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Abstract

Background: Community-wide analyses provide an essential means for evaluation of the effect of interventions or
design variables on the composition of the microbiome. Applications of these analyses are omnipresent in
microbiome literature, yet some of their statistical properties have not been tested for robustness towards common
features of microbiome data. Recently, it has been reported that PERMANOVA can yield wrong results in the presence
of heteroscedasticity and unbalanced sample sizes.

Findings: We develop a method for multivariate analysis of variance, W(’;, based on Welch MANOVA that is robust to
heteroscedasticity in the data. We do so by extending a previously reported method that does the same for two-level
independent factor variables. Our approach can accommodate multi-level factors, stratification, and multiple post hoc

WdStar.

testing scenarios. An R language implementation of the method is available at https://github.com/alekseyenko/

Conclusion: Our method resolves potential for confounding of location and dispersion effects in multivariate
analyses by explicitly accounting for the differences in multivariate dispersion in the data tested. The methods based
on W have general applicability in microbiome and other ‘'omics data analyses.

Keywords: Welch MANOVA, Distance MANOVA, Heteroscedastic test

Introduction

Beta diversity analyses or community-wide ecological
analyses are important tools for understanding the differ-
entiation of the entire microbiome between experimental
conditions, environments, and treatments. For these anal-
yses, specialized distance metrics are used to capture
the multivariate relationships between each pair of sam-
ples in the dataset. Analysis of variance-like techniques,
such as PERMANOVA [1], maythen be used to deter-
mine if an overall difference exists between conditions.
The distances use all of the measured taxa information
simultaneously without the need to explicitly estimate
individual covariances. The utility of these methods is
hard to underestimate as virtually every recent major
microbiome report has used some form of a community-
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wide association analysis. On many occasions, the com-
parison reveals major differences between the groups.
However, one is not guaranteed to find one. For exam-
ple, in Redel et al. [2], the authors have found that there
are significant differences in cutaneous microbiota in dia-
betic vs. non-diabetic subject feet, but not on their hands
(see fig. 5). This lack of difference is an important indi-
cator about the potential pathobiological processes that
lead to diabetic foot ulcers. Therefore, getting the cor-
rect result in such comparisons is important. The Redel
et al. analysis can ultimately be achieved by pairwise com-
parisons only (diabetic vs. non diabetic); however, many
study designs have more than two groups that need to be
considered simultaneously. Dietary intervention studies
among others often include several experimental groups.
For example, Cox et al. [3] analysis of the impact of diet
on the murine gut microbiome included animal groups
receiving low fat, high fat, and high fat with fiber supple-
ment diets. Although it is possible to treat such design
using multi-way comparisons of dietary fat and dietary
fiber, a simultaneous analysis of all three groups can be
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more intuitive. Hence, there is a need for methods that
can compare more than two experimental groups at the
same time. PERMANOVA among other methods allows
for such analyses.

From the statistical stand point, community-wide anal-
yses test the hypothesis that the data from two or more
conditions share the location parameter (centroid or mul-
tivariate mean). Caution, however, needs to be taken to
ensure that potential violations of assumptions do not
lead to adverse statistical behavior of PERMANOVA. Two
such assumptions that are commonly violated are the
multivariate uniformity of variability (homoscedasticity)
and sample size balance. We have previously shown that
simultaneous violation of both assumptions leads to PER-
MANOVA analysis with indiscriminate rejection and type
I error inflation or to significant loss of power up to
inability to make any rejections at all [4]. Unfortunately,
heteroscedasticity across conditions is a very common
feature of microbiome data. Thus, new robust methods
are needed to ensure correct data analysis.

We have previously described a T2 test, which presents
a robust solution for comparing two groups of micro-
biome samples [4]. The two-group scenario is common,
but not universally satisfying as many study designs often
include many different sample types, e.g., from affected
and unaffected sites of a study subject and from a matched
healthy control [5] and interventions as in the Cox
et al. [3] study mentioned above. Here we describe a
further extension of T2 to allow for arbitrary number
of groups with possibly different within group variabil-
ity to be compared using an omnibus test for equality
of means. Our method presents an advance to the state-
of-the-art by introducing a way to compare data from
multiple conditions where heteroscedasticity is a nuisance
and only the differences between location of the data are
important.

Univariate Welch MANOVA
Univariate solutions for a heteroscedastic test to compare
k-means deal with finding asymptotic distributions for
> wix — )2, as defined later in Egs. (2) and (3). Welch’s
solution [6] is perhaps the most known and well adopted
in statistical literature. Next we briefly describe it, as we
will build on extending this statistic to multivariate data.
Suppose we observe data from k populations x; =

o j
vations, nj forj = 1,..., k, in each. Let x; and sf denote the
means and variances for each sample. The Welch ANOVA

statistic is: _
. _ 2w — )/ (k-1

1+ [2(k —2)/(k = D] > By’

(x(l) ceos " )> with potentially unequal number of obser-

1

where
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wi = nj/s}, 2)

po=) wi/W, (3)

W = Z wj,and (4)

hi = (1—wi/W)*/(m; = 1). (5)

The Welch test uses F(k — 1,f), for f =

(k* —1) /(3/ X h;) distribution to draw inference with
w* [6].

Calculation of multivariate Welch W-statistic on
distances
To derive a Welch W* statistic suitable for analysis of
microbiome data, W, we follow the same approach as we
did in our derivation of T2. We first demonstrate that in
the univariate case, W can be expressed in terms of sums
of pairwise square differences. Next we observe that these
sums represent the squares of the univariate Euclidean
distances, which allows for a direct extension of the W7
statistic computation for multivariate Euclidean distances
and in fact any arbitrary distance or dissimilarity metric.
The derivation of the statistic in terms of dissimilarities
makes it suitable for analysis of microbiome data via a
permutation test.

We have previously shown [4] that the sample variances
can be written as:

1j

1 2
2 ( ®) (q))
= x0T =%
/ I’lj (I’l/ — 1) I;I / /
1z q=1
(6)
2
>
n] (n/ -1 =
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where x? and x(q) denote p-th and g-th observations in

j
the j-th level, d /g is the distance between them. Hence:
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Equation (16) means that ijj(icj — )% can be

expressed as weighted sum of squares of pairwise inter-
group mean differences, which makes for a convenient
expression to compute. Finally, we have previously shown
that squares of mean differences can be expressed in terms
of squares of pairwise sample differences [4], i.e:

+ 1 2
_ _\2 nj+nj ( (@) (i,j))
X —xi1) = - Z. —Z.
( ! ]) n;n; n; + nj ; t 7
ij=1
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' p<q J p<q
pg=1 pq=1
(17)
where 2/ (Zgi’j),“"z;i{:rz/) (xlﬂl)’...,xlim)’

x}l),...,x;nj)). The squares of the pairwise differences
under the summations in Eq. (17) can be thought of as the
squares of the pairwise Euclidean distances in one dimen-
sion. This allows us to generalize the univariate Euclidean
Welch ANOVA to MANOVA with arbitrary distances,
where the distances can be suitably defined for the data
at hand, including all of common distances used with

microbiome data.

Note that in contrast to the PERMANOVA statistic, the
distance-based T2 and W} explicitly account for poten-
tially unbalanced number of observations and differences
in multivariate spread in the two samples. Finally, observe
that Wi reduces to Tp when k = 2, as W* reduces to
Welch ¢-statistic.

As with T‘%,, the exact distribution of the multivariate
distance-based W statistic is dependent on many factors,
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such as the dimensionality of underlying data, distribu-
tions of the random variables comprising the data, the
exact distance metric used, and the number of groups
compared k. To make a practical general test, we use
permutation testing to establish the significance. To do
so, we compute W7 (i) on m permutations of the origi-
nal data, for i = 1,...,m, and estimate the significance
as the fraction of times the permuted statistic is greater
than or equal to Wy, ie, p = %Zlm]l (Wt}k < W;(i)).
Here, 1(.) designates the indicator function. Larger p
values are more easily estimated with permutations as
the number of more extreme permuted statistics will
be quite large. For smaller, p values often, the precise
p value is not necessary, but only an indication if it
is smaller than a particular threshold (e.g., 0.01). As a
rule of thumb, to conclude that a p value is less than
a threshold «, we recommend performing at least 5/«
permutations.

Confounder modeling and repeated measures are often
key elements of microbiome study design. These can be
accounted for in permutation testing procedures using
restricted permutation. For example, the effect of a dis-
crete valued confounder can be removed from the p value
calculation by restricting permutations to only within
the levels of the confounding variable. This amounts to
an application of stratified analysis of variance. Similarly,
restricting permutations to within individual subjects
only results in a repeated measures analysis. Notice that
the test statistic under restricted permutations
remains the same, but the null distribution is
changed to reflect the desired comparison. Methods
for W and these restricted permutation methods
are available in our reference implementation at
https://github.com/alekseyenko/WdStar.

When multiple means are compared with W%, a statis-
tically significant result may prompt the question about
attribution of the differences to a specific group or
groups. Post hoc testing procedures are used to perform
that kind of analysis. There are many possible ways to
design the post hoc testing procedures, but the guiding
principle due to potential for loss of power to multi-
ple testing should be to minimize the number of tests
performed. For this reason, in addition to all possible
pairwise (one versus one) tests, it may be interesting
and relevant to test one group versus all others. In this
scenario, samples from one experimental group are com-
pared to pooled samples from the remaining groups.
The statistical test for this comparison can equivalently
be either 72 or W7 on two level factors. We illustrate
the use of one versus all post hoc procedure in our
application example in “Application example: colorectal
cancer disparity and microbiome” section and provide
corresponding computation routines in our reference
implementation.


https://github.com/alekseyenko/WdStar
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Empirical evaluation of W} type | error

The principal evaluation that is required to assure
statistical properties of W is demonstration of appro-
priate type I error control. For this purpose, we consider
the univariate heteroscedastic case with three groups,

{xikl)] , {xék”} , {x§k3)}, ki=1...,nm,ky=1...,mn,and
ks = 1...,mn3, of samples to compare, where ny, ny, n3
are the numbers of observations in each group. We let

iid. i.id.
xikl) N (0,1) be the reference group and ng) B
j.id.
N (O,sz) and xékS) N (0,54) be the groups with
2

different variance s* and s*, respectively, to introduce het-
eroscedasticity. In our simulation, we let s> = {1,0.8,0.2}
to control the degree of heteroscedasticity in the range
from none to large. Finally, we let the sample sizes n;, n3,
and n3 take values of 5, 10, 20, or 40 to generate data with
varying total sample size and degree of balance. For each
combination of sample sizes and variance, we have per-
formed 1000 simulations of the data for a total of 192,000
datasets. Each dataset has been analyzed using our refer-
ence implementation of W, PERMANOVA (adonis func-
tion in R library vegan), and univariate Welch ANOVA
(oneway.test in R library stats). For distance-based meth-
ods, Euclidean distances have been used. Details of sim-
ulation are available as a knitted R Markdown file in
Additional file 1. The simulation results comprise the
fraction of rejected null hypotheses at « 0.05 by
each test (Fig. 1a). A test properly controlling the type I
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error is expected to have the fraction of rejections equal
to the nominal error rate (0.05). Notice that the pro-
posed W test, in fact, produces the expected error rates
over the entire range of simulation parameters. Simi-
larly to our previous observations in the two-group case,
PERMANOVA is not robust to heteroscedasticity when
sample size imbalance is present. Observe that whenever
the number of observations in the reference group (the
one with variance equal to 1) is smaller than that in the
less dispersed groups, the fraction of rejections is overly
inflated, resulting in higher type I error. Also notice that
when there are more observations in the reference group
than in others (e.g., n1 = 40, ny,n3 < 40), it is hard
for PERMANOVA to make the rejections, resulting in
approximately zero type I error.

Interestingly, when we compare the raw p values
obtained from W} to those from the distribution
based asymptotic Welch test, we see a good con-
cordance between the two (Fig. 1b). The variability
around the trendline is most likely due to Monte Carlo
error associated with permutation testing and small
sample size. On the contrary, when PERMANOVA
is compared to the distribution-based asymptotic test,
the fit is clearly much noisier (Fig. 1c). The con-
cordance is much smaller for tests involving groups
with larger degree of heteroscedasticity. The code
used to produce the plots in Fig. 1 is available as
Additional file 2.

Test

Wstar.rr —e— Permanova.rr

Variance
e 02 4 08 = 1

A

Fraction of rejected null hypotheses

10 20 30 40 10 20 30 40 10 20 30 40
ni

1
o WelchF.rr 0

Permanova

Variance - 02 - 08 - 1

Fig. 1 Evaluation of type | errors of W and PERMANOVA permutation tests. Simulation under the null hypothesis results for comparison of W

(Wstar), PERMANOVA (Permanova), and distribution-based Welch ANOVA F (WelchF) tests are presented. In panel a, we evaluate the fraction of null
hypotheses that have been rejected by each test at @ = 0.05. The subpanels of a correspond to simulated datasets with corresponding number of
samples in the non-reference groups, with columns corresponding to the least dispersed and rows corresponding to the most dispersed sample. In
panel b, the raw p values from W test are plotted against those for the same data with Welch ANOVA F test. In panel ¢, we do the same for
PERMANOVA p values and color the points by respective degree of heteroscedasticity in the simulated dataset
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Finally, given the equivalence of the W to T2 fork = 2,
and the fact that the two-level test is powered similarly to
PERMANOVA, we expect the test described in this paper
to be of similar power for k > 2 as well. The full empir-
ical evaluation of power characteristics for k > 2 is hard
to achieve in non-superficial setups as most realistic sim-
ulation scenarios present an infinite universe for choice of
parameters.

Application example: colorectal cancer disparity
and microbiome

Extensive scientific literature suggests an important, yet
not fully understood role of the intestinal microbiome
in the development, progression, and treatment of col-
orectal cancers (CRC). Several genus level bacterial taxa
have been associated with CRC [7] but the role of per-
sonal characteristics in influencing the presence of CRC-
associated bacteria is not well understood. A few studies
have noted marked differences in the microbial environ-
ment in the gut of African-Americans (AA) versus others
[7-11] (e.g., Caucasian (CA)) and suggested differences
in microbial composition among those with and without
colorectal polyps and cancer. Others found distinct differ-
ences in the microbes populating the proximal and distal
colo-rectum [12, 13]. Lower socioeconomic status and
western diet have been associated with a lower microbial
diversity, especially in the distal colon [14, 15]. Micro-
bial signature approaches have been used for development
of diagnostic biomarkers [9, 16—18] or assessing differ-
ences in immune gene expression [13]—highlighting the
increasing importance of statistical methods to analyze
clusters of microbes-genes while also taking into account
patient-level variables. The role of the gut microbiome in
CRC disparities is likewise poorly understood [19]. Here
we use a pilot CRC dataset to demonstrate the utility
of W7 in uncovering signals potentially missed due to
heteroscedasticity.

The Medical University of South Carolina (MUSC)
Institutional Review Board approved all study activities.
The Cancer Registry at Hollings Cancer Center (HCC)
at MUSC was used to identify all cases of CRC. The
study population was comprised of a sample of histo-
logically confirmed cases diagnosed between January
1, 2000, and June 30, 2015. Patients were of either AA
or CA descent. For each case, we obtained a formalin-
fixed, paraffin-embedded tissue blocks from the MUSC
Department of Pathology and Laboratory Medicine.
DNA was extracted following standard protocols in the
laboratory. Briefly, the colonic tissue was transferred to
a tube containing lysis buffer (1% SDS, 1mg/ml Pro-
teinase K, LTE pH 8.0). The solution was incubated at
50°C for 1h, followed by phenol/chloroform extraction
and ethanol precipitation. The quantity and quality of
DNA was then determined by running a small aliquot
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on a 1% agarose gel and comparing it to a set of DNA
standards. The extracted DNA was stored at — 80°C.
V3 and V4 regions of the 16S rRNA gene have been
amplified using 16S Amplicon PCR Forward Primer=5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC
CTACGGGNGGCWGCAG 16S Amplicon PCR Reverse
Primer = 5-GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAGGACTACHVGGGTATCTAATCC using KAPA
HiFi enzyme. The library has been prepared using Nextera
XT index kits and sequenced using MiSeq Reagent Kit v3
in a Miseq instrument. We have analyzed the genera pre-
viously reported in a systematic review to be associated
with CRC [20]. Jensen-Shannon Divergence distances
have been computed between the subjects of Caucasian
and African-American races with cancers in distal and
proximal locations of their colons. See Additional file 4
for the list of 14 genera retained for this analysis.

We selected a convenience sample from our MUSC
cancer cohort of 20 patients (10 AAs, 10 CAs) which
we matched on colonic location (proximal, distal) and
sex. Of the 20 cases, 6 have been removed due to low
sequence count (< 100) within the genera of interest.
This resulted in groups with highly unbalanced num-
ber of subjects (Table 1). The location of the cancers
correlate with outcomes, whereby distal results in the
worst. Hence, to examine possible microbial clues into
racial disparity the interaction of race and location is
important. Due to extremely small pilot-scale sample size,
the group unbalance and potential for heteroscedastic-
ity prompt caution with using PERMANOVA for these
comparisons (Fig. 2). Visually, we observe the two dis-
tal AA observations segregating to the extreme left of
the other specimens. On the other hand the centroid of
the CA distal observations is in the diagonal quadrant
from the centroid AA distal observations. The proxi-
mal specimens are not separated on the first principal
axis, but a moderate segregation can be observed along
the second axis. Note that if primary effects only are
considered in this case, the differences in the location
of the cancers would not be plausibly different, as the
corresponding centroids would lie well within each oth-
ers’ circles of inertia. These qualitative observations are
suggestive that the interaction of race and location rep-
resented by the four groups of observations harbor dif-
ferential microbiota, albeit the extemely small sample size

Table 1 Number of the subjects in the colorectal cancer
example analysis

Race Cancer location N
African-American Distal 2
Proximal 3
Caucasian Distal 5
Proximal 4
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Fig. 2 PCoA plot of the JSD distances between CRC microbiome samples. African-American distal (red) samples appear to be separated on PC1
from the samples in the proximal AA (black) and Caucasian (gray) and Caucasian distal (orange) samples. Likewise, the plot suggest that the
multivariate spread may differ dramatically in the compared groups with AA distal samples being most concentrated relative to the other groups

may not be sufficient to deem the observed effect sizes
significant.

Nonetheless, the race and location interaction model
achieves significance (p < 0.05) with W test (Table 2).
Observe that as expected the difference between the dis-
tal and proximal cancers alone is not significant, but in
combination with race suggest existence of differential
interaction. These nuances are not captured by the anal-
yses with PERMANOVA, which yields unremarkable p
values. Interestingly, there is a discrepancy in test results
for the primary effect of the race at 0.05 significance
threshold, which is well within the gray zone of being
notable. However, the discrepancy of PERMANOVA and
W in the interaction term is a clear illustration for
utility of our method. In the presence of heteroscedastic-
ity and sample size imbalance, one might doubt the result
by PERMANOVA. Next, we demonstrate the application
of the post hoc procedures described in the methods
section. Significance of the interaction term may dic-
tate additional questions about which groups differ from

the rest. We demonstrate the use of one versus all post
hoc testing by comparing each group with the rest of
the samples (Table 3). As expected, these indicate a sig-
nificant difference (p < 0.05) in the microbiome of
the AA distal CRC samples from the rest, and a trend
for difference of the Caucasian distal samples. Note that
the interpretations of these results might differ if mul-
tiple comparison issues are taken into account. Due to
the pilot nature of these data, we do not perform any
formal corrections, as our goal is to determine the plau-
sibility of significant differences, which are to be evalu-
ated in appropriately sized datasets where power is not
a concern.

Epidemiological literature indicates that AA and CA
have notable differences in the prevalence of colorec-
tal neoplasia in the proximal and distal colorectum
at both the precancerous [21-24] and invasive stages
[25]. Numerous lifestyle and dietary factors associ-
ated with dysbiosis (e.g., red-meat intake, sedentary

Table 3 One versus all post hoc comparisons of the interaction

Table 2 Significance of the primary and interaction effects by terms

PERMANOVA and W tests Group T2 statistic W% pvalue
Covariate PERMANOVA p value W2 p value AA distal 8.88 0.039

Race 0.064 0.047 CA distal 1.93 0.075
Location 0.907 0.908 AA proximal 0.36 0.936

Race and location 0.282 0.037 CA proximal 0.70 0.665
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lifestyle, heavy alcohol use, western diet) are strongly
associated with the risk of distal colorectal cancer
[26-30]. A recent study reported that blacks compared
to whites had a greater abundance of sulfidogenic bacte-
ria in the normal colonic mucosa which correlated with
higher intakes of fat, protein, and meat per day [31].
Overall, the racial differences we observed in micro-
bial patterns in the CRCs by colonic location may
reflect differences in modifiable lifestyle and dietary
factors.

The data and R Markdown for this application is
included in Additional files 3 and 4.

Discussion and conclusion

Community-wide analyses where the entire microbiome
is modelled as a response variable of one or more fac-
tors has become a standard first line of analysis technique
in the field. These techniques address the question of
overall aggregate changes in the microbiome in response
to explanatory variables without the need to model each
individual microbiome constituent. PERMANOVA [1]
has been one of the most dominant tools for such anal-
yses, although the potential for confounding of location
and dispersion effects has been recognized for a long time
[32, 33]. The W method closes the gap by explicitly
accounting for the differences in multivariate dispersion
in the data tested, which has been shown to be associated
with adverse statistical properties in PERMANOVA [4].
Current heteroscedasticity-aware methodologies allow
for modeling multi-level factors, stratification, and multi-
ple post hoc testing scenarios. Although in many applica-
tions the differences in statistical decisions made on the
basis of PERMANOVA and W may remain unchanged,
the principled guarantees of being correct in wider range
of scenarios provided by the latter might be important for
practitioners. Although originally developed for discrete-
valued covariates, PERMANOVA remains a viable analy-
sis option for continuous covariates as well when multi-
variate regression-like formula are utilized [34]. However,
the effect of heteroscedasticity has not been rigorously
evaluated or addressed for such analyses. To be fair, het-
eroscedasticity with continuous covariates is an issue that
does not have a generic statistical solution applicable
in most cases. A more cautious analysis involving con-
tinuous covariates may require corroboration with dis-
cretized independent variables by W, but has to also
account for potential statistical power issues pertaining to
discretization.

A major limitation of most community-wide analyses is
that those often do not yield a natural unified framework
for evaluation of taxon-level effects. Currently, meth-
ods that have this unifying ability are emerging [35].
None of these, however, are evaluated for robustness with
heteroscedastic data yet.
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Additional files

Additional file 1: Knitted HTML R Markdown document detailing the
steps of producing the simulation datasets and running each test to
evaluate the Type | error performance of W relative to PERMANOVA and
asymptotic Welch F test. (HTML 17 kb)

Additional file 2: Knitted HTML R Markdown document containing the
code used to produce Fig. 1. (HTML 2974 kb)

Additional file 3: R Data file containing the R package phyloseq object
with data for the application example. The object includes the genus level
abundance tables, sample data containing designations of the race and
CRC location, and taxonomic table for the data. (RData 8 kb)

Additional file 4: Knitted HTML R Markdown document detailing
application example analyses. (HTML 842 kb)
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