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Abstract

secretions remains poorly understood.

associations with clinical measures of disease severity.

Background: Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function
decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens.
However, how this phenomenon is reflected in the metabolites and chemical environment of lung

Methods: Here we investigated the microbial and molecular composition of CF sputum samples using 16S rRNA
gene amplicon sequencing and untargeted tandem mass spectrometry to determine their interrelationships and

Results: The CF metabolome was found to exist in two states: one from patients with more severe disease that had
higher molecular diversity and more Pseudomonas aeruginosa and the other from patients with better lung function

having lower metabolite diversity and fewer pathogenic bacteria. The two molecular states were differentiated by the

abundance and diversity of peptides and amino acids. Patients with severe disease and more pathogenic bacteria had
higher levels of peptides. Analysis of the carboxyl terminal residues of these peptides indicated that neutrophil elastase
and cathepsin G were responsible for their generation, and accordingly, these patients had higher levels of proteolytic

by providing its preferred carbon source.

activity from these enzymes in their sputum. The CF pathogen Pseudomonas aeruginosa was correlated with the
abundance of amino acids and is known to primarily feed on them in the lung.

Conclusions: In cases of severe CF lung disease, proteolysis by host enzymes creates an amino acid-rich
environment that P. aeruginosa comes to dominate, which may contribute to the pathogen'’s persistence

Introduction

In the chronically infected cystic fibrosis (CF) lung, there
is a severe microbial dysbiosis, where the organ becomes
inundated with infectious agents, including bacteria,
fungi, and viruses [1-3]. In response to this complex
polymicrobial infection, the lung recruits high levels of
neutrophils over decades, creating a highly inflammatory
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environment [1, 4]. The microbial composition of this
community has been well characterized. It has been
repeatedly shown that as the disease progresses and pa-
tients age, the community diversity decreases and patho-
gens, particularly Pseudomonas aeruginosa, come to
dominate [1, 5, 6].

The chemical composition of this polymicrobial and
hyperinflammatory lung environment has also been stud-
ied. Mucin, DNA, and amino acids are major constituents
of CF sputum [7-10], and there is a high load of cellular
and inflammatory lipids [11-13]. High amounts of antibi-
otics from both acute and chronic therapies [11], and
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microbial fermentation products including ethanol,
acetate, 2-propanol, and 2,3-butanediol, are also found in
airway secretions [14, 15]. Despite this well established
knowledge of the CF microbial composition and growing
understanding of the CF lung chemical environment, how
the microbiome, metabolome and hyperinflammation col-
lectively contribute to disease progression remains elusive.

Here we combine microbiome sequencing, metabolo-
mics and peptidomics on adult CF sputum to analyze the
relationship between microbial/chemical composition and
disease severity. We use these results to propose a model
of how extensive neutrophilic proteolysis in the lung gen-
erates abundant peptides and amino acids that promote
the growth and persistence of pathogens, leading to more
severe lung disease.

Methods

Sample collection

Sputum samples (# = 103) were collected from 88 adult
CF patients (> 18 years) according to a UC San Diego in-
stitutional review board approved protocol for human
subject research (#160078) (Additional file 1: Table S1)
from the UC San Diego adult CF clinic during routine
visits. The patients were selected based on positive diag-
nosis of CF with either genetic testing for mutations in
both copies of the CFTR gene, positive sweat chloride
test, or both. Patients having received a lung transplant
were removed from the study. The clinical state of the
patient was defined as either (a) “exacerbation” (clinical
decision to treat with intravenous antibiotics at the time
of sample collection), (b) on “treatment” (sample col-
lected during intravenous antibiotic treatment), (c) “post
treatment” (within 3 days after intravenous therapy was
finished) or (d) “stable” (no inpatient treatment or
exacerbation present; Additional file 1: Table S1). Pa-
tients first rinsed their oral cavity with a sterile solution
of 7% saline, and a subset of mouth rinse samples were
collected for analysis (n = 24; Additional file 1: Table S1).
Induced sputum samples were then collected via inhal-
ation of 7% hypertonic saline and expectoration of spu-
tum into a sputum cup for a maximum of 30 min. The
sample was homogenized with a 3-ml syringe without
the needle and aliquoted in 1-2 ml volumes into cryo-
vials. Both the sputum and mouth rinse cryovials were
then immediately frozen in a dry liquid nitrogen dewar
and stored at — 80 °C until analysis.

LC-MS/MS

Sputum and mouth rinse samples were thawed, and
two 100-ul aliquots of sample were added to separate
Axygen® 1.5-ml microfuge tubes. There were two separ-
ate extractions done on these samples: an ethyl acetate/
methanol procedure that was used for all statistical
analyses and a 100% ethanol procedure to detect more
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polar amino acids after preliminary analysis. The pri-
mary extraction was done according to the methods de-
scribed in [11]. The second involved the addition of
200 pL of HPLC grade ethanol to the samples and incu-
bation at room temperature for 2 h. The samples were
centrifuged at 10,000xg for 30s, and the ethanol layer
was removed for LC-MS/MS analysis. Blank samples
comprised those that went through the entire extrac-
tion without any sample added to the microfuge tube.

The metabolite extracts were diluted fourfold in metha-
nol containing an internal standard of 2 uM ampicillin for
quality control (Thermo Fisher Scientific, Waltham, MA,
USA) prior to LC-MS/MS. Chromatography was done
using a Thermo Scientific™ UltraMate 3000 Dionex UPLC
system (Thermo Fisher Scientific, Waltham, MA USA)
followed by eluent analysis on a Bruker Daltonics® maXis™
impact™ qTOF mass spectrometer (Bruker, Billerica, MA,
USA). Metabolites were separated using a Kinetex 1.7 um
C18 (50 x 2.10 mm) UPLC column. Mobile phases com-
prised of 98:2 and 2:98 ratios of water and acetonitrile,
respectively, containing 0.1% formic acid were used and a
linear gradient from 0 to 100% for a total run time of 840
s at a flow rate of 0.5 mL min~" was used for separation.

GC-MS

Samples with sufficient volume remaining to enable ana-
lysis (n =91) were analyzed with GC-MS to assess the
relationship between volatile metabolites and the micro-
bial profiles. A 100-puL volume of sputum was aliquoted
into 2-ml borosilicate vials and capped with a screw cap
with silicon septum and stored at — 20 °C. Volatiles from
the sample were extracted from the headspace using
polydimethylsiloxane/divinylbenzene (PDMS/DVB) d¢
65-pum solid phase microextraction (SPME) fiber for 10
min at 160°C. The fiber was inserted into the injector
equipped with Merlin septum heated to 250 °C, and the
adsorbed compounds were desorbed for 1 min. Quality
controls of natural mint oil extract were run along with
samples throughout the analysis to monitor instrument
performance and SPME wear.

Mass spectrometry data processing and analysis

Bruker .d files from the Maxis qTOF were lockmass-cali-
brated and converted to the .mzXML format using the
Bruker Compass batch method processor in the DataA-
nalysis® software. Both the peak list and raw data were
then uploaded to the MassIVE server and GNPS (http://
gnps.ucsd.edu [16]) and made publicly available under
accession ID MSV000080655. Molecular networks were
built for annotation of metabolites and to visualize the
data on GNPS. Annotations were obtained by matching
spectra against the public GNPS MS/MS spectral library
and a commercial library (MS/MS NIST17). The spectral
annotation false discovery rate was calculated according
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to [17]. Feature finding for the LC-MS/MS data was per-
formed using the MZmine 2 software [18]. The feature
table with the area under the curve abundance of a corre-
sponding MS? node cluster IDs in GNPS was then output
as a .txt file for statistical analysis. This enabled the linking
of annotated metabolites through GNPS library searching
with actual feature abundances from MS'.

The GC-MS data were processed with MZmine 2 [18] using
the ADAP algorithm [19] (version ADAP-in-MZmine2.23,
https://github.com/du-lab/ADAP-in-MZmine2). Data were
uploaded to GNPS and searched against NIST 2017 and
WILEY spectral libraries. The GC-MS data are available under
MassIVE ID MSV000081150. Further description of mass
spectrometry data processing is available in Additional file 2:
Supplementary methods.

DNA extraction and 16S rDNA amplicon sequencing

DNA extraction, 16S rRNA gene variable region 4 (V4)
PCR, and amplicon preparation for sequencing were
performed according to protocols benchmarked for the
Earth Microbiome Project (EMP) found here: http://
www.earthmicrobiome.org/protocols-and-standards/.
Briefly, genomic DNA was extracted using the MagAt-
tract DNA isolation kit (Qiagen, Carlsbad, CA), and the
V4 region was PCR amplified in triplicate from each
sample and combined.

Microbiome data processing

The microbiome data was processed through the Qiita
software (qiita.ucsd.edu). The data was demultiplexed
and then rarified at a sequence sampling depth of 1000
reads before processing using the closed reference oper-
ational taxonomic unit (OTU) picking method. The re-
sultant .biom files were used for downstream analysis.

Peptidomics

The LC-MS/MS .mzXML files were loaded into PEAKS
Studio 8.5 software [20] for de novo identification and
searching against the UniProt human protein database.
Label-free quantification was run through PEAKS Studio
8.5 [20]. A 1% false discovery rate (FDR) cutoff was used
to integrate peaks with a 20 ppm mass error tolerance and
a 6-min retention time window. Peptides were searched
against the UniProt human protein database for identifica-
tion. Quantification was normalized to the abundance of
the total ion chromatograph. The human proteomics data
was also validated with the MS-GF+ workflow through
the identification of the same proteins after searching the
human proteome [21].

NE and cathepsin G (CG) assays

Once the MS and 16S rRNA gene amplicon sequencing
was complete, all sputum samples with >50-uL volume
remaining (n =89) were diluted 20-fold in Dulbecco’s
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phosphate buffer saline (D-PBS) and stored at - 20°C.
Samples were then diluted tenfold in D-PBS
containing 0.01% Tween-20 and 50pM Succinyl-
Ala-Ala-Pro-Phe-aminomethylcoumarin (Bachem) and
assayed for 1h at room temperature in triplicate
wells of a black round bottom 96-well plate. Hydroly-
sis of the fluorescent substrate was monitored in a
Synergy HTX multi-mode reader (Biotek) using exci-
tation and emission of 360 and 460 nm, respectively,
and activity was expressed as a change in fluorescent
units per second and normalized to the activity of
250nM of human neutrophil CG (EMD Millipore).
Samples were also diluted 1000-fold in D-PBS con-
taining 0.01% Tween-20 and 50pM methoxy
succinyl-Ala-Ala-Pro-Val-aminomethylcoumarin  (Alfa
Aesar) and assayed as outlined above, except 5nM of
human neutrophil elastase (NE) (Athens Research)
was used as a control enzyme.

Culture experiments

A CF isolate of P. aeruginosa (VVP006) was used to test
for protease activity against the NE substrate and for
growth with and without added amino acids. For the pro-
tease assay, the strain was first grown on Todd Hewitt
Agar, then inoculated into artificial sputum medium
(ASM, recipe from [22]) and incubated at 37 °C for 48 h.
The cultures were then pelleted in a benchtop centrifuge
at 10,000xg for 30s, and the supernatant diluted 20-fold
in D-PBS containing 0.01% Tween-20 and 50 uM methoxy
succinyl-Ala-Ala-Pro-Val-aminomethylcoumarin. Activity
assays were performed in triplicate as outlined above. P.
aeruginosa VVP006 was also grown in ASM with and
without the amino acid components of the media, and op-
tical density was measured after 48 h at 37 °C.

Statistical analysis

Alpha diversity of the microbiome data was calculated
using the Shannon index of the OTU table and on the
metabolome data from the deconvoluted and deisotoped
MS' feature table after removal of background contami-
nants. Differences in alpha-diversity were tested using
the Student ¢ test. Beta-diversity of the mass spectrom-
etry data was calculated using the Bray-Curtis dissimilar-
ity and visualized with principal coordinate analysis
(PCoA) through our in-house ClusterApp software (an
interface for the R statistical software). Hierarchical
clustering and silhouette plots were used to group the
samples optimizing within group cohesion and between
group separations. The reproducibility of the clustering
was tested with jackknifing inter-quartile ranges visual-
ized in three-dimensional PCoA space, for different
rarefaction values (100, 1000, 1,000,000). Additionally,
the groups detected by unsupervised clustering were
subjected to permutation analysis of the multivariate
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data variance (PERMANOVA) using 999 permutations.
Beta-diversity of the microbiome data was calculated
using the weighted UniFrac distance [23] in the Qiita
software (qiita.ucsd.edu), with hierarchical clustering and
silhouette plots used to identify the clustering patterns
in the PCoA. The original data used for this statistical
analysis is available in this repository: https://github.com
/DorresteinLaboratory/XSectionalCF, and the code for the
statistical analysis is available here: https://github.com/
DorresteinLaboratory/XSectional CF/blob/master/
XSectional.ipynb

The microbiome data was analyzed in the context of
the two metabolome clusters by quantifying the relative
abundance of each OTU per sample in each cluster and
tested for significance with the Mann-Whitney U test.
The microbiome data was further classified at the genus
level as belonging to “pathogens” or “anaerobes” accord-
ing to the Additional file 2: Supplementary methods.

Statistical differences between clinical and demographic
data were calculated in relation to the two metabolome
clusters using the Mann-Whitney U test. To ensure sam-
ple comparisons were completely independent, the same
statistical test was done after removal of samples collected
from the same patient and only tested on one sample from
each patient (n =88, keeping most recent sample from
each patient; Additional file 3: Table S6). A random forests
regression model was used to determine the association
between the metabolomic and microbiome data and the
target FEV1% from the same samples. The model was run
in the R statistical software using the randomForest pack-
age with 5000 trees on the entire OTU dataset and the
MS! features. Correlations between the machine-learning
projected FEV1% based on the random forests model and
the actual measurement were tested using the Spearman
correlation, and the variance explained by either the
microbiome or metabolomic data was reported. Correla-
tions between individual microbiome OTUs and target
FEV1% were calculated using Spearman rank correlation
and corrected for multiple comparisons using the
Benjamini-Hochberg procedure. The OTU table was
processed to include only those with a minimum abun-
dance 0.001% of the entire dataset, leaving 516 OTUs.

Specific feature differences between the two metabo-
lome clusters were identified using a supervised random
forests classification in the R-statistical software package
randomForest. The variable importance plot of this clas-
sification was then used to identify the differentially
abundant metabolites in the dataset, which were visual-
ized in the molecular networks. Significance between the
variables of importance was calculated with the
Mann-Whitney U test.

The activity of NE and CG and the relative abun-
dance of HNP1 were tested in the two clusters using
the Mann-Whitney U test for both the entire dataset
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and completely independent subset (Additional file 3:
Table S6).

P. aeruginosa and metabolite correlations

The abundances of selected metabolites known to be
produced by the P. aeruginosa (the quinolones (HHQ
and NHQ), a rhamnolipid (Rha-Rha-C10-C10), and pyo-
chelin) were regressed against the normalized abundance
of Pseudomonas OTU 4454529 in the same samples
using the Pearson correlation (r). In addition, Pearson’s r
was calculated on the metabolite-metabolite correlations
based on their normalized abundances.

Results

Microbiome and metabolome alpha and beta diversity
Silhouette plots, hierarchical clustering, and principal co-
ordinate analysis (PCoA) with jackknifing inter-quartile
ranges were used to visualize the beta diversity of the
microbiome and metabolome data. Jackknifing and PER-
MANOVA were used to determine the significance of any
clusters identified (Additional file 4: Figure S1). The meta-
bolomic data were separated into two clusters consisting of
44 patients and 56 patients, which were robust to the jack-
knifing and PERMANOVA testing (Fig. 1, Additional file 4:
Figure S1) (these metabolome clusters are hereafter re-
ferred to as meta-cluster 1 and meta-cluster 2, respect-
ively). The microbiome profiles of the same samples
belonging to these two metabolome clusters were also
different. The microbiome profile of samples from
meta-cluster 1 was enriched in anaerobic bacteria
such as Streptoccoccus sp., Prevotella melaninogenica,
and Veillonella dispar, whereas meta-cluster 2 was
enriched in P. aeruginosa (Fig. 1).

The silhouette plot from hierarchical clustering of the
sputum 16S rRNA gene sequencing data did not show
strong clustering (Additional file 4: Figure S2). The micro-
biome data was instead driven by the abundance of the
pathogens P. aeruginosa and S. maltophilia (Additional file 4:
Figure S2). The PCoA plot showed a tight grouping of sam-
ples with a similar dominance of P. aeruginosa, while the
remaining samples contained a more diverse community of
anaerobic bacteria mixed with varying amounts of P. aeru-
ginosa (Additional file 4: Figure S1).

There was an inverse relationship between the Shan-
non diversity of the microbiome and metabolome data
in the two metabolomic clusters. Meta-cluster 1 had a
significantly higher microbial diversity than meta-clus-
ter 2 (Student’s ¢ test, p < 0.0001), but the molecular di-
versity was significantly higher in meta-cluster 2 than
meta-cluster 1 (Student’s ¢ test p <0.0001; Fig. 1). Re-
gression analysis verified the negative relationship be-
tween microbiome and metabolome alpha diversity
(Pearson’s r =-0.345, p =0.00062; Additional file 4:
Figure S3). This discrepancy is due to the high
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abundance and diversity of peptides in meta-cluster 2
as described in detail below.

Clinical state and multi-omics

The metabolomic data had strong signatures related to pa-
tient disease severity (target forced vital capacity (FVC), tar-
get forced expiratory volume in 1s as percent of normal
(target FEV1%), and the age-target FEV1% product [24]).
All measures of lung function were significantly lower in
patients belonging to meta-cluster 2 (Mann-Whitney U
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test, p <0.05; Fig. 2). The demographic measures of these
patients however (Additional file 1: Table S1) were not sig-
nificantly different between the two metabolome clusters
(age, weight, height, male/female, and on/off chronically in-
haled or intravenous antibiotic therapy (chi-squared test)),
except that BMI reached significance when tested with the
Mann-Whitney U test on the independent dataset only
(Additional file 3: Table S6). A random forests regression
model of the metabolomic data and target FEV1% (i.e.,
highest FEV1% in previous 52 weeks) demonstrated that
19% of the data variance was explained by this measure
of lung function and the correlation between the pre-
dicted and measured values was statistically significant
(Additional file 4: Figure S4). Spearman correlations be-
tween molecular features and target FEV1% were calcu-
lated, and 382 molecular features were significantly
negatively correlated with lung function after FDR
correction (p < 0.01; Additional file 5: Table S2). Known
metabolites within the 382 features included the amino
acids, tryptophan (rho =-0.401, FDR-corrected p =
0.0039), phenylalanine (rko =-0.351, FDR-corrected
p =0.0080), and the dipeptide Ile/Leu-Pro (rho =-
0.356, FDR-corrected p =0.0074) (Additional file 4:
Figure S4). The isomers Ile and Leu could not be dis-
tinguished using this mass spectrometry approach.

The four microbiome clusters (micro-cluster 1-4) were
not significantly different using a one-way ANOVA by any
measure of disease severity or demographics. A random
forests regression model was run on the complete micro-
biome data to determine if there was a relationship with
target FEV1% in the same samples. The random forests
did not identify a significant relationship between lung
function and the microbiome profiles (Additional file 4:
Figure S4). The relative abundance of the P. aeruginosa
OTU did have a negative correlation with lung function,
but this was not significant (Pearson’s r =-0.225,
FDR-corrected p > 0.05, target FEV1%). No other bacterial
OTUs were significantly correlated with target FEV1%
after the false discovery rate correction.

Molecular differences between the metabolome clusters

To identify metabolites differentially abundant between
meta-cluster 1 and meta-cluster 2, a random forests
classification model was used with the samples classified
by cluster membership. The variable importance plot
(VIP) of this classification then identified which molecu-
lar features were most strongly contributing to the sep-
aration. MS/MS spectral matching against known library
spectra in the GNPS database enabled putative annota-
tion of these molecules. Our annotation rate in this
dataset was 10.4% (771 nodes out of 7434; maximum
FDR =0.003). A metabolite with the sixth strongest
classification was annotated as a tripeptide with the se-
quence Asp-Ile/Leu-Phe. Seven of the top 20 differential
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metabolites annotated through GNPS were connected to
peptides in the molecular networks, including a puta-
tively annotated peptide Glu-Ile/Leu-Ile/Leu-Ile/Leu,
which was the second strongest classifier (Fig. 3). There
were three large peptide molecular networks in the data
that represented related di-, tri-, and tetra-peptides more
abundant in meta-cluster 2. This indicated that the two
metabolome clusters identified in the sputum samples
were separated due to the contributions of various small
peptides to the overall data. The abundance and diver-
sity of these peptides contributed to the differences seen
in overall Shannon diversity between the microbiome
and metabolomic data. Furthermore, the free aromatic
amino acids Phe and Trp were also observed to be dif-
ferentially abundant between the two groups (Fig. 3,
Additional file 4: Figure S5), although it must be noted
that not all amino acids can be detected in our protocol
due to insufficient retention on the C18 column used in
this study. Antibiotics were also detected in the sputum
metabolomic data; however, the relative abundance of
these molecules in the two-metabolome clusters were
not significantly different (Additional file 4: Figure S5).

Peptidomics

Due to the abundant and diverse peptides in the
LC-MS/MS data, we used peptidomics software for de
novo sequencing and searched identified peptide spectra
against the human proteome. The de novo sequencing

allowed for assessment of beta-diversity and overall pep-
tide abundance. A PCoA plot of the peptidomics data
also identified two separate clusters of patient samples
(Additional file 4: Figure S5). Patients belonging to pep-
tide cluster 2 (n =56) matched those belonging to
meta-cluster 2 in the metabolomic data verifying that pep-
tide abundance contributed to the initial group separation
(56/56). In terms of abundance, meta-cluster 2 was found
to have significantly more peptides (Mann-Whitney U
test, p = 0.00036; Additional file 4: Figure S5). De novo se-
quencing also allowed for identification of the amino acid
frequencies found in CF sputum peptides. The sequenced
peptides were enriched in Ile/Leu, Glu, Phe, Tyr, Pro, Ser,
Val, and Phe residues (Fig. 3).

Searching the human proteome identified 1079
unique peptides that matched to 89 different human
proteins (1% FDR). The most abundant peptides were
derived from E3 ubiquitin-protein ligase, calprotectin
(S100-A9), the lipopolysaccharide-binding BPI-like 1
protein, histone-like N-methyltransferase SETD2, lac-
totransferrin, and a number of other housekeeping
and neutrophil-associated proteins (Additional file 6:
Table S3). Their abundance was tested for significance
between the two metabolome clusters using the
Mann-Whitney U test. Calprotectin (p< 0.0001), LMBR1-
protein related to lipocalin (p<0.0001), thymosin beta-4
(p<0.0001), glyceraldehyde-3-phosphate dehydrogenase
(p<0.0001), neutrophil-gelatinase-associated lipocalin (p<
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0.0001), lactotransferrin isoform 2 (p<0.0001), E3
ubiquitin-protein ligase (p<0.0001), bactericidal/per-
meability-increasing protein (p< 0.0001), and neutro-
phil elastase (p =0.00058) were all significantly more
abundant in the peptide-rich meta-cluster 2 coming from
patients with more severe disease (Mann-Whitney U test;
Additional file 4: Figure S6). Annotated human proteins
were verified using the MS-GF+ peptidomics workflow,
and the same most abundant proteins were detected [21]
(Additional file 7: Table S4). Searching against the P. aeru-
ginosa peptidome with MS-GF+ identified 97 unique pro-
teins with a total of 100 peptide hits. In contrast, there
were 964 human proteins identified representing 1697
unique peptides (Additional file 7: Table S4).

Neutrophil enzyme activity and molecular relationships

We anticipated that proteases were responsible for produc-
tion of peptides detected in the sputum samples and that
the terminal amino acids would give insight into the en-
zymes responsible for the peptide cleavage activity. In prote-
ase nomenclature, cleavage of the scissile bond occurs
between the P1 and P1’ amino acids. We generated a se-
quence motif by comparing the frequency of amino acids in
the P1 position (found at C-terminus of cleaved products
from the sputum peptidome) and the P1’ position (found at
the N-terminus) to the frequency that these amino acids
exist in the human proteome (Fig. 4A). Using a significance
cut-off of 0.05, Val, Phe, and Met were enriched in the P1

position while Gly, Ser, Thr, Lys, Asp, Tyr, and His were
found with high frequency in the P1’ position. Amino
acids below the x-axis were rarely or never found in these
positions. We assayed a subset of the sputum samples
(n =89) with synthetic substrates that have Val or Phe in
the P1 position, directly adjacent to a cleavable fluorescent
reporter molecule, 7-amino-4-methylcoumarin (AMC).
Meta-cluster 2 was found to have significantly more activ-
ity than meta-cluster 1 for both substrates (Mann-Whit-
ney U-test, p <0.0001) (Fig. 4b). These data correlate the
abundance of peptides found in the meta-cluster 2 sputum
samples with an increased amount of neutrophil-mediated
proteolysis. In addition, the antimicrobial neutrophil pro-
teins HNP1, 2, and 3 detected in the LC-MS/MS data
(Additional file 4: Figure S7) were also more abundant in
cluster 2 (Mann-Whitney U test, p < 0.0001; Fig. 4).

To determine if the protease activity found in the
sputum could have been due to an enzyme secreted by
P. aeruginosa, the P1-Val fluorescent substrate was in-
cubated with conditioned media from bacterial culture
of P. aeruginosa CF isolate. No cleavage of the substrate
was detected indicating that proteases in sputum were
unlikely to be from this pathogen.

P. aeruginosa and amino acid metabolism

The LC-MS/MS data showed that the metabolites tryp-
tophan and phenylalanine were significantly correlated
with the abundance of P. aeruginosa (Spearman rho:
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GC-MS data were used to further assess the relation-
ships between the microbiome and primary metabolites
in the sputum samples. The relative abundance of P.
aeruginosa was regressed against known metabolites in
the GC-MS data. The bacterium was positively corre-
lated to indole (Pearson’s r = 0.431, p = 4.8 x 107°, Spear-
man rho =0.480, p <0.001) and phenylacetic acid
(Pearson’s r = 0.431, Spearman rho =0.400, p = 0.00020;
Additional file 4: Figure S8); both of which can be pro-
duced from amino acid breakdown. Our previous studies
have shown that P. aeruginosa grows to a high density in
ASM that is rich in amino acids and proteins [22]. When
amino acids were omitted from this culture media, but
protein remained, a non-mucoid P. aeruginosa CF isolate
failed to grow (Additional file 4: Figure S9). This indicated
that this strain (closely related to the Liverpool epidemic
strain LES431) was unable to generate sufficient amino
acids from enzymatic degradation of proteins in the ASM
culture media and required free amino acids for growth.
The strain used in this study was from a patient with
a target FEV1% of 87.1%; thus, it may not represent
the highly adapted strains from patients with more
severe disease.

P. aeruginosa specialized metabolite production in the
two metabolomic states

Quinolones, rhamnolipids, pyochelin, and one phenazine
were detected in the LC-MS/MS data (Fig. 5), and their
abundance was compared in the two metabolome clusters.
The quinolones 2-nonyl-4-hydroxy-quinolone (NHQ)
(31/103  samples) and 2-heptyl-4-hydroxy-quinoline
(HHQ) (32/103 samples) and the siderophore pyochelin
(46/103 samples) were the most prevalent across the data-
set and were therefore compared between the two
meta-clusters. Levels of all three metabolites were higher
in sputum samples from the Pseudomonas-dominated
meta-cluster 2, although only pyochelin was statistically
significant (Additional file 3: Table S6, Additional file 4:
Figure S10). We thus compared the relative abundance of
P. aeruginosa and its specialized metabolites in the same
samples across both datasets. There was no correlation
between the amount of P. aeruginosa and the abundance
of its metabolites (Fig. 5). In many cases, P. aeruginosa
was highly abundant in the microbiome profile, but no
metabolites were detected. In contrast, P. aeruginosa me-
tabolites were never detected in the absence of reads from
the bacterium in the 16S rRNA gene profiles. The P. aeru-
ginosa metabolites themselves, however, were all positively
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correlated with each other, particularly the various quino-
lones, with a strong linear relationship (Fig. 5).

Discussion

This study found that the sputum metabolome of adult
CF patients (> 18 years of age) existed in two states. One
was associated with less severe disease, low chemical di-
versity, and high microbial diversity, while the other
state was found in patients with more severe disease,
higher chemical diversity, and lower microbial diversity,
where pathogens such as P. aeruginosa were dominant.

The existence of these two molecular states reflects the
conditions of the lung in these two patient populations
and can explain aspects of CF disease progression. In
lungs with more severe disease, rampant protease activ-
ity resulted in a unique metabolomic signature that con-
sisted of abundant and diverse degraded proteins
products and amino acids, driving the clustering of pa-
tients into one of two molecular states.

The metabolomic data reflected lower lung function
more strongly than the microbiome data. In the literature,
a relationship between decreasing microbial diversity and
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disease progression is well-supported [1, 5]. Here, we also
found signatures of declining lung function in the metabo-
lomic data, and many molecules were negatively corre-
lated with target FEV1%, particularly phenylalanine and
tryptophan. Thus, monitoring of the metabolome for pep-
tides and amino acids may aid in identifying patients
whose disease is progressing to a more severe state. Fur-
thermore, there is great potential to identify biomarkers of
lung function decline in metabolomic data that can be
supported with microbiome profiling and measures of in-
flammatory load.

The two molecular states were separated by a differen-
tial abundance of amino acids and peptides. Peptides fre-
quently contained Val, Phe, and Met at the carboxyl
termini, which are situated in the P1 position of the pro-
tease active site just prior to cleavage. In addition, the
amino termini of these peptides were enriched with
small residues such as Gly and Ser situated in the P1’
position. This cleavage pattern was described previously
by Schilling and Overall [25] when human neutrophil
elastase (NE) and cathepsin G (CG) were incubated with
a cellular extract from human embryonic kidney cells.
NE had a preference for cleavage between Val-Ser and
Val-Gly bonds while CG had a preference for Phe-Gly,
Phe-Ser, Met-Gly, and Met-Ser. These assays indicated
that the peptides detected in the mass spectrometry data
were being produced by these neutrophil proteases. Ac-
cordingly, neutrophil proteins (including NE itself) were
found to be more abundant in the metabolome of pa-
tients with reduced lung function enriched in peptides.
We therefore anticipated that there would be a concomi-
tant increase in protease activity in these same patient
samples, and our fluorescent reporter substrates con-
taining P1-Val and P1-Phe confirmed this, showing
abundant NE and CG activity in sputum from patients
with reduced lung function. NE has been shown to be
highly active in CF lungs and associated with lung func-
tion decline [26, 27]. Here, we support this finding and
also implicate a role for CG in patients with declining
lung function. Analysis of the peptide sequences indi-
cated that the action of these enzymes was primarily on
host proteins, including those related to basic cellular
metabolism, but particularly those related to a neutro-
philic inflammatory response. This is further supported by
the corresponding high abundance of host a-defensins,
also sourced from neutrophil granules [28], and neutro-
phil peptides, particularly calprotectin. Few P. aeruginosa
peptides were discovered in the data, even in patients
whose lungs were dominated by this bacterium, indicating
that the vast majority of peptides detected were derived
from the host. P. aeruginosa also produces proteases that
may contribute to lung proteolysis [29]; however, condi-
tioned media from this bacterium did not have enzymes
that could cleave the fluorescent NE substrate. In
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summary, our data shows that in patients with more se-
vere lung disease, neutrophil proteases degrade host pro-
teins into peptides and amino acids and these metabolites
can be found in CF lung mucus.

Several studies have shown that the P. aeruginosa pref-
erentially feeds on amino acids in the CF lung [30-33]. It
also upregulates genes for branched chain amino acid ca-
tabolism and represses those for their anabolism when
grown in CF sputum [34]. This study supports these find-
ings as the adult sputum metabolome contained abundant
small peptides enriched with these amino acids (Ile/Leu
and Val). Furthermore, patients with abundant peptides
had higher levels of Pseudomonas in their microbiome,
and its abundance was positively correlated with free
amino acids and the by-products of their metabolism. The
genomic evolution of P. aeruginosa also reflects the avail-
ability of these compounds as it becomes auxotrophic for
certain amino acids during adaptation to the CF lung, par-
ticularly those with branched-chained residues and me-
thionine [10, 35]. Thus, several lines of evidence from the
literature [30—35], and from this study, indicate that there
may be an important link between neutrophil protease ac-
tivity and P. aeruginosa catabolism. The action of neutro-
phil proteases could contribute to shaping the niche space
that P. aeruginosa comes to dominate in a severely dis-
eased CF lung by providing its preferred carbon source.

The finding that microbial diversity and metabolite di-
versity have a negative relationship was an intriguing
phenomenon that has been previously reported in sputum
in a smaller study [11]. It would normally be expected that
chemical diversity would increase with a concomitant in-
crease in microbial diversity, yet this study showed the
contrary. This discrepancy is due to the differential nature
of the two omics datasets (Additional file 8). In 16S rRNA
gene microbiome studies, PCR amplification targets a uni-
versal bacterial gene, providing information about the
population and relative abundance of bacterial cells con-
taining this gene. Metabolomics does not target a particu-
lar lineage of the tree of life; instead, extraction methods
for mass spectrometry sample an untargeted pool of com-
pounds in a complex sample. Thus, we propose that mi-
crobial and metabolite diversity in the CF lung did not
correlate due to the greater neutrophilic inflammation in
patients dominated by pathogens, such as P. aeruginosa,
and the rampant proteolysis associated with that inflam-
mation. Patients with a low microbial diversity have higher
protease activity, which increases the extracted metabolite
diversity via the detection of peptides. Further research
into the relationship between microbial and metabolite di-
versity is warranted to better understand how microbes
and host cells contribute to the nature of their surround-
ing chemical environment.

There was poor correlation between the relative abun-
dance of P. aeruginosa in a sputum sample and the
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abundance of its specialized metabolites that are import-
ant for its virulence. Sputum samples with high relative
abundance of P. aeruginosa often had low or undetectable
amounts of quinolones, siderophores, and rhamnolipids
from the bacterium. This demonstrates that there is an in-
consistency between the detection of P. aeruginosa by 16S
rRNA gene amplification and the detection of its metabol-
ite production. Microbiome studies based on PCR amplifi-
cation of 16S rRNA genes can amplify DNA from both
live and dead cells [36]; the latter of which can persist for
long periods [37]. The poor correlation between
metabolite-based and DNA-based detection methods may
therefore be due to the contrasting results from PCR amp-
lification of DNA from metabolically inactive cells com-
pared to detection of molecules produced during active
metabolism. Treatment with dyes such as propidium
monoazide should be further explored to determine the
contribution of “dead DNA,” as it has been shown to
change the abundance of P. aeruginosa [36]. On the other
hand, many of the metabolites from P. aeruginosa were
highly correlated to each other. This shows that produc-
tion of these molecules was occurring concomitantly in
the same sputum samples from within and across different
metabolic pathways. Quinolones were highly correlated to
each other and the rhamnolipid Rha-Rha-C10-C10,
though a poor correlation was found with the siderophore
pyochelin, possibly due to the longer half-life of this iron
chelator. Thus, we propose that detection of P. aeruginosa
metabolites, particularly HHQ and NHQ, may be inform-
ative for clinicians by demonstrating that a patient’s sam-
ple has active metabolism of the pathogen. As the use of
multi-omics approaches in the microbiome field grows,
further research into the relationship between microbial
and metabolite abundance is needed.

In light of our results, we propose that there is a link be-
tween neutrophil proteolysis and the dominance of P. aer-
uginosa in cases of severe CF disease. We hypothesize that
the CF lung becomes a favored environment for persist-
ence of P. aeruginosa in part because this bacterium pro-
motes recruitment of neutrophils to the lung and their
proteases generate peptides and amino acids that are a fa-
vored carbon source of the pathogen [30-33, 38]. P. aeru-
ginosa’s inherent resistance to neutrophilic attack [39],
through its growth in biofilms and production of virulence
factors [40—43], may explain its persistence and domin-
ance in this amino acid rich environment. This proposed
model creates a positive-feedback loop where an increased
inflammatory load produces more amino acids promoting
the expansion of P. aeruginosa’s growth and progressive
lung function decline. Though this hypothesis was gener-
ated based on the multi-omics data presented here and we
are unable to determine causality, this study expands on a
larger model describing the microbial ecology in the CF
lung called the Climax and Attack Model proposed by

Page 11 of 13

Conrad et al. [44, 45]. In addition, we provide further
knowledge about the chemical composition of a
severely diseased CF lung that is associated with the
Climax Community of highly antibiotic resistant patho-
gens [44, 45]. Future work to understand the relation-
ship between neutrophil proteolysis and amino acid
metabolism by P. aeruginosa may shed light on its
dominance in this highly inflamed environment. Our
data also indicates that anti-NE and anti-CG treat-
ments should be further investigated for their potential
to reduce proteolysis in CF [46]. These drugs may not
only reduce pulmonary inflammation, as has previously
been shown [47], but may also inhibit the growth of P.
aeruginosa by reducing the availability of its primary
carbon source.
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