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Abstract

Background: Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the
natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate
numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis
software, a wide range of benchmark data sets are required.

Results: We describe the CAMISIM microbial community and metagenome simulator. The software can model
different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and
simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles
or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic
profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample
data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As
further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and
read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small
data sets generated with CAMISIM.

Conclusions: CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together
with standards of truth for method evaluation. All data sets and the software are freely available at https://github.
com/CAMI-challenge/CAMISIM

Keywords: Metagenomics software, Microbial community, Benchmarking, Simulation, Metagenome assembly,
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Introduction
Extensive 16S rRNA gene amplicon and shotgun
metagenome sequencing efforts have been and are being
undertaken to catalogue the human microbiome in health
and disease [1, 2] and to study microbial communities of
medical, pharmaceutical, or biotechnological relevance
[3–8]. We have since learned that naturally occurring
microbial communities cover a wide range of organis-
mal complexities—with populations ranging from half
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a dozen to likely tens of thousands of members—can
include substantial strain level diversity and vary widely
in represented taxa [9–12]. Analyzing these diverse
communities is challenging.
The problem is exacerbated by use of a wide range of

experimental setups in data generation and the rapid evo-
lution of short- and long-read sequencing technologies
[13, 14]. Owing to the large diversity of generated data,
the possibility to generate realistic benchmark data sets
for particular experimental setups is essential for assessing
computational metagenomics software.
CAMI, the initiative for the Critical Assessment of

Metagenome Interpretation, is a community effort aiming
to generate extensive, objective performance overviews of
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computational metagenomics software [15]. CAMI orga-
nizes benchmarking challenges and encourages the devel-
opment of standards and reproducibility in all aspects,
such as data generation, software application, and result
interpretation [16].
We here describe CAMISIM, which was originally writ-

ten to generate the simulated metagenome data sets
used in the first CAMI challenge. It has since been
extended into a versatile and highly modular metagenome
simulator. We demonstrate the usability and utility of
CAMISIM with several applications. We generated com-
plex, multi-replicate benchmark data sets from taxo-
nomic profiles of human and mouse gut microbiomes
[1, 17]. We also simulated thousands of small “minimally
challenging metagenomes” to characterize the effect of
varying sequencing coverage, evolutionary divergence of
genomes, and sequencing error profiles on the popular
MEGAHIT [18] and metaSPAdes [19] assemblers.

The CAMISIM software
CAMISIM allows customization of many properties of the
generated communities and data sets, such as the over-
all number of genomes (community complexity), strain
diversity, the community genome abundance distribu-
tions, sample sizes, the number of replicates, and sequencing
technology used. For setting these options, a configura-
tion file is needed, which is described in Additional file 1.
Simulation with CAMISIM has three stages (Fig. 1):

1 Design of the community, which includes selection
of the community members and their genomes, and
assigning them relative abundances,

2 Metagenome sequencing data simulation, and
3 Postprocessing, where the binning and assembly gold

standards are produced.

Community design
In this step, the community genome abundance profiles,
called Pout, are created. These also represent the gold

standard for taxonomic profiling and, from the strain
to the superkingdom rank, specify the relative abun-
dances of individual strains (genomes) or their parental
taxa in percent. In addition, a genome sequence col-
lection for the strains in Pout is generated. Both Pout
and the genome sequence collection are needed for
the metagenome simulation in step 2. The taxonomic
composition of the simulated microbial community is
either determined by user-specified taxonomic profiles or
generated de novo by sampling from available genome
sequences.

Profile-based design
Taxonomic profiles can be provided in BIOM (Biological
Observation Matrix) format [20]. With input profiles, the
NCBI complete genomes [21] are used as the sequence
collection for creating metagenome data sets. Optionally,
the user can choose to also include genomes marked as
“scaffold” or “contig” by the NCBI. Input genomes are
split at positions with multiple occurrences of ambiguous
bases, such that no reads spanning contig borders within
larger scaffolds are simulated.
Profiles can include bacterial, archaeal, and eukary-

otic taxa, as well as viruses. The taxonomic identifiers
of BIOM format are interpreted as free text scientific
names and are mapped to NCBI taxon IDs (algorithm in
Additional file 1). The so generated input profile Pin spec-
ifies pairs (t, abt) of taxon IDs t and taxon abundances
abt ∈ R≥0. The profile taxa are usually defined at higher
ranks than strain and thus have to be mapped approx-
imately to the genome sequence collection for creating
Pout.
Given an ordered list of ranks R = (species, genus, family,

order, class, phylum, superkingdom), CAMISIM requires
as an additional parameter a highest rank rmax ∈ R. We
define the binary operator ≺ based on the ordering of the
ranks in R. Given two ranks, ri, rj ∈ R, we write ri ≺ rj, if
ri appears before rj in R, and we say ri is below rj. Related
complete genomes are searched for all ranks below rmax.

Fig. 1 UML diagram of the CAMISIM workflow. CAMISIM starts with the “community design” step, which can either be de novo, requiring a taxon
mapping file and reference genomes or based on a taxonomic profile. This step produces a community genome and taxon profile which is used for
the metagenome simulation using one of currently four read simulators (ART, wgsim, PBsim, NanoSim). The resulting reads and bam-files mapping
the reads to the original genomes are used to create the gold standards before all the files can be anonymized and shuffled in the post-processing
step
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By default, this is the family rank. Another parameter is
the maximum number of strains m that are included for
an input taxon in a simulated sample.
To create Pout from Pin, the following steps are per-

formed: let Gin be the set of taxon IDs of the genome
collection at the lowest annotated taxonomic rank, usu-
ally species or strain. For all t ∈ Gin, the refer-
ence taxonomy specifies a taxonomic lineage of taxon
IDs (or undefined values) across the considered ranks
in R. We use these to identify a collection of sets
F = {Gt | t = lineage taxon represented by ≥
1 complete genome}, which specifies for each lineage
taxon the taxon IDs of available genomes from the genome
collection. F is used as input for Algorithm 1.

Algorithm 1: Creating a community genome abun-
dance profile; genome-select (F, Pin,m, rmax)
input : Collection of sets F of taxonomic IDs of

available complete genomes, taxonomic
profile Pin, maximum strains per OTUm,
highest rank rmax considered for similarity

output: Community genome abundance profile Pout
1 Pout = ∅

2 foreach (t, abt) ∈ Pin do
3 get lineage path taxt from reference taxonomy
4 foreach rank r ∈ R ≺ rmax do
5 tr = taxt on rank r ; // check whether

a complete genome for taxon tr
exists

6 if tr ∈ F then
7 Gtr = set of available full genomes

corresponding to taxon tr in F
8 draw a random number X from truncated

geometric distribution (Eq. 1)
9 if X < |Gtr | then

10 Gselected = randomly select X
genomes from Gtr

11 else
12 Gselected = Gtr
13 Y = list of |Gselected| random numbers

from lognormal distribution (Eq. 2)
14 foreach i ∈ Gselected do
15 abi = Yi∑

i∈Gselected Yi · abt (Eq. 3)
16 add (i, abi) to Pout
17 remove i from Gtr
18 break ; // if a complete genome

exists, continue with the
next taxon instead of rank

19 else
20 issue “Unmapped genome” warning
21 return Pout

The algorithm retrieves for each t from the tuples
(t, abt) ∈ Pin the lineage path taxt across the ranks of R
(lines 2–3). Moving from the species to the highest con-
sidered rank, rmax, the algorithm determines whether for
a lineage taxon tr at the considered rank r a complete
genome exists, that is, whetherGt �= ∅ for t = tr (lines 4–5).
If this is the case, the search ends and tr is considered
further (line 6). If no complete genome is found for a par-
ticular lineage, the lineage is not included in the simulated
community, and a warning is issued (line 20). Next, the
number of genomes X with their taxonomic IDs tr to be
added to Pout is drawn from a truncated geometric dis-
tribution (Eq. 1, line 8) with a mean of μ = m

2 and the
parameter k restricted to be less thanm.

P(X = k) =
(

1 − 1
μ

)k
· 1
μ

(1)

If |Gtr | is less than X, Gtr is used entirely as Gselected,
the genomes of tr that are to be included in the com-
munity. Otherwise X genomes are drawn randomly from
Gtr to generate Gselected (lines 9–12). It is optional to use
genomes multiple times, by default the selected genomes
g ∈ Gselected are removed from F, such that no genome is
selected twice (line 17). Based on the taxon abundances
abt from Pin, the abundances abi of the selected taxa
i ∈ Gselected for t are then inferred. First, random variables
Yi are drawn from a configurable lognormal distribution,
with by default normal mean μ = 1 and normal standard
deviation σ = 2 (Eq. 2), and then the abi are set (Eq. 3;
lines 13–15). Finally, the created pairs (i, abi) are added to
Pout (line 16) and Pout is returned (line 21).

Yi ∼ Lognormal(μ, σ)

⇔ d
dx

P(Yi ≤ x) = 1
xσ

√
2π

e−
(ln x−μ)2

2σ2
(2)

abi = Yi
∑

j∈Gselected
Yj

· abt (3)

De novo design
A genome sequence collection to sample and a mapping
file have to be specified. The mapping file defines for
each genome a taxonomic ID (per default from the NCBI
taxonomy), a novelty category and an operational taxo-
nomic unit (OTU) ID. Grouping genomes into OTUs is
required for sampling related genomes, to increase strain-
level diversity in the simulated microbial communities.
The novelty category reflects how closely a query genome
is related to draft or complete genomes in a genome
sequence reference collection. This is used to maximize
the spread of selected genomes across the range of tax-
onomic distances to the genome reference collection,
such that there are genomes included of “novel” strains,
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species, or genera. This distinction is relevant for eval-
uating reference-based taxonomic binners and profilers,
which may perform differently across these different cat-
egories. The user can manually generate the mapping file
as described in Additional file 1 or in [15].
If controlled sampling of strains is not required, every

genome can be assigned to a different OTU ID. If no
reference-based taxonomic binners or profilers are to be
evaluated, or the provided genome sequence collection
does not vary much in terms of taxonomic distance to
publicly available genomes used as references for these
programs, all genomes can be assigned the same novelty
category.
In addition, the number of genomes greal to be drawn

from the input genome selection and the total number
of genomes gtot for the community genome abundance
profile Pout have to be specified. The greal real genomes
are drawn from the provided genome sampling collection.
An equal number of genomes is drawn for every novelty
category. If the number of genomes for a category is insuf-
ficient, proportionately more are drawn from others. In
addition, CAMISIM simulates gsim = gtot − greal genomes
of closely related strains from the chosen real genomes in
total. These genomes are created with an enhanced ver-
sion of sgEvolver [22] (Additional file 1: Methods) from a
subset of randomly selected real genomes. Given m, the
maximum number of strains per OTU, up to m − 1 sim-
ulated strain genomes are added per genome. The exact
number of genomes X to be simulated for a selected OTU
is drawn from a geometric distribution with mean μ =
0.3−1 (Eq. 1). This procedure is repeated until gsim-related
genomes have been added to the community genome
collection, comprising gtot = greal + gsim genomes [15].
Next, community genomes are assigned abundances.

The relevant user-defined parameters for this step are the
sample type and the number of samples n. In addition
to single samples, multi-sample data sets (with differen-
tial abundances, replicates or time series) have become
widely used in real sequencing studies [23–26], also due
to their utility for genome recovery using covariance-
based genome binners such as CONCOCT [27] or
MetaBAT [28]. Several options for creating multi-sample
metagenome data sets with these setups are provided:

1 If simulating a single sample data set, the relative
abundances are drawn from a lognormal distribution,
which is commonly used to model microbial
communities [29–32]. The two parameters of the
lognormal distribution can be changed. By default,
the mean is set to 1 and the standard deviation to 2
(Eq. 2). Setting the standard deviation σ to 0 results
in a uniform distribution.

2 The differential abundance mode models a
community sampled multiple times after the

environmental conditions or the DNA extraction
protocols (and accordingly the community
abundance profile) have been altered. This mode
creates n different lognormally (Eq. 2) distributed
genome abundance profiles.

3 Metagenome data sets with multiple samples with
very similar genome abundance distributions can be
created using the replicates mode. Having multiple
replicates of the same metagenome has been reported
to improve the quality for some metagenome analysis
software, such as for genome binners [23, 27, 33, 34].
Based on an initial log-normal distribution D0, n
samples are created by adding Gaussian noise to this
initial distribution (Eq. 4). The Gaussian term
accounts for all kinds of effects on the genome
abundances of the metagenomic replicates including,
but not limited to, different experimenters, different
place of extraction, or other batch effects.

Di = D0 + εwith ε ∼ N(0, 1) and
ε ∼ N(0, 1)

⇔ d
dx

P(ε ≤ x) = 1√
2π

· e− 1
2 x

2
(4)

4 Time series metagenome data sets with multiple
related samples can be created. For these, a Markov
model-like simulation is performed, with the
distribution of each of the n samples (Eq. 5)
depending on the distribution of the previous sample
plus an additional either lognormal (Eq. 2) or
Gaussian (Eq. 4) term. This emulates the natural
process of fluctuating abundances over time and
ensures that the abundance changes to the previously
sampled metagenome do not grow very large.

Di = Di−1 + ε with
D0 ∼ Lognormal(μ, σ) and

ε ∼ N(0, 1) or

Di = Di−1 + ε

2
with

ε ∼ Lognormal(μ, σ)

(5)

Metagenome simulation
Metagenome data sets are generated from the genome
abundance profiles of the community design step. For
each genome-specific taxon t and its abundance (t, abt) ∈
Pout, its genome size st , together with the total number of
reads n in the sample, determines the number of generated
reads nt (Eq. 6). The total number of reads n is the overall
sequence sample size divided by the mean read-length of
the utilized sequencing technology.

nt = n · abt · st
∑

i∈Pout abi · si
(6)
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By default, ART [35] is used to create Illumina 2 × 150
bp paired-end reads with a HiSeq 2500 error profile. The
profile has been trained on MBARC-26 [36], a defined
mock community that has already been used to bench-
mark bioinformatics software and a full-length 16S rRNA
gene amplicon sequencing protocol [37, 38], and is dis-
tributed with CAMISIM. Other ART profiles, such as
the one used for the first CAMI challenge, can also be
used. Further available read simulators are wgsim (https://
github.com/lh3/wgsim, originally part of SAMtools [39])
for simulating error-free short reads, pbsim [40] for simu-
lating Pacific Biosciences data and nanosim [41] for sim-
ulating Oxford Nanopore Technologies reads. The read
lengths and insert sizes can be varied for some simulators.
For every sample of a data set, CAMISIM generates

FASTQ files and a BAM file [39]. The BAM file speci-
fies the alignment of the simulated reads to the reference
genomes.

Gold standard creation and postprocessing
From the simulated metagenome data sets—the FASTQ
and BAM files—CAMISIM creates the assembly and bin-
ning gold standards. The software extracts the perfect
assembly for each individual sample, and a perfect co-
assembly of all samples together by identifying all genomic
regions with a coverage of at least one using SAMtools’
mpileup and extracting these as error-free contigs. This
gold standard does not include all genome sequences
available for the simulation, but the best possible assembly
of their sampled reads.
CAMISIM generates the genome and taxon binning

gold standards for the reads and assembled contigs,
respectively. These specify the genome and taxonomic
lineage that the individual sequences belong to. All
sequences can be anonymized and shuffled (but tracked
throughout the process), to enable their use in bench-
marking challenges. Lastly, files are compressed with gzip
and written to the specified output location.

Results
Comparison to the state-of-the-art
We tested seven simulators and compared them to
CAMISIM (Table 1). All generate Illumina data and
some—NeSSM [42], BEAR [43], FASTQSim [44], and
Grinder [45]—alsouse a taxonomicprofile.Novel andunique
to CAMISIM is the ability to simulate long-read data
from Oxford Nanopore, of hybrid data sets with multi-
ple sequencing technologies and multi-sample data sets,
such as with replicates, time series, or differential abun-
dances. Grinder [45] can also create multiple samples, but
only with differential abundances. In addition, CAMISIM
creates gold standards for assembly (single sample assem-
blies and multi-sample co-assemblies), for taxonomic and
genome binning of reads or contigs and for taxonomic
profiling. Finally, CAMISIM can evolve multiple strains
for selected input genomes and allows specification of the
degree of real and simulated intra-species heterogeneity
within a data set.

Effect of data properties on assemblies
We created several thousand “minimally challenging”
metagenome samples by varying one data property rel-
evant for assembly, while keeping all others the same.
Using these, we studied the effect of evolutionary diver-
gence between genomes, different error profiles, and cov-
erage on the popular metaSPAdes [19], version 3.12.0,
and MEGAHIT [18], versions 1.1.2 and 1.0.3, assem-
blers, to systematically investigate reported performance
declines for assemblers in the presence of strain-level
diversity, uneven coverage distributions, and abnormal
error profiles [15, 46, 47]. Both MEGAHIT and metaS-
PAdes work on de Bruijn graphs, which are created by
splitting the input reads into smaller parts, the k-mers,
and connecting two k-mers if they overlap by exactly k-
1 letters. For every sequencing error k erroneous k-mers
are introduced into the de Bruijn graph, which might
substantially impact assembly (Fig. 2).

Table 1 Properties of popular metagenome sequence simulators

Software De novo Profile Multi Strains Non-Illumina data Licensed Updated

MetaSim [62] � X X � 454 P, AU 03/2009

iMESS [63] � X X X 454 – 07/2014

BBMap [64] � X X X – LBL 01/2019

NeSSM [42] � � X X 454 AU 07/2013

BEAR [43] � � X X – AU 02/2017

FASTQSim [44] � � X X SOLiD, IonTorrent, PacBio GPL 05/2015

Grinder [45] � � � X Sanger, 454 GPL 04/2016

CAMISIM � � � � PacBio, ONT, . . . Apache 2.0 01/2019

Abbreviations: P, proprietary software; AU, academic use only; LBL, Lawrence Berkeley Lab
The table shows if an abundance profile can be generated by the simulator de novo and if an existing profile of a microbial community can be used as input. Further
inspected features are the ability to simulatemulti-sample data sets, strains, and non-Illumina data (e.g., long reads). Lastly, the table states if and how a software is licensed,
and the date it was last recently updated

https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
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Varying genome coverage and sequencing error rates
We initially simulated samples from Escherichia coli K12
MG1655 with varying coverage and different error rates.
Reads were generated at 512× genome coverage and sub-
sampled stepwise by 50% until 2× coverage was reached,
resulting in a sample series with 512, 256, 128, 64, 32, 16,
8, 4, and 2-fold coverage, respectively. Subsampling was
employed to control variation in the sampling of different
genomic regions. To assess the effect of sequencing errors,
four read data sets were simulated: three using wgsimwith
uniform error rates of 0%, 2%, and 5%, and one using ART
with the CAMI challenge error profile (ART CAMI).
Both assemblers were run on these data sets with default

options, except for the phred-offset parameter for metaS-
PAdes, which was set to 33. Both assemblers performed
similar across all error rates and coverages, with assem-
bly quality varying substantially with coverage (Fig. 3).
Performance on the data generated with the 5% error pro-
file was worst throughout. This is an unrealistically high

error profile for Illumina data [47] that software need not
necessarily be adapted to handle well.
If coverage was low, assembly failed, generating a large

number of small (low NGA50) contigs covering only
a small genome portion (genome fraction) across all
data sets, because of uncovered regions in the genomes.
Sequencing errors (denoted ε) do not play a major role
(Fig. 2). The expected per-base error-rate Ep = cov · ε

(disregarding the biased errors in the short-read sequenc-
ing technologies) is far below 1

(
Ep � 1

)
. With increasing

coverage, assembly improved consistently across the 0%,
2%, and CAMISIM ART error profile data sets and both
assemblers for all metrics (Fig. 3), and reaching an early
plateau by 8–16× coverage.
Notably, the performance of an earlier version of

MEGAHIT (1.0.3) decreased substantially (declining
genome fraction and NGA50) for more than 128× cover-
age, except for error-free reads. For instance, at 5% error
rate, MEGAHIT, version 1.0.3, generated an exponential

Fig. 2 Assembly graphs become more complex as coverage increases. MEGAHIT assembly graphs (k = 41) of an E. coli K12 genome for 2×, 32×, and
512× per-base coverage, respectively, visualized with Bandage [60]. For 2× coverage, the graph is disconnected and thus the assembly
fragmented. With increasing coverage more and more unitigs can be joined, first resulting in a decent assembly for 32× coverage, but—due to
sequencing errors adding erroneous edges to the graph—a fragmented assembly again for 512× coverage
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number of contigs at high coverages, which keeps the
genome fraction artificially high. For these high coverages
and error rates, we expectmultiple errors at every position
of the genome

(
Ep � 10

)
. This creates de Bruijn graphs

with many junctions and bubbles (Fig. 2) which cannot
easily be resolved and may lead to breaking the assem-
bly apart and covering the same part of the genome with
multiple, short, and erroneous contigs (Fig. 3).

Effect of evolutionary relatedness onassembler performances
We systematically investigated the effect of related strains
on assembler performances across a wide range of taxa
and evolutionary divergences, using the genomes of 152
species from the interactive tree of life iTol [48], which
includes bacteria, archaea, and eukaryotes. For each
genome, we evolved 19 related genomes without larger
insertions and deletions and an average nucleotide iden-
tity (ANI) between 90% and 99.5% to the original one
using steps of 0.5%. For each of the 152 · 20 = 3040 pairs
of original and evolved genome sequences, we simulated
single sample minimal metagenomes at equal genome
abundances, with error-free reads at 50× coverage using
wgsim. This constitutes good coverage for the analyzed
assemblers, as shown in the previous section. For the
resulting samples, variation in assembler performance

should thus primarily be caused by differences in
ANI.
The presence of closely related genomes substantially

affected assembly quality (Fig. 4). For up to 95% ANI,
the assemblers restored high quality assemblies for both
genomes. Between 95% and 99% ANI, the genome frac-
tion and assembly size dropped substantially and contig
numbers increased. This was the case if we allowed con-
tigs to either map uniquely to one reference genome or
to both, in case of multiple optimal mappings. For more
closely related genomes, the number of contigs increased
drastically and the assembly size continued to drop. The
genome fraction remained high when considering non-
unique mappings, but decreased for unique mappings; the
explanation for this observed behavior is that for an ANI
of more than 99%, assemblers produced consensus contigs
of the two strains that mostly aligned similarly well to both
reference genomes. This was the case for all 152 genomes
and their evolved counterparts.

Simulating environment-specific data sets
To test the ability to createmetagenome data of the human
microbiome, we simulated metagenomes from taxonomic
profiles of the Human Microbiome Project [9] for differ-
ent body sites with CAMISIM. We selected 49 samples
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Fig. 4 Genome fraction calculated using unique or multiple best mappings in case of ties to the community genome collection. Left: genome
fraction for the E. coli assembly created by MEGAHIT from error-free reads (top) and with ART CAMI error profile (bottom). Right: average genome
fraction and standard deviation for all original 152 iTol genomes created by MEGAHIT from error-free reads (top) and with ART CAMI error profile
(bottom). Error bars denote 1× standard deviation

from the airways, gastrointestinal tract, oral cavity, skin
and urogenital tract, with whole genome shotgun (WGS)
and 16S rRNA gene amplicon sequence data available. We
used the published QIIME OTU table (https://hmpdacc.
org/hmp/HMQCP/) to generate 5 Gb of simulated reads
per sample with CAMISIM, resulting in a data set of
245 Gb of Illumina data, and of PacBio data, respectively.
Only genomes tagged as “complete genomes” in the NCBI
were considered in the data set generation. To decrease
the chance of OTUs not being represented by a genome,
the option of allowing multiple OTUs being represented
by a single reference genome was turned on. This can
be relevant for instance when due to sequencing errors
in 16S rRNA data, individual community genomes are
represented by multiple OTUs.
For a functional comparison of the simulated data with

the original metagenome shotgun data, we inferred KEGG
Ortholog family abundance profiles from the raw read
data sets [49]. To this end, all reads were searched with
Diamond v0.9.10 using its blastx command with default
options [50] against the KEGG GENES database (release
77, species_prokaryotes, best-hit approach) and linked
to KEGG Orthology (KO) via the KEGG mapping files.

KO profile similarity between the simulated and original
metagenome samples was calculated with Pearson’s cor-
relation coefficient (PCC) and Spearman rank correlation
(SRC), and visualized with non-metric multidimensional
scaling (NMDS) [51].
For comparison, we also created functional profiles

with PICRUSt [52], using a prediction model generated
from 3772 KEGG genomes and corresponding 16S rRNA
gene sequences according to the PICRUSt “Genome Pre-
diction Tutorial” (Additional file 1). The PCC of the
CAMISIM and original samples approached a striking
0.97 for body sites with high bacterial abundances and
many sequenced genomes available, such as the GI tract
and oral cavity, and still ranged from 0.72 to 0.91 for
airways, skin and urogenital tract samples (Fig. 5b). All
PCCs were 7–30% higher than the PCC of PICRUSt with
the original metagenome samples. Thus, CAMISIM cre-
ated metagenome samples functionally even closer to the
original metagenome samples than the functional pro-
files created by PICRUSt. The higher PCC may also partly
be due to the fact that the original and CAMISIM data
were annotated by “blasting” reads versus KEGG, while
the PICRUSt profiles were directly generated from KEGG

https://hmpdacc.org/hmp/HMQCP/
https://hmpdacc.org/hmp/HMQCP/
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a

b

Fig. 5 Comparison of CAMISIM and PICRUSt functional profiles for different body sites. a NMDS ordination of the functional predictions of individual
samples by the different methods. The different body sites are color-coded and labeled with their sample number. The original WGS is denoted by
squares, the CAMISIM result as circles and the PICRUSt result as triangles. bMean and standard deviation of Pearson and Spearman correlation to
original WGS samples per body site. C, CAMISIM; P, PICRUSt

genome annotations. The Spearman correlation of the
simulated CAMISIM samples to the original metagenome
samples was slightly lower than the PCC across all
body sites, and very similar for CAMISIM and PICRUSt
(0–6% improvement of CAMISIM over PICRUSt).
These results demonstrate the quality of the CAMISIM
samples.
The NMDS plot (Fig. 5a) showed a very distinct clus-

tering of the CAMISIM and original WGS samples by
body site, more closely than the original samples clustered
with the PICRUSt profiles. Even though the urogenital
tract samples did not cluster perfectly, the CAMISIM
samples still formed a very distinct cluster close to
the original one. Even outliers in the original samples

were, at least partly, detected and correctly simulated
(both original and simulated sample 26 of urogenital
tract cluster most closely with the gastrointestinal tract
microbiomes).
We also provide a multi-sample mouse gut data set

for software developers to benchmark against. For 64
16S rRNA samples from the mouse gut [17], we sim-
ulated 5 Gb of Illumina and PacBio reads each. The
mice were obtained from 12 different vendors and the
samples characterized by 16S V4 amplicon sequencing
(OTU mapping file in Additional file 1). Since for mouse
gut only a few complete reference genomes were avail-
able, the “scaffold” quality for downloading genomes was
chosen.
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Discussion and conclusions
CAMISIM is a flexible program for simulating a large
variety of microbial communities and metagenome sam-
ples. To our knowledge, it possesses the most complete
feature set for simulating realistic microbial communities
and metagenome data sets. This feature set includes sim-
ulation from taxonomic profiles as templates, inclusion of
both natural and simulated strain level diversity, andmod-
elling multi-sample data sets with different underlying
community abundance distributions. Read simulators are
included for short-read (Illumina) and long-read (PacBio,
ONT) sequencing technologies, allowing the generation
of hybrid data sets. This turns CAMISIM into a ver-
satile metagenome simulation pipeline, as modules for
new (or updated) sequencing technologies and emerging
experimental setups can easily be incorporated.
We systematically explored the effect of specific data

properties on assembler performances on several thou-
sand minimally challenging metagenomes. While low
coverage reduced assembly quality for both assemblers,
metaSPAdes and MEGAHIT performed generally well for
medium to high coverages and different error profiles.
Notably, MEGAHIT is computationally very efficient and
overall performed well. As noted before [15, 53], assem-
blers had problems with resolving closely related genomes
in our experiments. For an in-depth investigation, we
systematically analyzed the effect of related strains on
MEGAHIT’s performance across a wide range of taxa and
evolutionary divergences. The average nucleotide iden-
tity (ANI) between two genomes is a robust measure
of genome relatedness; an ANI value of 95% roughly
corresponds to a 70% DNA-DNA reassociation value—a
historical definition of bacterial species [54, 55]. For an
pairwise ANI below 95%, the mixture of strains could be
separated quite well and assembled into different con-
tigs. For an ANI of more than 99%, consensus contigs of
strains were produced that mostly aligned similarly well to
either reference genome. In the “twilight zone” of 95–99%
nucleotide identity, assembly performance dropped sub-
stantially andMEGAHIT’s inability to reliable phase strain
variation resulted in many small (and often redundant)
contigs. For IDBA-UD [56], another de Bruijn graph-
based metagenome assembler, a similar pattern has been
observed [57], indicating that such behavior is common to
many assemblers.
Resolving strains from metagenome shotgun data is an

open research question, though recently promising com-
putational approaches were proposed [11, 58]. The hybrid
long- and short-read simulated data sets we are provid-
ing for mouse gut and human body sites could enable the
development of new approaches for this task. CAMISIM
will facilitate the generation of further realistic bench-
marking data sets to assess their performances. With
the advent of long-read metagenomics, metagenomics

software needs to coevolve, e.g., metagenome assemblers
should support long-read and hybrid assemblies in the
future (metaSPAdes [19] is a pioneer in this regard). In
fact, hybrid data sets will be key to the second CAMI
challenge [59].
CAMISIM can also be used to study the effect of

experimental design (e.g., number of replicates, sequenc-
ing depth, insert sizes) or intrinsic community proper-
ties, such as taxonomic composition, community abun-
dance distributions, and organismal complexities, on
program performance. Due to the enormous diversity
of naturally occurring microbial communities, exper-
imental and sequencing technology setups used in
the field, such explorations are required to determine
the most effective combinations for specific research
questions.
While we tried to mimic naturally occurring data sets

as close as possible, CAMISIM, especially in the de
novo mode and when artificially simulating new strains,
requires the user to make choices about the underly-
ing evolutionary and ecological parameters. This includes
but is not necessarily limited to the organismal abun-
dance distribution and its parameters, like discussed in
[29, 30, 32], of microbial communities and the parameters
driving strain evolution. When developing metagenome
analysis tools, these should not only be entirely opti-
mized to work on individual data sets produced by
CAMISIM, but also tested with additional, optimally real
world data.

Availability and requirements
Project name: CAMISIM
Project home page: https://github.com/CAMI-challenge/
CAMISIM
Operating system(s): UNIX
Programming language: Python 2.7
Otherrequirements: https://github.com/CAMI-challenge/
CAMISIM/wiki
License: Apache 2.0
Any restrictions to use by non-academics: None.
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community design: Creation of the mapping file. Genome assembly
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