (trimethylamine) produced by bacterial fermentation
of dietary fat-derived choline enters the host blood-
stream and is metabolized by the liver [14]. Both epi-
demiological and animal studies have provided strong
evidence showing that alterations of the gut microbiota
might be involved in the development of atherosclerosis,
but the features of the gut microbiota in patients with
different categories of CAD remain to be determined.
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To address the questions above, we analysed the gut
microbial characteristics of 161 CAD patients (SCAD
group N = 44, UA group N = 80, and MI group N = 37)
and 40 healthy controls through high-throughput
sequencing. In addition, we used untargeted liquid
chromatography-mass spectrometry (LC-MS) to ana-
lyse the metabolic profiles of these patients. Based on
these multi-omic analyses, we identified specific fea-
tures of the gut microbiota and host metabolite pro-
files that are associated with increases in CAD severity
and further established relationships, particularly be-
tween several bacterial co-abundance groups (CAGs)
and serum metabolite function modules. This infor-
mation may be used to construct a disease classifier
for discriminating between healthy controls and differ-
ent CAD subgroups (an overview of the workflow is
provided in Additional file 1: Figure S1). Our study re-
veals that the integration of metabolomic and 16S
rRNA V3-V4 sequencing analyses might reveal the
interactions that occur between the host and the gut
microbiome.

Results

Characteristics of the study population

A total of 201 participants were enrolled at Peking
Union Medical College Hospital and were further
divided into the following four groups based on
guidelines for diagnosis (detailed in the “Materials and
methods” section): control group (N = 40), SCAD group
(N = 44), UA group (N = 80), and MI group (N = 37). The
traditional cardiovascular risk factors of the 201 subjects
are summarized in Table 1, and the extrinsic host factor
profiles, including diet, lifestyle, and stool consistency, are
summarized in Additional file 2: Table S1. Compared with
the healthy subjects, the patients in the SCAD, UA and
MI groups showed disruptions in glucose and lipid metab-
olism and an increased inflammatory state. Except for the
significant differences in the hs-CRP levels between SCAD
vs. MI and UA vs. MI, the risk factors showed no signifi-
cant difference between comparisons of CAD subgroups.
The atherosclerosis burden was quantified using the Gen-
sini score [15], and the median scores of the various
groups were as follows: SCAD, 35.25 (24, 65.5); UA, 44.25
(33, 60); and MI, 62.5 (47, 74.5). We observed that the
Gensini score level increased significantly with the
development of atherosclerosis and showed significant
difference between SCAD vs. MI (P < 0.001, Mann-
Whitney U test) and UA vs. MI (P <0.05, Mann-Whit-
ney U test) (Additional file 1: Figure S2). We also found
that the MI group exhibited a high proportion of
three-stenosed vessels (51.4%), which was consistent
with the coronary atherosclerotic burden observed in
other populations diagnosed with CAD [16]. Cardiac
troponin I (cTnl) has been found to have excellent
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Table 1 Characteristics of the study cohort
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Control SCAD UA Ml P value
(n = 40) (n=44) (n = 80) (n=37) for trend

Age, years' 55 (49, 62.25) 62.5 (52.568.8) 62.5 (57.3,67.8) 63 (53.5,72) 0023°
Female® 23 (57.5) 11 (25) 24 (30) 8 (21.6) 0.002°%
SBP, mmHg* 1199 £ 108 1308 £ 155 1311 £17.7 1265 £ 165 0.002°5¢
BMI, kg/m?* 242+ 29 251 +33 267 £ 29 26.1 £ 38 <0001°¢
Waistline, cm” 833 £ 102 90.1 £7.8 939 £ 8.7 93.6 £9.7 <0.001¢
Current smoker® 6 (15) 25 (56.8) 43 (53.8) 22 (59.5) <0.0012¢
Drinking history® 6 (15) 21 (47.7) 38 (47.5) 22 (59.5) <0.001%¢
No. of stenosed vessels® 0.126

NA NA 368 5(6.3) 0 (0)

1 NA 13 (29.5) 26 (32.5) 5(13.5)

2 NA 11 (25) 5(1898) 13 (35.1)

3 NA 17 (38.6) 34 (42.5) 19 (514)
Gensini score’ NA 35.25 (24, 65.5) 44.25 (33, 60) 62.5 (47, 74.5) <0001%
Medication

Statins® 25 13 (29.5) 28 (35) 11 (29.7) 0.005%°¢

Antihypertensive drugs® 8 (20) 28 (63.6) 49 (61.3) 23 (62.2) <0.001%¢

Oral antidiabetic drugs§ 2 (5) 12 (27.3) 15 (18.8) 12 (324) 0.014
Laboratory data

TG, mmol/If 3(0.86, 1.87) 125 (1, 1.6) 6(1.1,19) 1.3(1.1,2) 0.113

TC, mmol/It 7 (4,53) 37 (3.2,46) 38 (33,45 4(33,4.7) 0.001°5¢

HDL-C, mmol/I 109, 14) 1(08,1.2) 9 (08 1.1) 9 (08, 1.1) <0.001%¢

LDL-C, mmol/If 822,32 2101.7,27) 2(1.7,27) 3(16,28) 0013°

FBG, mmol/I" 2(53,79) 7.05 (59, 84) 64 (54,79) 9(6.2,102) 0.019 ¢

BUN, mmol/IT 9(43,59) 59 (49, 638) 6.2 (49,73) 7(5,7) 0.006°

CR, umol/If 68.5 (61.2,79.8) 785 (67.392.8) 81.5 (68.25, 90) 79 (70.5, 89.5) 001°¢

cTnl, pg/' 0 0.005 (0, 0.02) 0.003 (0, 0.014) 0.08 (0.06, 1.1) <0007

hs-CRP, mg/lf 0.7 (04, 1.2) 1.3 (06,32 1.9 (0.8, 29) 38 (2, 194) <0001

TNF-a, pg/mL’ 114 (3.1, 21.9) 259(15.2, 64.2) 226 (158,389) 18.8 (14.3, 234) <0.001%¢

"median (IQR), “mean + SD, °n (%)

Continuous, normally distributed variables among the four groups were analysed by a one-way analysis of variance. The Kruskal-Wallis H-test was applied for data
of this type that were not normally distributed. Continuous, normally distributed variables between two groups were analysed by Student’s t-test. The Mann-
Whitney U test was applied for data of this type that were not normally distributed. Categorical variables were compared by the x* test. N/A not available.
Drinking history is defined as patients who consumed > 50 g of alcohol per day. ®P < 0.05 for equality between SCAD vs. control. °P < 0.05 for equality between

UA vs. control. °P < 0.05 for equality between MI vs. control. 9P < 0.05 for equality between SCAD vs. M. °P < 0.05 for equality between UA vs. MI.

sensitivity and specificity as an indicator of myocardial ne-
crosis [17], the median levels of ¢Tnl in our study were 0,
0.005 (0, 0.02), 0.003 (0, 0.014) and 0.08 (0.06, 1.1) ug/L
from Control subjects, SCAD, UA to MI patients, re-
spectively. And significant differences in the cTnl levels
were found in all pairwise comparisons with the excep-
tion of the SCAD vs. UA. (SCAD vs. MI, P < 0.001; UA
vs. MI, P < 0.001; Mann-Whitney U test). According to
the results of cardiac catheterization and biochemical
data, we suppose that the integration of the Gensini
score, number of stenosed vessels and cTnl level can
indicate the severity of CAD.

Changes in the serum metabolomic features between
CAD subgroups

To identify the serum metabolome features of the pa-
tients in different CAD categories, untargeted metabo-
lome profiles were generated on fasting serum samples
by LC-MS. Considering the variable stability of metabo-
lites and in order to collect all possible metabolites in
serum, we optimized the sample preparation and detec-
tion for both polar ionic and lipid modes. Metabolomic
(polar ionic mode) and lipidomic (lipid mode) profiling
yielded 7061 features and 4975 features, respectively.
We conducted a “cross-comparison scheme”, in which
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the various stages of CAD were compared with normal
coronary arteries and to each other: control vs. SCAD
for plaque formation and growth, SCAD vs. UA for tran-
sition from coronary stability to instability, SCAD vs.
ACS for plaque rupture and erosion, and UA vs. MI for
cardiac events [18]. Based on the OPLS-DA models of
metabolite profiling data, we found that the serum me-
tabolites were significantly different between all patients
with CAD and healthy controls. The patients with SCAD
status exhibited significantly different metabolite profiles
compared with the healthy subjects and the patients
with ACS. Moreover, the patients with UA and M],
which are two different stages of ACS, also showed sig-
nificant differences (Additional file 1: Figures S3 and S4).

From the OPLS-DA models, we identified two collec-
tions of differentially produced compounds that included
334 metabolites (122 known and 212 unknown) under
polar ionic mode and 494 metabolites (111 known and
383 unknown) under lipid mode. The metabolic features
identified in the analysis included both host-derived and
bacterial-derived metabolites. We binned these serum me-
tabolites into 72 co-abundance clusters across all the sub-
jects. We identified 29 of the 72 metabolite clusters
(40.3%) to be significantly associated with the Gensini
score, number of stenosed vessels and ¢Tnl levels (Fig. 1a,
Additional file 2: Tables S2 and S3). Among these 29 clus-
ters, the metabolite clusters under polar ionic mode were
separated into two groups that were either positively
(CAD enriched) or negatively (control enriched) corre-
lated with CAD severity, while the metabolite clusters
under lipid mode among these 29 clusters were only
negatively correlated with CAD severity (Additional
file 2: Table S4). Moreover, the CAD-enriched meta-
botypes were positively correlated with the main risk
factors of CAD but negatively correlated with cholesterol.
For example, the metabolite module P003 (fatty acyls and
carboxylic acids) was positively correlated with the waistline
(Rho = 0.29, adjusted P value < 0.001), triglyceride (TG)
(Rho = 04, adjusted P value < 0.001) and TNF-a (Rho =
0.22, adjusted P value = 0.009) but negatively correlated with
HDL-C (Rho = - 0.38, adjusted P value < 0.001). While the
control-enriched metabotypes generally showed the oppos-
ite correlation (Fig. 1b, Additional file 1: Figure S5).

By abundance comparison, we found that all the
CAD-negative metabotype modules were generally
highly abundant in the healthy subjects. Among the
CAD-positive-associated metabotypes, for Control vs.
SCAD, the metabolism changed for fatty acyls and car-
boxylic acids, benzene and substituted derivatives, pre-
nol lipids, phenolic glycoside, and amino acids, including
L-leucine and aminobenzoate degradation; the compari-
son of SCAD vs. UA did not identify much modules
with significant changes; for UA vs. MI, heteroaromatic
compounds, steroids, phenolic glycoside, tyrosine and
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derivatives, and aminobenzoate degradation modules
were elevated (Fig. 1c).

Taken together, the results suggested that the CAD
patients had significantly different metabolite profiles
compared with healthy controls, and the metabolite
levels may further shift with different CAD severity.

Changes in the gut microbiome between the CAD
subgroups

As shown in the results, many CAD-associated metabotypes
are involved in the metabolism of aromatic compounds,
which may be co-metabolites of the gut microbiota and the
host. We then investigated the changes in the gut micro-
biome in the CAD subgroups by sequencing the faecal 16S
rRNA V3-V4 region. No significant differences in the rich-
ness and diversity of the gut microbiota were found between
the healthy control subjects and the patients with SCAD,
while the UA group exhibited higher values of observed op-
erational taxonomic units (OTUs) and a higher Chaol index
than the healthy control group (Additional file 1: Figure S6).
To assess the overall structure of the gut microbiota, the
score plot of the principal coordinate analysis based on un-
weighted UniFrac distances was constructed, and the results
showed that with intensification of the pathophysiological
process of coronary AS, the structure and composition
of the microbiota differed significantly (Additional file 1:
Figure S7). We explored the associations between varia-
tions in the gut microbiota and host characteristics using
Adonis. Eighteen parameters were significantly associated
with gut microbial variations derived from between-sam-
ple unweighted UniFrac distances (P < 0.1 of PERMA-
NOVA, Fig. 2a, Additional file 2: Table S5). Bristol stool
type, CAD phenotype indicators, inflammatory factors,
lifestyle and medication use were among the strongest ex-
planatory factors, which was consistent with the results
observed for Western populations [19].

As bacteria work as functional groups (guilds) in the gut
ecosystem [20], we next constructed a co-abundance net-
work in which the 274 OTUs were shared by at least 20%
of the samples based on SparCC correlation coefficients
and clustered the OTUs into 24 CAGs. Of these, CAG4,
CAG14, CAGI15 and CAG16 decreased significantly in pa-
tients with CAD compared with the healthy controls (Wil-
coxon rank sum test, P < 0.05, Fig. 2b). Of the OTUs in
these CAGs, 81.6% belonged to Lachnospiraceae and
Ruminococcaceae (Fig. 2c), members of which may protect
against inflammation by producing butyric acid [21, 22].
Then, we analysed CAGs with significant abundance
differences in different subgroups (Fig. 2b). Notably, the
abundance of CAG17 was significantly higher in the group
with more severe disease. This CAG comprised many Pro-
teobacteria phylotypes (Fig. 2c), such as Klebsiella, Strepto-
coccus, Haemophilus and Granulicatella, members of
which have been reported as pathogens or opportunistic
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Fig. 1 Identification of the major serum metabolite modules associated with the onset and development of CAD. a Spearman correlations
between serum metabolite modules and major CAD phenotypes. b Spearman correlations between serum metabolite modules and major CAD
risk factor indicators. ¢ The box plot shows that the serum metabolite modules significantly changed between different groups according to the
Wilcoxon rank sum test. The names of the metabolite clusters comprising the CAD-positive and CAD-negative metabotypes are highlighted in
red and blue, respectively. In a and b, the colour represents positive (red) or negative (blue) correlations, and FDRs are denoted as follows: *FDR
< 0.05, **FDR < 0.01. In ¢, the asterisk represents P values < 0.05 by the Wilcoxon rank sum test, boxes represent the inter-quartile ranges, and
lines inside the boxes denote medians. PE phosphatidylethanolamine, PC phosphatidylcholine, GP glycerophospholipids, SBP systolic blood
pressure, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, FBG fasting

blood glucose, hs-CRP high-sensitivity C-reactive protein, IL-6 interleukin 6, TNF-a tumour necrosis factor-a
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Fig. 2 Identification of the important co-abundance groups that were strikingly different across CAD groups. a Bar plot illustrating the top host factors
that were found to be significantly associated with gut microbial variations. The variations were derived from between-sample unweighted UniFrac
distances. The bars were coloured according to metadata categories. Size effects and statistical significance were calculated by PERMANOVA (Adonis).
The P value was controlled at 0.1. b Relative abundances of the 24 co-abundance groups (CAGs) across different CAD subgroups. The abundance
profiles were transformed into Z scores by subtracting the average abundances and dividing the standard deviations of all the samples. The Z score
was negative (shown in green) when the row abundance was lower than the mean. CAGs at P values <0.05, as determined by the Wilcoxon rank sum
test, are marked with green stars. ¢ OTU-level network diagram showing the enrichments of OTUs in the different groups based on significantly
changed CAGs. Node size indicates the mean abundance of each OTU. The bacteria denoted on the nodes were of the lowest classification status that
could be clearly identified using the RDP classifier. Lines between nodes represent correlations between the nodes connected by the lines, with line
width indicating correlation magnitude, red representing positive correlation, and grey representing negative correlation. Only lines corresponding to
correlations with magnitudes greater than 04 were drawn. IL-18 interleukin 18, BUN blood urea nitrogen, hs-CRP high-sensitivity C-reactive protein,
OAD Oral antidiabetic drugs, SBP systolic blood pressure, CK creatine kinase, NYHA class New York Heart Association classification, TG triglyceride

pathogens [23—26]. Through Spearman correlation analysis,
we did not identify any CAGs that were directly correlated
with the three major phenotype indicators of CAD. How-
ever, we showed that the CAGs had significant correlation
with age, inflammatory markers (hs-CRP and IL-18), blood
lipids and dietary fibre intake (Additional file 1: Figure S8).

Multi-omic network analysis reveals the relationship

between the gut microbiota and serum metabolites in CAD
We subsequently assessed the correlation between the
gut microbiota and serum metabolites to further explore

the characteristics of the microbiota in patients with
different CAD severities. Given an FDR of 5%, 9 gut
microbiota CAGs were significantly correlated with 14
metabolic modules, as demonstrated through Spearman
correlation coefficients, and these metabolic modules
were further correlated with the Gensini score, number
of stenosed vessels or cTnl level, which can represent
the CAD severity (Fig. 3 and Additional file 2: Table S6).

CAG4, CAGI14, CAG15 and CAGI6, enriched in the
control group, were positively correlated with metabotypes
that were “CAD-negative associated”, such as sphingolipids
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severity was mediated by serum metabolites. Red connections indicate a positive correlation (Spearman correlation test, FDR < 0.05), while blue
connections show correlations that were negative (Spearman correlation test, FDR < 0.05). In the gut microbiota column, the green stratum
represents CAGs that were highly enriched in the control group, and the stratum coloured in purple was increased in the more severe group
among the subgroup’s comparisons. In the metabolomics column, the orange stratum represents CAD-negative metabotypes, and the pink
stratum represents CAD-positive metabotypes. CAG co-abundance group, PE phosphatidylethanolamine, PC phosphatidylcholine, GP
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and PEs, but negatively correlated with “CAD-positi-
ve-associated metabotypes”, such as glycerolipids, pre-
nol lipids and benzene derivatives. In particular, CAG4,
mainly composed of Faecalibacterium and Roseburia, was
closely related to 10 serum modules, which implies that
CAG4 might play an important role in the maintenance of
the normal coronary artery physiological conditions by
interacting with different serum metabolites.

The analysis of the CAGs that were increased in the
more severe groups showed that these were negatively
correlated with the module composed of additive flavours
and ingredients, including linalyl cinnamate and gingerol.
Recent studies have demonstrated that these food flavour-
ings undergo transformation in the gut microbiota and
thereby acquire additional properties that promote the
biological activities of these compounds [27, 28]. For

instance, CAG9, composed of several genera belonging
to Clostridium, was negatively correlated with glycero-
phospholipids such as PE (22:0/14:0) and PC(P-16:0/20:2).
CAG13, represented by Butyricimonas, was found to be
positively associated with carboxylic acids, steroids and
glycerolipid metabolites such as Ne, Ne dimethyllysine,
glycerol 1-hexadecanoate and 1b-hydroxycholic acid.
CAG19 and CAG23 were both negatively correlated
with fatty acyl carnitines, mainly L-octanylcarnitine,
and CAG23 was also positively correlated with benzene
and substituted derivatives.

As mentioned previously, the gut bacterial CAGs were
not directly correlated with the three major phenotype
indicators of CAD. The concerted changes within the
microbiome and metabolome allowed us to construct
interaction networks for CAGs and the CAD-associated
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metabolite modules, indicating that the gut microbiota
may influence CAD severity by interacting with host
metabolites.

Subgroup identification and prediction based on CAGs
and CAD-associated metabotypes
To determine whether the gut bacterial CAGs and metab-
olite modules can be regarded as identification biomarkers
for distinguishing various stages of CAD from normal cor-
onary arteries and from each other, random forest models
were constructed to classify different stages of CAD based
on 24 CAGs and 72 serum metabotypes, and receiver
operating characteristic (ROC) curves were used to test
the classification (details are shown in the “Materials and
methods” section). We mainly established five models,
namely, Control vs. CAD, Control vs. SCAD, SCAD vs.
UA, SCAD vs. ACS and UA vs. ML

We could accurately distinguish CAD patients from
healthy controls, as indicated by the area under the re-
ceiver operating curve (AUC), which had a value up to
0.955 (Fig. 4a). Among the strongest discriminatory fea-
tures, benzene and substituted derivatives had the great-
est impact, followed by metabotypes such as ceramides,
glycerophospholipids, taurine and amino acids, including
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L-leucine and L-proline. (Fig. 4b). In the subgroup com-
parisons, we considered control vs. SCAD for plaque
formation and found that SCAD patients possessed dis-
tinct features compared with the controls (Fig. 4a). The
features with predictive value were metabolic modules,
including benzene and substituted derivatives, phenolic
glycoside, heteroaromatic compounds, taurine and tyro-
sine (Fig. 4b). Then, we focused on SCAD vs. ACS for
the transition from coronary stability to instability, and the
AUC for this comparison was 0.897 (Fig. 4a). The main fea-
tures included steroids, aminobenzoate degradation, amino
acids (L-leucine, L-proline and glutamylserine), tyrosine
and derivatives, CAG17 and CAG13 (Fig. 4b). The AUC
for the classification of MI from the UA was 0.855 (Fig. 4a),
and in predicting the process for cardiac events, metabolite
modules were mainly annotated to heteroaromatic com-
pounds, phenolic glycoside, taurine, steroids, CAG14 and
CAG18 (Fig. 4b). However, we obtained poor performance
when discriminating between SCAD and UA due to de-
creased specificity and sensitivity (Fig. 4a). Notably, we
found that these markers were common microbial and
metabolic characteristics of CAD subgroups and contrib-
uted greatly to the identification of plaque formation and
rupture even with myocardial ischaemia.

N
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=
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/ Unknown P027 mem Phenolic glycoside P025
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Fig. 4 Diagnostic outcomes are shown via receiver operating characteristic (ROC) curves for CAD severity. a ROC of the random forest classifier
using CAG + serum metabolite modules based on the most important variables by ranking the variables by importance in the discovery phase
among 201 subjects. b The detailed explanatory variables based on the random forest model in each comparison. The lengths of the bars in the
histogram represent the mean decrease accuracy, which indicates the importance of the CAG or metabolite module for classification. ¢ ROC of
the cross-validated random forest classifier using the most important explanatory variables in the validation cohort. GP glycerophospholipids
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Subsequently, we enrolled another independent valid-
ation cohort that met the same inclusion and exclusion cri-
teria as the discovery phase (Additional file 2: Table S7).
The validation cohort was also divided into the con-
trol group (N = 12), SCAD group (N = 11), UA
group (N = 11) and MI group (N = 3). We used the
established random forest models to further demon-
strate the potential ability of subgroup identification.
Consistently, the features of the CAG + metabolite
module can help distinguish CAD patients vs. healthy
controls, SCAD vs. control, ACS vs. SCAD and MI
vs. UA (Fig. 4c). Similarly, the performance on SCAD
and UA individuals was not as satisfactory.

Overall, the CAD-associated microbial and metabolic
features captured by the classifier offered further evidence
of the dysbiotic gut microbiome and highlighted its great
potential for the detection of various stages of CAD.

Discussion

In the current study, we demonstrated that CAD patients
had significantly different serum metabolite profiles and
gut microbiota compared with healthy controls and
showed that the metabolites and gut microbiota may fur-
ther shift during the development of CAD. Through
multi-omics analyses, our study found that CAGs and
metabotypes that exhibited significant changes with the
development of CAD were significantly correlated and
might be used independently as biomarkers for CAD sub-
type diagnosis.

We confirmed that the structural characteristics of the
gut microbiota were altered with the development of
CAD compared with those of healthy controls. The
abundance of CAG17 increased with CAD severity. This
CAG contained several gram-negative bacteria, such as
Veillonella, Haemophilus and Klebsiella and these bac-
teria trigger the innate immune response via lipopolysac-
charide (LPS) production and elicit a subsequent
inflammatory reaction that is mediated by local gener-
ation of cytokines [29]. Klebsiella is also reported to be
associated with disease in hypertensive populations and
is responsible for hypertension pathology [23]. Notably,
we did not find any significant correlation between
CAG17 and CAD-associated metabolic models, which
suggested that these bacteria might contribute to CAD
development by inducing endotoxaemia and systemic in-
flammation [30-32]. Our data also showed that 4 CAGs
containing OTUs from Lachnospiraceae and Rumino-
coccaceae, which are major members of the human GI
tract that produce butyric acid [33], were significantly
reduced with CAD development. A recent study involv-
ing the TwinsUK cohort revealed that OTUs belonging
to the Ruminococcaceae family are negatively associated
with pulse wave velocity (PWV), which is a measure of
arterial stiffness [34]. Among the bacteria in these
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CAGs, Roseburia has been associated with weight loss
and reduced glucose intolerance in mice, and a strong
anti-inflammatory effect of Faecalibacterium prausnitzii
has been demonstrated both in vitro and in vivo [35].
Interestingly, another study showed that the abundances
of Clostridium 1V, Clostridium XIVa and Clostridium
XVIII, which also belong to Ruminococcaceae, were
higher in patients with coronary heart disease [36]. In
the current work, we also found that CAG9, CAG19 and
CAG23, which were also composed of OTUs from
Ruminococcaceae, were enriched significantly in patients
with severe disease. In fact, even though the OTUs were
assigned to the same genus, their functions may be dis-
tinct because the functions of bacteria are strain specific
[37]. Ecologically, gut bacteria do not exist in isolation
but rather as functional groups named “guilds”. The key
members of a co-abundance group would thrive or de-
cline together in response to the changing physiological
environmental resources and form different guilds [38].
Therefore, compared with the conventional taxon-based
analysis, the CAG-based analysis performed in this study
offers a more ecologically relevant method for reducing
the dimensionality of microbiome datasets and facilitate
the identification of functionally important members of
the gut microbiota in CVD. In summary, our data sug-
gested that the composition of the gut microbiome also
changes dynamically with chronic development of CAD.

The human gut microbiota interacts extensively with
the host through metabolic exchange and substrate
co-metabolism. The human metabolome is composed of
endogenous metabolites, exogenous metabolites, metab-
olites from the gut microbiota and bacterial and host
co-metabolites. Metabolic phenotypes revealed signifi-
cant pattern differences between patients at various
CAD stages and those with normal coronary arteries in
the current work, suggesting that CAD may involve a
universal metabolic disturbance. The metabolites, in-
cluding PE, PC, PS and sphingolipid metabolites, ob-
served in our study were negatively correlated with AS
severity and myocardial markers. The roles of phospho-
lipid metabolites in CVD and metabolic syndrome are
contradictory [39, 40]. In recent years, studies have indi-
cated that elevated levels of specific PCs, CM and SMs
are characteristic of cardiovascular risks and mortality
[41-43], and these substances are abundant in the apical
membrane of the gut absorptive epithelium and are con-
sidered important for the preservation of structural in-
tegrity during exposure to bile salts and enzymes [44].
However, PC-16:0/2:0 was found to be negatively associ-
ated with CVD risk factors in population-based study of
990 adolescents [45]. What’s more, a recent research in-
dicated that serum C16:0-CM and SM concentrations
are negatively correlated with insulin resistance and
metabolic syndrome in Danish individuals [46]. As the
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lipidomic profile is affected by the complex physiological
and environmental factors such as the dietary pattern
and medication use, it is difficult to draw the same con-
clusions from different cohorts. Furthermore, technical
aspects such as mass spectrometry conditions may also
contribute to the inconsistencies between different stud-
ies [47]. Ceramides and sphingomyelin may play a more
complex role in the regulation of host AS than previ-
ously recognized.

We did not observe the main classes of gut
microorganism-dependent metabolites that have been
linked to CVD risk, such as TMAO. However, our data
showed that the taurine and hypotaurine metabolic mod-
ule was negatively associated with CAD severity. As a ne-
cessary amino acid, taurine could regulate gut micro-
ecology, which might be beneficial to health, by inhibiting
the growth of harmful bacteria, accelerating the produc-
tion of SCFA and reducing the LPS concentration [48].
Human clinical studies have reviewed the beneficial effects
of taurine in the treatment of hypertension, AS and dia-
betic cardiomyopathy [49]. In addition, our metabolic pro-
file showed that aromatic compounds such as benzenoids,
which are normally generated and biosynthesized by bac-
terial species, significantly perturbed the development of
CAD [50]. Phenolic and indolic compounds are typical
products of bacterial metabolism of aromatic amino acids,
and dietary phenolic compounds are often transformed
prior to absorption. The potential mechanistic participa-
tion of these metabolites remains to be further chemically
elucidated. Overall, through inter-group comparisons and
correlation analysis with clinical indicators, we identified
metabotypes that are closely related to the gut microbial
metabolism, and these metabotypes exhibited significant
alterations with the development of CAD.

Results from epidemiological studies have identified
multiple major risk factors responsible for CAD develop-
ment including hypertension, hyperlipidaemia, insulin
resistance, and obesity [51, 52]. Moreover, large-scale
studies have revealed that genetic factors can only explain
a small part of the variation in disease risk [53]. Recently,
studies have provided strong support for the idea that the
interplay between microorganisms and the host has a con-
tributory role in atherosclerotic CVD [6-8, 13]. In our re-
search, although we did not find any direct correlation
between CAGs and the main CAD phenotype indicator
that was mediated by serum metabolites, we were able to
further identify the correlation between specific bacteria
and different stages of CAD. However, we only conducted
cross-sectional study and our data was correlative as well.
Moreover, many confounding factors like diet and lifestyle
may impair the quality of the associative findings.
Long-term follow-up studies and functional studies are ur-
gently needed to reveal the specific bacteria that may con-
tribute to CAD through the production of bioactive
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metabolites. Nevertheless, tracking individuals from stable
atherosclerotic plaques to plaque ruptures and thrombosis
is a long process that requires long-range standardized
follow-up. Overall, the process of AS progression is con-
sidered to be dynamic and complicated, and modulation
of the gut microbiota composition may represent a prom-
ising diagnostic biomarker or therapeutic target. With an
independent validation cohort, our study proved that both
CAGs and metabolites may potentially be used together
as important markers for CAD subgroup diagnosis.

The gut microbial ecosystem, which is arguably the
largest endocrine organ in the body, is capable of produ-
cing a wide range of biologically active compounds that
may be carried via circulation and distributed to distant
sites within the host and thereby influences different es-
sential biological processes of the host [54]. In addition,
bacteria in the gut constitute a complex ecosystem in
which different species exhibit specialized functions and
interact as a community. The bacteria in the human gut
may survive, adapt, and decline as CAGs in response to
environmental perturbations [55]. Therefore, multi-omic
studies may provide an improved global understanding
of the functional variations that occur in CAD popula-
tions. Further studies are needed to investigate the
mechanism of action of the key microbiota and metabo-
lites identified in our study during CAD progression.

Conclusion

AS is a chronic, long-term pathologic process that is as-
sociated with inflammatory reactions. The mechanism
responsible for the sudden conversion of a stable situ-
ation to an unstable condition is usually plaque disrup-
tion, which tends to occur after decades of progression,
and these vulnerable plaques may suddenly cause
life-threatening coronary thrombosis [56, 57]. Therefore,
the identification of an effective and convenient bio-
marker for monitoring vulnerable plaques is very im-
portant for prevention of acute MI. Mounting evidence
shows that key members of the gut microbiota might be
potential candidates [6, 7, 58], but most studies on the
gut microbial variations associated with CAD were lim-
ited to case-control studies. Our results showed that al-
terations in the gut microbial community and serum
metabolites in different CAD subgroups and alterations
in the gut microbiota were correlated with CAD severity
via the mediation of serum metabolites. Furthermore,
the combination of specific bacterial CAGs and metabol-
ite modules exhibited potential diagnostic value for dif-
ferentiating patients with different CAD subtypes. These
findings may provide new insights for revealing novel
potential aetiologies for AS, understanding the role of
gut microbiota in CAD, and modulating gut microbiota
as a therapeutic target.
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Materials and methods

Study design and population

We consecutively recruited 40 healthy volunteers and
161 CAD patients who were hospitalized for coronary
angiography in Peking Union Medical College Hospital.
Patients who exhibited >50% stenosis in at least one
main coronary artery were diagnosed with CAD. Coron-
ary atherosclerotic burden was evaluated using the Gen-
sini score by two professional cardiologists (Additional
file 1: Figure S2a). CAD patients were further divided
into three subgroups as follows: (1) SCAD, (2) UA and (3)
ML The detailed diagnose criteria of CAD subgroups are
summarized in Additional file 3: Supplementary Methods.
For controls, we enrolled subjects who exhibited negative
results upon coronary artery CT or coronary angiography
examination or were identified as having no CAD-related
clinical signs and symptoms. Subjects were excluded if
they had gastrointestinal diseases, malignant tumours,
autoimmune disorders, infectious diseases, renal dysfunc-
tion (severe renal disease creatinine > 3.0 mg/dl), a history
of gastrointestinal surgery in the previous year or were ad-
ministered antibiotics for more than 3 days in the previous
3 months.

All clinical information was collected according to
standard procedures (detailed in Additional file 3:
Supplementary Methods). For the participants, periph-
eral venous blood was drawn in the morning the day
after admission. Participants were given a stool sampler
and provided detailed illustrated instructions for sample
collection. Stool samples freshly collected from each par-
ticipant were immediately transported to the laboratory
and frozen at — 80 °C immediately.

In addition, we also included a small verification co-
hort, which was also divided into control group (N =
12), SCAD group (N = 11), UA group (N = 11) and MI
group (N = 3), and met the same inclusion and exclusion
criteria as the discovery phase cohort. The study was
performed in accordance with the principles of the Dec-
laration of Helsinki. Subjects provided written, informed
consent for participation in the study.

Untargeted metabolomics study
Sample analysis was performed on Waters ACQUITY
ultra-high-performance liquid chromatography system
(Milford, MA) coupled with a Waters Q-TOF Micromass
system (Manchester, UK) in both positive and negative
ionization modes. In order to detect more metabolites as
much as possible, we performed both polar ionic and lipid
mode depending on the properties of the serum metabo-
lites. Detailed parameters for the sample preparation and
HPLC-MS experiment parameters were provided in the
Additional file 3: Supplementary Methods.

The raw data were imported to the Progenesis QI
(Waters) for peak alignment to obtain a peak list
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containing the retention time, m/z, and peak area of
each sample [59]. By using retention time and the m/z
data pairs as the identifiers for each ion, we obtained ion
intensities of each peak and generated a matrix contain-
ing arbitrarily assigned peak indices (retention time-m/z
pairs), ion intensities (variables) and sample names (ob-
servations). The matrix was further reduced by removing
peaks with missing values in more than 80% samples
and those with isotope ions from each group to obtain
consistent variables. The CV (coefficient of variation) of
metabolites in the QC samples was set at a threshold of
30%, as a standard in the assessment of repeatability in
metabolomics data sets. The nonparametric univariate
method (Mann-Whitney-Wilcoxon test) was used to
analyse metabolites that differed in abundance between
the different subgroups corrected for false discovery rate
(FDR) to ensure that the peak of each metabolite was re-
producibly detected in the samples. Then, the peak list
was imported into SIMCA-P 14.0 software (Umetrics AB,
Umea, Sweden) to acquire clustering information and im-
portant variables between the CAD subgroups and the con-
trol group. Metabolites selected as biomarker candidates
for further statistical analysis were identified on the basis of
variable importance in the projection (VIP) threshold of 1
from the tenfold cross-validated OPLS-DA model, which
was validated at a univariate level with adjusted P < 0.05.
The online HMDB database (http://www.hmdb.ca) (ver-
sion: 4.0) [60] and KEGG database (http://www.genome.jp/
kegg/) (updated: September 14, 2016) [61], Lipid maps
Structure Database (LMSD) (updated: October, 2017) [62]
and METLIN (version: 1.0.5673.40082) [63] were used
to align the molecular mass data (m/z) to identify
metabolites. The mass error used was 0.005Da for
msl and 15ppm for ms2. MetaboAnalyst (https://
www.metaboanalyst.ca) (version 4.0) was used for the
identification of metabolic pathways [64].

Clustering of co-abundant serum metabolites.

Clusters of co-abundant serum metabolites were identified
using the R package WGCNA [65]. Signed, weighted me-
tabolite co-abundance correlation networks were calcu-
lated for all examined individuals. A scale-free topology
criterion was used to choose the soft threshold 5 = 14 for
serum metabolites correlations. Clusters were identified
with the dynamic hybrid tree-cutting algorithm using a
deepSplit of 4 [66]. The serum polar metabolite and serum
molecular lipid clusters (labelled PO1-P42 and L01-L30,
respectively) were collectively termed metabolite clusters.

DNA extraction and 16S rRNA gene V3-V4 region
sequencing

Bacterial DNA was isolated from faecal samples using
the bead-beating method as previously described [67].
The extracted DNA from each sample was used as the
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template to amplify the V3-V4 region of 16S rRNA
genes using PCR. PCR amplification, sequencing of the
PCR amplicons and quality control of raw data were
performed as described previously [68]. A sequencing li-
brary of the V3—V4 regions of the 16S rRNA gene was
prepared as described previously [69]. The purified prod-
ucts were mixed at an equal ratio for sequencing using
an Illumina MiSeq system (Illumina Inc., USA).

Sequencing data analysis

Operational taxonomic units (OTUs) were delineated
at the cutoff of 97% using the USEARCH v.8.0 [70].
The protocol can be found on the website http://
drive5.com/usearch/manual/uparse_pipeline.html. The
detailed procures were stated in our previous publica-
tion [69]. Representative sequences for each OTU
were built into a phylogenetic tree by FastTree and
subjected to the RDP classifier (RDP database version 11.5,
http://rdp.cme.msu.edu/classifier/classifier.jsp) [71] to de-
termine the phylogeny with a bootstrap cut-off of 80%.The
sequences of all the samples were downsized to 10,800
(1000 permutations) to match the difference in sequencing
depth. a- and pB-diversity analyses were performed using
Qiime v1.8.0 [72]. Shannon’s index, the observed OTUs,
and Chaol index were evaluated. A normalized OTU
abundance table was used for the B-diversity analysis, in-
cluding principal coordinate analysis (PCoA) based on
Bray-Curtis, weighted UniFrac, and unweighted UniFrac
distances.

PERMANOVA was used to test for statistical signifi-
cance between the groups using 9999 permutations. To
calculate the variation explained by each of our collected
host factors, we performed an Adonis test implemented
in R. Each host factor was calculated according to its ex-
planation rate, and P values were generated based on
9999 permutations.

Microbial cluster generation using SparCC

The OTUs shared by at least 20% among all the samples
were considered key OTUs. The correlation among 274
key OTUs was calculated by the SparCC algorithm [60]
with a bootstrap procedure repeated 100 times, and then
correlation matrices were computed from the resampled
data matrices. Once the bootstrapped correlation scores
have been computed, only OTUs with correlation scores
greater than 0.4 were classified into CAGs. Meanwhile,
we threshold the P value at the desired cut-off <0.05.
The correlation values were converted to a correlation
distance (1-correlation value), and the OTUs were clus-
tered using the Ward clustering algorithm via the R
package WGCNA. Similar clusters were subsequently
merged if the correlation between the CAG’s eigenvec-
tors exceeded 0.8. The CAG network was visualized in
Cytoscape (version 3.2.1).
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Spearman multi-omic correlation analysis

Spearman correlations between CAGs, serum metab-
olite modules and clinical parameters were calculated
using R, and both differential abundances of CAGs
and CAD-associated metabotypes were tested by the
Wilcoxon rank sum test. Wherever mentioned, the
Benjamini-Hochberg method was used to control the
FDR. The visual presentation of multiple omics corre-
lations was performed using the R. ggplot2 package.

Feature selection using the random forest model

Using the profiles of CAGs and metabolite modules, the
discovery phase samples were randomly divided into a train-
ing set and a test set. A random forest classifier was trained
on 70% of the samples and tested on the remaining 30% of
our samples using the random forest package in R. Then,
based on this model, we used another independent cohort
for further prediction. We used tenfold cross-validation
within the training set. We built an optimal set of variables
at the lowest cross-validational error. Thus, the predictive
model was constructed using the most important variables,
which were further applied for ROC analysis. The perform-
ance of the smaller models was measured as AUC when ap-
plied to the test set, and the confidence intervals for the
ROC curves were calculated using the pROC R package.
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