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Abstract

Background: Analysis of mixed microbial communities using metagenomic sequencing experiments requires
multiple preprocessing and analytical steps to interpret the microbial and genetic composition of samples.
Analytical steps include quality control, adapter trimming, host decontamination, metagenomic classification, read
assembly, and alignment to reference genomes.

Results: We present a modular and user-extensible pipeline called Sunbeam that performs these steps in a
consistent and reproducible fashion. It can be installed in a single step, does not require administrative access to
the host computer system, and can work with most cluster computing frameworks. We also introduce Komplexity,
a software tool to eliminate potentially problematic, low-complexity nucleotide sequences from metagenomic data.
A unique component of the Sunbeam pipeline is an easy-to-use extension framework that enables users to add
custom processing or analysis steps directly to the workflow. The pipeline and its extension framework are well
documented, in routine use, and regularly updated.

Conclusions: Sunbeam provides a foundation to build more in-depth analyses and to enable comparisons in
metagenomic sequencing experiments by removing problematic, low-complexity reads and standardizing post-
processing and analytical steps. Sunbeam is written in Python using the Snakemake workflow management
software and is freely available at github.com/sunbeam-labs/sunbeam under the GPLv3.
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Background
Metagenomic shotgun sequencing involves isolating DNA
from a mixed microbial community of interest, then
sequencing deeply into DNAs drawn randomly from the
mixture. This is in contrast to marker gene sequencing
(e.g., the 16S rRNA gene of bacteria), where a specific tar-
get gene region is amplified and sequenced. Metagenomic
sequencing has enabled critical insights in microbiology
[1–9], especially in the study of virus and bacteriophage
communities [10–15]. However, an ongoing challenge is

analyzing and interpreting the resulting large datasets in a
standard and reliable fashion [16–23].
A common practice to investigate microbial metagen-

omes is to use Illumina sequencing technology to obtain a
large number of short (100–250 base pair) reads from
fragmented DNA isolated from a sample of interest. After
sequence acquisition, several post-processing steps must be
carried out before the sequences can be used to gain insight
into the underlying biology [21, 24].
Researchers have many tools at their disposal for

accomplishing each post-processing step and will fre-
quently encounter multiple parameters in each tool that
can change the resulting output and downstream analysis.
Varying parameters, tools, or reference database versions
between analyses makes it challenging to compare the re-
sults of different metagenomic sequencing experiments
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[25]. Conversely, employing a consistent workflow across
studies ensures that experiments are comparable and that
the downstream analysis is reproducible, as emphasized
in [21]. Documentation of software, databases, and
parameters used is an essential element of this practice;
otherwise, the benefits of consistent and reproducible
workflows are lost.
A metagenomic post-processing workflow should have

the following qualities to maximize its utility and flexibility:
it should be deployable on shared computing systems and
in the cloud, it should allow simple configuration of soft-
ware parameters and reference databases, it should provide
error handling and the ability to resume after interruptions,
it should be modular so that unnecessary steps can be
skipped or ignored, and it should allow new procedures to
be added by the user. The ability to deploy the workflow
on both institutional and cloud platforms enables work-
flows to be repeated in different labs with different comput-
ing setups and provides flexibility for researchers to choose
between computing resources at the institution and in the
cloud. Similarly, the ability to record running parameters
through the use of configuration files allows for the use of
experiment-specific software parameters and serves as
documentation for future reference.
Several features contribute to efficient data analysis. It is

beneficial if errors or interruptions in the workflow do not
require restarting from the beginning: as sequencing experi-
ments produce large amounts of data, having to repeat
steps in data processing can be time-consuming and
expensive. In addition, not all steps in a workflow will be
necessary for all experiments, and some experiments may
require custom processing. To handle experiments appro-
priately, the workflow should provide an easy way to skip
unnecessary steps but run them later if necessary. To make
the framework widely useful, users must be able to straight-
forwardly add new steps into the workflow as needed and
share them with others. Several pipelines have been devel-
oped that achieve many of these goals [26–29], but did not
meet our needs for greater flexibility in processing metage-
nomic datasets and long-term reproducibility of analyses.
Here, we introduce Sunbeam, an easily deployable and

configurable pipeline that produces a consistent set of
post-processed files from metagenomic sequencing
experiments. Sunbeam is self-contained and installable
on GNU/Linux systems without administrator privileges.
It features error handling, task resumption, and parallel
computing capabilities thanks to its implementation in
the Snakemake workflow language [30]. Nearly all steps
are configurable, with reasonable pre-specified defaults,
allowing rapid deployment without extensive parameter
tuning. Sunbeam can run either using local data directly
or using external data from the National Center for
Biotechnology Information (NCBI)’s Sequence Read
Archive (SRA) [31]. Sunbeam is extensible using a

simple mechanism that allows new procedures to be
added by the user.
In addition, Sunbeam features custom software that

allows it to process data from challenging sample types,
including samples with high proportions of low-quality or
host-derived sequences. These include custom-tuned
host-derived read removal steps for any number of host or
contaminant genomes, and Komplexity, a novel sequence
complexity analysis program that rapidly and accurately
removes problematic low-complexity reads before down-
stream analysis. Microsatellite DNA sequences make up a
significant proportion of the human genome and are highly
variable between individuals [32–34], compounding the
difficulty of removing them by alignment against a single
reference genome. We developed Komplexity because
existing tools for analyzing nucleotide sequence complexity
[35–37] did not meet our needs in terms of speed, removal
of spurious hits, and natively processing fastq files. We
have used Sunbeam in published and ongoing studies of
host-associated, low-microbial biomass body sites [19, 38,
39], the virome [40], and longitudinal sampling of the
microbiome [41, 42].
Sunbeam is implemented in Python, Bash, and Rust. It is

licensed under the GPLv3. It is freely available at https://
github.com/sunbeam-labs/sunbeam and documentation is
available at http://sunbeam.readthedocs.io.

Implementation
Installation
Sunbeam is installable on GNU/Linux distributions that
meet the initial hardware and software requirements listed
in the “Availability and requirements” section. Installation
is performed by downloading the software from its reposi-
tory and running “install.sh.” Sunbeam does not require
administrator privileges to install or run. We verified that
Sunbeam installed and ran a basic analysis workflow on
Debian 9; CentOS 6 and 7; Ubuntu 14.04, 16.04, 18.04, and
18.10; Red Hat Enterprise 6 and 7; and SUSE Enterprise 12.
Sunbeam utilizes the Conda package management system

[43] to install additional software dependencies beyond
those listed in the “Availability and requirements” section.
Conda provides automatic dependency resolution, facilitates
software installation for non-administrative users, and uses a
standardized system for packaging additional software and
managing third-party software channels. Conda also
provides an isolated environment for additional software
dependencies, to avoid conflicts with existing software out-
side the pipeline. Conda is installed by the Sunbeam installa-
tion script if needed. The isolated software environment
used by Sunbeam is also created by the installation script.

Sunbeam architecture
Sunbeam is comprised of a set of discrete steps that take
specific files as inputs and produce other files as outputs
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(Fig. 1). Each step is implemented as a rule in the Snake-
make workflow framework [30]. A rule specifies the
input files needed, the output files produced, and the
command or code needed to generate the output files.
Implementation of the workflow in Snakemake offered
several advantages, including workflow assembly, par-
allelism, and ability to resume following an interrup-
tion. Snakemake determines which steps require
outputs from other steps in order to form a directed
acyclic graph (DAG) of dependencies when the work-
flow is started, so the order of execution can change
to suit available resources. This dependency DAG
prevents ambiguities and cyclic dependencies between
steps in the workflow. The DAG structure also allows
Snakemake to identify steps that can operate in
parallel (e.g., on other processors or compute nodes)
if requested by the user. Snakemake manages the
scheduling and is compatible with job submission
systems on shared clusters.
The input to the Sunbeam pipeline consists of raw,

demultiplexed Illumina sequencing reads, either local
files or samples available through the SRA. By default,
Sunbeam performs the following preliminary operations
on reads in the following order:

1. Quality control: Optionally, reads are downloaded
from the SRA using grabseqs [44] and sra-tools
[31]. Adapter sequences are removed, and bases are
quality filtered using the Cutadapt [45] and Trim-
momatic [46] software. Read pairs surviving quality
filtering are kept. Read quality is assessed using
FastQC [47] and summarized in separate reports.

2. Low-complexity masking: Sequence complexity in
each read is assessed using Komplexity, a novel
complexity scoring algorithm described below. Reads
that fall below a user-customizable sequence com-
plexity threshold are removed. Logs of the number
of reads removed are written for later inspection.

3. Host read decontamination: Reads are mapped
against a user-specified set of host or contaminant
sequences using bwa [48]. Reads that map to any
of these sequences within certain identity and
length thresholds are removed. The numbers of
reads removed are logged for later inspection.

After the initial quality-control process, multiple optional
downstream steps can be performed in parallel. In the
classify step, the decontaminated and quality-controlled
reads are classified taxonomically using Kraken [49] and

Fig. 1 Inputs, processes, and outputs for standard steps in the Sunbeam metagenomics pipeline
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summarized in both tab-separated and BIOM [50] format.
In the assembly step, reads from each sample are assem-
bled into contigs using MEGAHIT [51]. Contigs above a
pre-specified length are annotated for circularity. Open
reading frames (ORFs) are predicted using Prodigal [52].
The contigs (and associated ORFs) are then searched
against any number of user-specified nucleotide or protein
BLAST [53] databases, using both the entire contig and
the putative ORFs. The results are summarized into
reports for each sample. Finally, in the mapping step, qual-
ity-controlled reads are mapped using bwa [48] to any
number of user-specified reference genomes or gene sets,
and the resulting BAM files are sorted and indexed using
SAMtools [54].
Sunbeam is structured in such a way that the output files

are grouped conceptually in different folders, providing a
logical output folder structure. Standard outputs from
Sunbeam include fastq files from each step of the quality-
control process, taxonomic assignments for each read,
contigs assembled from each sample, gene predictions, and
alignment files of all quality-controlled reads to any num-
ber of reference sequences. Most rules produce logs of
their operation for later inspection and summary. Users
can request specific outputs separately or as a group, and
the pipeline will run only the steps required to produce the
desired files. This allows the user to skip or re-run any part
of the pipeline in a modular fashion.

Error handling
Most of the actual operations in Sunbeam are executed by
third-party bioinformatics software as described above.
The error handling and operational stability of these pro-
grams vary widely, and random non-reproducible errors
can arise during normal operation. In other cases, execu-
tion in a cluster environment can result in resources being
temporarily and stochastically unavailable. These circum-
stances make it essential that Sunbeam can handle these
errors in a way that minimizes lost computational effort.
This is accomplished in two ways: first, the dependency
DAG created by Snakemake allows Sunbeam’s execution
to continue with other steps executing in parallel if a step
fails. If that step failed due to stochastic reasons, or is
interrupted, it can then be re-tried without having to
re-execute successful upstream steps. Second, Sunbeam
wraps execution of many of these programs with safety
checks and error-handling code. Where possible, we have
identified common failure points and taken measures to
allow downstream steps to continue correctly and uninter-
rupted. For instance, some software will occasionally fail
to move the final output file to its expected location. We
check for this case and perform the final operation as
necessary. In other cases, some programs may break if
provided with an empty input file. In rules that use these
programs, we have added checks and workarounds to

mitigate this problem. Finally, in cases where throwing an
error is unavoidable, we halt the execution of the rule and
provide any error messages generated during the failure.
These cases include instances where a step requires more
memory than allocated, a variety of error that can be diffi-
cult to diagnose. To recover, the user can allocate more
memory in the configuration file or on the command line
and re-execute.
Sunbeam also inherits all of Snakemake’s error-handling

abilities, including the ability to deal with NFS filesystem
latency (via the “--latency-wait” option), and automatically
re-running failed rules (via the “--restart-times” option).
These options are frequently used to overcome issues that
arise as part of execution in a cluster environment: in
particular, on NFS-based clusters, an upstream rule may
complete successfully but the output file(s) are not visible
to all nodes, preventing downstream rule execution and an
error concerning missing files. The “--latency-wait” option
forces Snakemake to wait extra time for the filesystem to
catch up. Other workflow systems, such as the Common
Workflow Language, allow the workflow to be specified
separately from the file paths, and for this reason may offer
more safety than the Snakemake framework [55]. In normal
use, however, we found that the precautions taken by the
Snakemake framework were sufficient to run on shared
NFS filesystems at our institutions under typical load.
In addition to runtime error mitigation, Sunbeam per-

forms a series of “pre-flight checks” before performing
any operations on the data to preempt errors related to
misconfiguration or improper installation. These checks
consist of (1) verifying that the environment is correctly
configured, (2) verifying that the configuration file ver-
sion is compatible with the Sunbeam version, and (3)
verifying that all file paths specified in the configuration
file exist and are accessible.

Versioning and development
We have incorporated an upgrade and semantic version-
ing system into Sunbeam. Specifically, the set of output
files and configuration file options are treated as fixed
between major versions of the pipeline to maintain com-
patibility. Any changes that would change the format or
structure of the output folder or would break compati-
bility with previous configuration files only occur during
a major version increase (i.e., from version 1.0.0 to ver-
sion 2.0.0). Minor changes, optimizations, or bug fixes
that do not alter the output structure or configuration
file may increase the minor or patch version number
(i.e., from v1.0.0 to v1.1.0). Sunbeam stable releases are
issued on an as-needed basis when a feature or bug fix is
tested and benchmarked sufficiently.
To prevent unexpected errors, the software checks the

version of the configuration file before running to ensure
compatibility and will stop if it is from a previous major
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version. To facilitate upgrading between versions of Sun-
beam, the same installation script can also install new
versions of the pipeline in place. We provide a utility to up-
grade configuration files between major version changes.
To ensure the stability of the output files and expected

behavior of the pipeline, we built an integration testing
procedure into Sunbeam’s development workflow. This
integration test checks that Sunbeam is installable, pro-
duces the expected set of output files, and correctly han-
dles various configurations and inputs. The test is run
through a continuous integration system that is triggered
upon any commit to the Sunbeam software repository,
and only changes that pass the integration tests are
merged into the “stable” branch used by end users.

Extensions
The Sunbeam pipeline can be extended by users to imple-
ment new features or to share reproducible reports. Ex-
tensions take the form of supplementary rules written in
the Snakemake format and define the additional steps to
be executed. Optionally, two other files may be provided:
one listing additional software requirements and another
giving additional configuration options. Extensions can
optionally run in a separate software environment, which
enables the use of software dependencies that conflict with
Sunbeam’s. Any package available through Conda can be
specified as an additional software dependency for the
extension. To integrate these extensions, the user copies
the files into Sunbeam’s extensions directory, where they
are automatically integrated into the workflow during

runtime. The extension platform is tested as part of our
continuous integration test suite.
User extensions can be as simple or complex as de-

sired and have minimal boilerplate. For example, an
extension to run the MetaSPAdes assembly program
[56] is shown in Fig. 2a. The file sbx_metaspades_
example.rules specifies the procedure necessary to
generate assembly results from a pair of decontami-
nated, quality-controlled FASTQ input files. The pat-
tern for the input files is taken directly from the
Sunbeam documentation. The path of the output
directory is created by specifying the output directory
and the sample name; it was created by modifying
the pattern for the standard Sunbeam assembly out-
put, given in the documentation. The shell command
at the bottom of the rule is taken directly from the
MetaSPAdes documentation at https://biosphere.france-
bioinformatique.fr/wikia2/index.php/MetaSPAdes. The
extension requires one additional file to run: a file
named requirements.txt, containing one line,
“spades”, which is the name of the Conda package
providing the MetaSPAdes software. In all, the exten-
sion comprises a minimal specification of how to
install the program, run the program, and name the
output files.
As a second example, we show the file structure of the

sbx_report extension, which generates a report from pre-
processing, sequence quality, and taxonomic assignment
summary files generated in the default workflow (Fig. 2b).
This extension includes additional files for the report

A B

Fig. 2 Schematics of example extension inputs and contents. a Files for extension sbx_metaspades_example, which uses MetaSPAdes to assemble
reads from quality-controlled fastq.gz files. sbx_metaspades_example.rules lists procedure necessary to generate assembly results from a pair of
decontaminated, quality-controlled FASTQ input files. requirements.txt lists the software requirements for the package to be installed through
Conda. b Files contained within the sbx_report extension: requirements.txt lists the software requirements for the package to be installed through
Conda; sbx_report.rules contains the code for the rule as above, final_report.Rmd is a R markdown script that generates and visualizes the report,
example.html is an example report, and README.md provides instructions for installing and running the extension. Sunbeam inputs required for
each extension are shown as colored shapes above the extensions
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template, an example output report, and a README file
with instructions for the user.
Because extensions are integrated directly into the

main Sunbeam environment, they have access to the
same environmental variables and resources as the pri-
mary pipeline and gain the same error-handling benefits.
The manner in which the extensions are integrated into
the dependency graph means that a valid extension can
only extend, not alter, the primary workflow. Invalid ex-
tensions that violate the acyclic dependency require-
ments will prevent Sunbeam from running. This helps
minimize conflicts between extensions as long as unique
naming conventions are followed.
To make it easy for users to create their own extensions,

we provide documentation, an extension template on our
GitHub page (https://github.com/sunbeam-labs/sbx_tem-
plate), and a number of useful prebuilt extensions available
at http://sunbeam-labs.org. We created extensions that
allow users to run alternate metagenomic read classifiers
like Kaiju [57] or MetaPhlAn2 [58], visualize read mappings
to reference genomes with IGV [59], co-assemble contigs
from user-specified groups of samples, and even format
Sunbeam outputs for use with downstream analysis pipe-
lines like Anvi’o [60]. Users can publish Sunbeam exten-
sions at our website, http://sunbeam-labs.org.

Komplexity
We regularly encounter low-complexity sequences com-
prised of short nucleotide repeats that pose problems for
downstream taxonomic assignment and assembly [12, 39],
for example, by generating spurious alignments to unre-
lated repeated sequences in database genomes. These are
especially common in low-microbial biomass samples asso-
ciated with vertebrate hosts. To avoid these potential arti-
facts, we created a novel, fast read filter called Komplexity.
Komplexity is an independent program, implemented in
the Rust programming language for rapid, standalone
performance, designed to mask or remove problematic
low-complexity nucleotide sequences. It scores sequence
complexity by calculating the number of unique k-mers di-
vided by the sequence length. Example complexity score
distributions for reads from ten stool virome samples (high
microbial biomass; [15]) and ten bronchoalveolar lavage
(BAL) virome samples (low-biomass, high-host; [12]) are
shown in Fig. 4b—low-complexity reads are often especially
problematic in low-microbial biomass samples like BAL.
Komplexity can either return this complexity score for the
entire sequence or mask regions that fall below a score
threshold. The k-mer length, window length, and complex-
ity score cutoff are modifiable by the user, though default
values are provided (k-mer length = 4, window length = 32,
threshold = 0.55). Komplexity accepts FASTA and FASTQ
files as input and outputs either complexity scores or
masked sequences in the input format. As integrated in the

Sunbeam workflow, Komplexity assesses the total read
complexity and removes reads that fall below the default
threshold. Although low-complexity reads are filtered by
default, users can turn off this filtering or modify the
threshold in the Sunbeam configuration file. Komplexity is
also available as a separate open-source program at https://
github.com/eclarke/komplexity.

Results and discussion
Sunbeam implements a core set of commonly required
tasks supplemented by user-built extensions. Even so, the
capabilities of Sunbeam compare favorably with features of-
fered in existing pipelines such as SURPI (Sequence-based
Ultra-Rapid Pathogen Identification) [26], EDGE (Empow-
ering the Development of Genomics Expertise) [27],
ATLAS (Automatic Tool for Local Assembly Structures)
[28], and KneadData [29]. A detailed feature comparison is
shown in Table 1. Where Sunbeam’s primary advance-
ments lie are in its extension framework and novel software
to address the issues of low-complexity or host-derived
sequence filtering. The Sunbeam extensions framework
facilitates the addition of new features to Sunbeam without
adding overhead to the core pipeline—once developed, a
Sunbeam extension can be discovered and used by anyone
through our extensions website (www.sunbeam-labs.org).
Sunbeam extensions that generate figures can also be used
to promote reproducible science (examples below). As
Sunbeam can work directly from SRA data, regenerating
figures and analyses from a study is as painless as installing
the extension, initializing using the BioProject or SRA pro-
ject identifier, then running the pipeline as usual.
To demonstrate the development of extensions and the

use of Sunbeam on real-world data, we reproduced key re-
sults from three published studies and tested Sunbeam on
an internal pilot study of shallow shotgun sequencing
(Fig. 3). These studies span multiple research areas (high--
biomass human gut microbiome, soil microbiome, virome,
and shallow shotgun methodology) and emphasize Sun-
beam’s versatility. Each of these analyses is packaged and
distributed as a Sunbeam extension. The extension work-
flow begins with downloading data from the SRA and ends
with generation of a final report. We verified that the
example workflows produced identical results on our insti-
tutional systems and on cloud-based systems.
In Fig. 3a, we reproduce a finding from Lewis et al.

showing distinct gut microbial community clusters in in-
dividuals with Crohn’s disease, which track with human
DNA abundance in stool [61]. As this finding depends on
the use of read-based classification, we used Kraken (the
Sunbeam built-in classifier) as well as extensions for Kaiju
[57] and MetaPhlAn2 [58] to test the consistency of the
conclusions across different tools—the original study used
MetaPhlAn [62] to classify reads. All three classification
methods recapitulated the previously reported clusters
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(MetaPhlAn2 results in Fig. 3a, full report in Add-
itional file 1). This analysis can be re-run using the sbx_le-
wis2015 extension (https://github.com/louiejtaylor/sbx_
lewis2015).
An example of a non-host-associated analysis is shown in

Fig. 3b. Bahram et al. showed that soil bacterial diversity
was highest in temperate latitudes, but lower at the equator
and in artic regions [63]. We used Sunbeam to process and
classify reads from this dataset and found similar results
(Fig. 2b; P < 0.001, R2 = 0.11; Bahram et al. P < 0.001, R2 =
0.16). This analysis can be reproduced using the sbx_bah-
ram2018 extension (https://github.com/louiejtaylor/sbx_
bahram2018, Additional file 2).
In Fig. 3c, we reproduce results from the virome study

published by McCann et al., which found differences

according to mode of birth in gut viral communities of
1-year-olds [64]. One salient finding was that Anelloviridae,
a family of ubiquitous human commensal viruses [65], were
much more diverse in children born by spontaneous vagi-
nal delivery (SVD) compared to those born via C-section.
We used Sunbeam to classify the reads from this dataset
and also found more unique anelloviruses in SVD com-
pared to C-section (Fig. 3c, Additional file 3; P = 0.011;
McCann et al. P = 0.014). The finding of McCann et al. was
recovered using different approaches to identify viruses:
McCann et al. used a translated nucleotide query against a
database of anellovirus ORF1 proteins, while we used
Kraken-based classification. This analysis can be repro-
duced using the sbx_mccann2018 extension (https://github.
com/louiejtaylor/sbx_mccann2018).

Table 1 Feature comparison for metagenomic pipelines

Sunbeam SURPI KneadData EDGE ATLAS

Architecture/usage

Dependency
management

Conda Bash Pip (partial) Conda

Modularity Snakemake Perl modules Snakemake

Results reporting Tables, coverage maps, figures Tables, coverage
maps

Tables, coverage maps

Extension framework Sunbeam extensions

Clinical certification CLIA

Data source Local, SRA Local Local Local Local

Quality control

Adapter trimming Trimmomatic, Cutadapt Cutadapt Trimmomatic FaQCs BBDuk2

Error correction Tadpole

Read quality Fastqc Cutadapt Fastqc FaQCs BBDuk2

Host filtering Any Human Any Any Any

Low complexity Komplexity DUST TRF Mono- or dinucleotide
repeats

BBDuk2

Read subsampling/
rarefaction

VSEARCH (extension)

Sequence analysis

Reference alignment BWA Bowtie2, MUMmer +
JBrowse

BBMap

Classification Kraken, (MetaPhlAn2, Kaiju
extensions)

SNAP GOTTCHA, Kraken,
MetaPhlAn

DIAMOND

Assembly MEGAHIT Minimo IDBA-UD, SPAdes MEGAHIT, SPAdes

ORFs (aa) Prodigal, BLASTp Prokka

Full contig (nt) Circularity, BLASTn RAPSearch BWA DIAMOND

Functional annotation eggNOG (extension) ENZYME/eggNOG/
dbCAN

Phylogeny
reconstruction

PhaMe, FastTree/RAxML

Primer design BW, Primer3

Feature comparison for metagenomic pipelines. Tools used by each pipeline: trimmomatic [46], cutadapt [45], tadpole [78], fastqc [47], FaQCs [79], BBDuk2 [80],
DUST [36], TRF [81], VSEARCH [82], bwa [48], bowtie2 [83], BBMap [84], KRAKEN [49], SNAP [85], MUMmer [86], JBrowse [87], GOTTCHA [88], MetaPhlAn [58],
DIAMOND [89], FastTree [90], MEGAHIT [51], SPAdes [91], Minimo [92], Prodigal [52], BLASTp [53], Prokka [93], BLASTn [53], eggNOG [94], ENZYME [95], dbCAN
[96], Primer3 [97], RAPSearch [98], RAxML [99], conda [43], PhaME [100], Snakemake [30], SAMtools [54]
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Figure 3d shows results from a methods development
pilot study conducted at the CHOP Microbiome Center.
Here, we sequenced tongue swab specimens from three
healthy children, collected at 4-week intervals. DNA from
the tongue swabs was prepared for sequencing using two li-
brary preparation kits: the Nextera XT kit and the Nextera
DNA Flex kit. For each kit and specimen, the DNA library
was prepared using a full-scale (1×) and quarter-scale (1/
4×) reagent volumes relative to standard Illumina protocols.
We conducted shotgun metagenomic sequencing and re-
covered approximately 500,000 reads per sample, after host
filtering. Thus, our pilot study is an example of “shallow
shotgun sequencing,” which is emerging as a cost-effective
alternative to 16S rRNA marker gene studies [66]. In our
analysis of the pilot study, the type of kit had a small but
measurable effect on the abundance of Streptococcus
species, but the estimated effect size for the kit (R2 = 0.003
for Streptococcus mitis) was orders of magnitude less than
that between specimens (R2 = 0.995). This analysis can be
reproduced using the sbx_shallowshotgun_pilot extension

(https://github.com/junglee0713/sbx_shallowshotgun_pilot;
report HTML file in Additional file 4).
Sunbeam’s extension framework promotes reprodu-

cible analyses and greatly simplifies performing the
same type of analysis on multiple datasets. Extension
templates, as well as a number of pre-built extensions
for metagenomic analysis and visualization software
like Anvi’o [60], MetaPhlAn [58], and Pavian [67], are
available on our GitHub page (https://github.com/sun-
beam-labs). Sunbeam’s ability to use data directly
from the SRA facilitates reproducibility: final figure
generation can be integrated into a Sunbeam exten-
sion, greatly lowering the barrier to reproducing
analyses and studies.

Comparing low-complexity filtering program filtering and
performance
Low-complexity reads often cross-align between genomes,
and commonly elude standard filters in use today. The gold

A

C

B

D

Fig. 3 a Nonmetric multidimensional scaling plots generated using the vegan package in R [76], using MetaPhlAn2 classifications of data
from Lewis et al. [61]. Each point is colored by the cluster in which it was annotated in the Lewis et al. metadata—cluster 2 (red) is the
dysbiotic cluster, while cluster 1 (blue) is the healthy-like cluster. b Inverse Simpson diversity by absolute latitude calculated using the
vegan package in R from the Kraken classification output of Sunbeam for Bahram et al. [63]. Points are colored by habitat. The
polynomial regression line is shown in black. c Boxplots of unique Anelloviridae taxa in each sample from McCann et al. [64]. Each point
corresponds to a single sample. d Heatmap from shallow shotgun analysis colored by proportional abundance. Each row corresponds to
a bacterial taxon; each column represents a different reagent combination. Columns are grouped by time point, then by subject (top). All
plots were generated using the ggplot2 R package [77]
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standard of such filtering programs, RepeatMasker [35],
uses multiple approaches to identify and mask repeat or
low complexity DNA sequences, including querying a
database of repetitive DNA elements (either Repbase [68]
or Dfam [69]). Another program, used in the BLAST+
suite, DUST [36] employs an algorithm which scores and
masks nucleotide sequence windows that exceed a particu-
lar complexity score threshold (with lower complexity se-
quences assigned higher scores) such that no subsequence
within the masked region has a higher complexity score
than the entire masked region. BBMask, developed by the
Joint Genome Institute, masks sequences that fall below a
threshold of k-mer Shannon diversity [37].
Many of these tools were not optimal for our use with

shotgun metagenomic datasets. RepeatMasker uses da-
tabases of known repeat sequences to mask repetitive
nucleotide sequences, but runs too slowly to be feasible
for processing large datasets. An option to filter reads
falling below a certain complexity threshold is not
available in DUST, RepeatMasker, or BBMask (although
filtering is available in the BBMask companion tool
BBDuk). Finally, the memory footprint of BBMask
scales with dataset size, requiring considerable re-
sources to process large shotgun sequencing studies.
Therefore, we designed Komplexity to mask or filter
metagenomic reads as a rapid, scalable addition to the
Sunbeam workflow that can also be installed and run
separately. It accepts FASTA/Q files as input, can mask
or remove reads below a specified threshold, and oper-
ates with a constant memory footprint. Our goal was to
achieve quality comparable to RepeatMasker in a rea-
sonable timeframe.
To compare the performance of all the low-com-

plexity-filtering tools discussed above, we used pIRS
[70] to simulate Illumina reads from the human con-
served coding sequence dataset [71] as well as human
microsatellite records from the NCBI nucleotide data-
base [72] with the following parameters: average in-
sert length of 170 nucleotides with a 5% standard
deviation, read length of 100 nucleotides, and 5×
coverage. To ensure compatibility with all programs,
we converted the resulting files to FASTA format,
then selected equal numbers of reads from both data-
sets for a total of approximately 1.1 million bases in

the simulated dataset (available at https://zenodo.org/
record/2541222) [73]. We processed the reads using
Komplexity, RepeatMasker, DUST, and BBMask and
used GNU Time version 1.8 [74] to measure peak
memory usage and execution time for six replicates
(Table 2). Komplexity and RepeatMasker mask a simi-
lar proportion of microsatellite nucleotides, while
none of the four tools masks a large proportion of
coding nucleotides. Komplexity runs faster and has a
smaller memory footprint than other low-complexity
filtering programs. The memory footprint of Kom-
plexity and DUST are also relatively constant across
datasets of different sizes (data not shown).
To understand the extent to which different tools

might synergize to mask a larger proportion of overall
nucleotides, we visualized nucleotides from the micro-
satellite dataset masked by each tool or combinations of
multiple tools using UpSetR [75] (Fig. 4a). Komplexity
masks 78% of the nucleotides masked by any tool, and
96% excluding nucleotides masked by only RepeatMas-
ker. This suggests that there would only be a marginal
benefit to running other tools in series with Komplexity.
Komplexity in combination with Sunbeam’s standard
host removal system resulted in the removal of over 99%
of the total simulated microsatellite reads.

Conclusions
Here, we introduce Sunbeam, a Snakemake-based pipeline
for analyzing shotgun metagenomic data with a focus on
reproducible analysis, ease of deployment, and use. We
also present Komplexity, a tool for rapidly filtering and
masking low-complexity sequences from metagenomic se-
quence data, and show its superior performance in com-
parison with other tools for masking human microsatellite
repeat sequences. Sunbeam’s scalability, customizability,
and facilities for deployment simplify the processing of
shotgun metagenomic sequence data, while its extension
framework enables customized reproducible analyses. We
have already used Sunbeam in multiple published [19, 38–
42] and ongoing studies.

Availability and requirements
Project name: Sunbeam

Table 2 Memory usage, speed, and nucleotides masked for each program

Tool Microsatellite
nucleotides masked (%)

Conserved coding sequence
nucleotides masked (%)

Speed (kilobase/second) Peak memory usage (megabytes)

Komplexity 54.6 0.68 10,100 ± 560 3.50 ± 0.06

RepeatMasker 57 0.75 0.64 ± 0.02 624 ± 3.0

BBMask 43 0.029 1690 ± 440 385 ± 52

DUST 44.9 0.74 795 ± 10 17.0 ± 0.18

Columns show the percentage of nucleotides (microsatellite or conserved coding sequence) from reads masked by each tool, as well as the normalized time
taken and peak memory usage of each tool while processing the dataset (1.1 megabases). The top-performing tool in each category is shown in italics
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Project home page: https://github.com/sunbeam-labs/
sunbeam
Operating system: GNU/Linux; verified on the following

distributions: Debian 9; CentOS 6 and 7; Ubuntu 14.04,
16.04, 18.04, and 18.10; Red Hat Enterprise 6 and 7.
Programming languages: Python, Rust, and Bash.
Other requirements: Software: Python (version 2.7, 3.4,

3.5, or 3.6), git (version ≥ 2), GNU Coreutils, wget, bzip2,
and Bash (version ≥ 3) required for installation. At least
100 GB hard drive space and 16GB memory are recom-
mended to run the pipeline, dependent on databases and
input file sizes used.
License: GPLv3
Restrictions to use by non-academics: No
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reproducing results from Lewis et al. 2015 [61]. (HTML 1031 kb)

Additional file 2: Bahram et al. 2018 report. Report with figures
reproducing results from Bahram et al. 2018 [63]. (HTML 954 kb)

Additional file 3: McCann et al. 2018 report. Report with figures
reproducing results from McCann et al. 2018 [64]. (HTML 812 kb)
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relating to the shallow shotgun pilot study described above. (HTML 1252
kb)

Abbreviations
ATLAS: Automatic Tool for Local Assembly Structures; BAM: Binary alignment
map; BLAST: Basic Local Alignment Search Tool; DAG: Directed acyclic graph;
EDGE: Empowering the Development of Genomics Expertise; GPL: (GNU)
General Public License; ORF(s): Open reading frame(s); SDUST: Symmetric
DUST; SRA: Sequence Read Archive; SURPI: Sequence-based Ultra-Rapid
Pathogen Identification; SVD: Spontaneous vaginal delivery

Acknowledgements
Thanks to members of the Bushman lab, Penn-CHOP Microbiome Center,
and Penn Bioinformatics Code Review communities for helpful suggestions,
discussions, and beta testing.

Funding
This work was supported by the NIH grants U01HL112712 (Site-Specific
Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS)
Study), R01HL113252, and R61HL137063, and received assistance from the
Penn Center for AIDS Research (P30AI045008), T32 Training Grant
(T32AI007324, LJT), and the PennCHOP Microbiome Program (Tobacco For-
mula grant under the Commonwealth Universal Research Enhancement
(C.U.R.E) program with the grant number SAP # 4100068710).

Availability of data and materials
Sunbeam is available at https://github.com/sunbeam-labs/sunbeam.
Komplexity is available at https://github.com/eclarke/komplexity. Pre-built ex-
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Fig. 4 a Comparison between Komplexity and similar software (BBMask, DUST, and RepeatMasker). The small bar plot in the lower left shows the total
nucleotides masked by each tool. The central bar plot shows the number of unique nucleotides masked by every tool combination; each combination
is shown by the connected dots below. Bars displaying nucleotides masked by tool combinations that include Komplexity are colored red. b Example
complexity score distributions calculated by Komplexity for reads from ten stool virome samples (high microbial biomass; [15]) and ten
bronchoalveolar lavage (BAL) virome samples (low-biomass, high-host; [12]) using the default parameters
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