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Abstract

eastern China.

agricultural ecosystem services.

Background: Understanding the spatial distributions and ecological diversity of soil archaeal communities in
agricultural ecosystems is crucial for improvements in crop productivity. Here, we conducted a comprehensive,
continental-scale survey of soil archaeal communities in adjacent pairs of maize (dryland) and rice (wetland) fields in

Results: We revealed the consequential roles of environmental filtering in driving archaeal community assembly for
both maize and rice fields. Rice fields, abundant with Euryarchaeota, had higher archaeal diversity and steeper
distance-decay slopes than maize fields dominated by Thaumarchaeota. Dominant soil archaea showed distinct
continental atlases and niche differentiation between dryland and wetland habitats, where they were associated
with soil pH and mean annual temperature, respectively. After identifying their environmental preferences, we
grouped the dominant archaeal taxa into different ecological clusters and determined the unique co-occurrence
patterns within each cluster. Using this empirical dataset, we built a continental atlas of soil archaeal communities
to provide reliable estimates of their spatial distributions in agricultural ecosystems.

Conclusions: Environmental filtering plays a crucial role in driving the distinct continental atlases of dominant soil
archaeal communities between dryland and wetland, with contrasting strategies of archaeal-driven nutrient cycling
within these two agricultural ecosystems. These findings improve our ability to predict how soil archaeal
communities respond to environmental changes and to manage soil archaeal communities for provisioning of
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Background

Soil microorganisms represent one of the largest reser-
voirs of biodiversity and drive a variety of ecological pro-
cesses in terrestrial ecosystems [1-3]. In particular,
archaea, the third domain of life, constitute a consider-
able fraction of the soil microbial community and its
biomass [4—6]. Euryarchaeota and Thaumarchaeota
(formerly described as mesophilic Crenarchaeota [7]) are
two major archaeal phyla, and both were recently found
to contribute to the biogeochemical cycling of carbon,
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nitrogen, and hydrogen [8]; for example, euryarchaeotal
methanogenesis is typically considered the dominant
process in anaerobic habitats [9]. Moreover, the auto-
trophic ammonia-oxidizing archaea, which belong to
Thaumarchaeota, possess homologs of the alpha and
beta subunits of the bacterial ammonia monooxygenase
enzyme and predominate among ammonia-oxidizing
prokaryotes in soils [10, 11]. Ammonia oxidation is the
first step in nitrification, a key process in the global ni-
trogen cycle that results in the formation of nitrate
through microbial activity [10].

Studies to date of terrestrial archaeal ecology have
focused mainly on natural ecosystems, finding high
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variability in the general structure and relative abun-
dance of soil archaeal communities along broad environ-
mental gradients and among various habitat types [4—6].
Agricultural fields are typical human-managed terrestrial
ecosystems and are vital for securing a global food sup-
ply. Importantly, agricultural ecosystems can make sub-
stantial contributions to water and soil conservation,
climate regulation, and atmospheric quality [12]. Due to
long-term tillage and fertilization practices, soil physico-
chemical properties and ecosystem processes tend to
diverge between agricultural and natural ecosystems,
resulting in distinct microbial assembly patterns [13].
Furthermore, agricultural ecosystems are influenced by
varying water management practices, such as occasional
irrigation in maize fields (dryland) and continuous flood-
ing in rice paddies (wetland). Given their pronounced
difference in oxygenation levels, microbially mediated
soil processes and ecological diversity patterns are also
likely to be distinct between wetland and dryland soils.
In addition, the emissions of greenhouse gases (e.g.,
methane and nitrous oxide) during rice cultivation are of
great concern [14]. Since soil archaea play important
roles in ecosystem biogeochemical cycles, they are cru-
cial for nutrient management, crop productivity, and cli-
mate regulation [15]. Therefore, it is necessary to reveal
the fundamental processes that underlie archaeal biogeo-
graphic and ecological diversity patterns in these two
widely used yet distinctive agricultural ecosystems.
Uncovering the spatial assembly of microbial commu-
nities remains a major challenge in microbial ecology
[16]. The focus of microbial biogeography is now turn-
ing towards the underlying processes in microbial as-
sembly from an initial focus on the description of
patterns [17, 18]. The recent literature has instilled a
growing awareness that archaeal communities are af-
fected by various soil and environmental factors, includ-
ing soil pH [6, 19], climate [20], nutrient availability [5],
and spatial distance [21]. However, because the available
studies are confined to specific sites, it is difficult to ob-
tain a systematic and detailed ecological understanding
of archaeal community distributions in soils across
large-scale regions. Unraveling the ecological attributes
of particular dominant archaeal taxa could help us pre-
dict how soil archaeal communities shift spatially and
temporally, as well as how agricultural ecosystems re-
spond to current and future environmental changes.
Recently, a global atlas of dominant soil bacteria was
compiled, and a “most wanted” list of taxa was narrowed
down to illustrate the spatial distribution of soil bacteria
and their contribution to ecosystem functioning [22].
Since microbial life-history depends on oxygen condi-
tions—archaea are mainly anaerobic whereas bacteria
are mainly aerobic [9]—the spatial distributions of soil
archaea and bacteria may as well be very different. Yet,

Page 2 of 13

we currently lack a predictive ecological understanding
of soil individual archaeal taxa and know little about
their environmental preferences, traits, and metabolic
capabilities. An outstanding issue is whether dominant
archaeal communities can exist abundantly and ubiqui-
tously in agricultural soils across distant sites. Resolving
this critical issue would advance our understanding of
soil archaeal communities.

Maize and rice are two major crops widely cultivated
across China, thus making them excellent models for
assessing broad-scale questions about microbial diversity
and assembly between dryland and wetland agricultural
ecosystems. Here, we carried out a large-scale soil survey
of archaeal communities in agricultural soils from adja-
cent pairs of maize and rice cultivated fields across east-
ern China, aimed at controlling for the influences of
spatial scale and climatic factors on patterns of archaeal
diversity. The objectives of the present study were (1) to
explore the relative contributions of underlying factors
to archaeal assembly, (2) to identify the dominant
archaeal taxa and determine their habitat preferences
and co-occurrence patterns, and (3) to construct a con-
tinental atlas of archaeal spatial distributions in wetland
and dryland agricultural ecosystems. Our study suggests
that the spatial distributions of the dominant archaeal
taxa in agricultural ecosystems are predictable, which
should improve our ability to manage soil archaeal com-
munities to provide key ecosystem services and improve
crop productivity.

Results

From all the 249 samples, we obtained a total of
18,105,503 high-quality sequences, which clustered into
3509 operational taxonomic units (OTUs). The majority
of these sequences belonged to the phyla Thaumarchaeota
(54.9%) and Euryarchaeota (40.0%), while Bathyarchaeota,
Parvarchaeota, Lokiarchaeota, and Hadesarchaea were
detected at low relative abundances.

The archaeal a-diversity indices were significantly
higher for soils from rice fields than those from maize
fields (p<0.001; Additional file 1: Figure S2). The
edaphic and climatic drivers of this diversity were not
the same between the fields, however (multiple regres-
sion analysis, Additional file 1: Table S1). While mean
annual temperatures (MAT) and carbon-nitrogen ratios
(C/N ratios) contributed the most towards explaining
the variation in the Shannon index of maize fields, avail-
able iron (AFe) and MAT contributed most for rice
fields. This result was confirmed by significant and nega-
tive simple linear regressions found between MAT and
Shannon index for both maize and rice field samples,
whereas the Shannon index of soil samples from maize
and rice fields increased respectively with greater C/N
ratios and AFe (Additional file 1: Figure S3).



Jiao et al. Microbiome (2019) 7:15

Soil archaeal community relationships were visualized
via nonmetric multidimensional scaling (NMDS) analysis
(Fig. 1a and c). These ordination graphs revealed that
soil samples from maize and rice fields formed distinct
clusters as confirmed by permutational multivariate ana-
lysis of variance (ADONIS; R*=0.1033, p<0.001) and
similarity analysis (ANOSIM; R=0.3536, p<0.001).
Euryarchaeota was more abundant in rice soils, while
Thaumarchaeota was mainly dominant in the maize soil
samples, leading to significantly different distributions of
these two phyla in relative abundance between maize
and rice fields (p<0.001, Wilcoxon rank-sum test;
Additional file 1: Figure S4).

We also examined the influence of environmental vari-
ables on the spatial distributions of these two major
phyla (Additional file 1: Table S2). In maize fields,
ammonium-nitrogen (NH,) was the most important
contributor to both phyla, yet in rice fields, it was NH,
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and available sulfur (AS) that explained the most vari-
ation in Euryarchaeota’s relative abundance, while total
sulfur (TS) and AS contributed most for Thaumarch-
aeota. Specifically, according to follow-up bivariate
regressions, irrespective of the maize or rice, the relative
abundance of Euryarchaeota increased significantly with
greater NH, and AS levels in soil while that of
Thaumarchaeota rose with NH,. Nonetheless, in rice
fields only, significant and negative linear regressions were
found between the relative abundance of Thaumarchaeota
and TS levels (Fig. 1b and d). Moreover, when we modeled
the spatial distributions of these two phyla (using a kriging
interpolation method), their predicted patterns showed
that Euryarchaeota had a greater relative abundance in
southern field than the northern counterpart, whereas this
trend was reversed in Thaumarchaeota (Additional file 1:
Figure S5). These results were observed in both maize and
rice soils.
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Fig. 1 General distributions of major archaeal phyla in soil samples from maize and rice fields across eastern China. Nonmetric multidimensional
scaling (NMDS) showed the structure of archaeal community among the samples between maize and rice soils. The size of each point is
proportional to the relative abundance of Euryachaeota (a) and Thaumarchaeota (c), respectively. Drivers of the distributions of Euryachaeota (b)
and Thaumarchaeota (d) were estimated via linear least-squares regression analysis, including ammoniacal nitrogen (NH,), available sulfur (S), and
total S. The contents of these environmental factors were log transformed
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The relative abundances of archaeal orders and genera
were estimated for the maize and rice soils (Additional file 1:
Figures S6 and S7). Methanosarcinales, Methanocellales,
Methanomicrobiales, and Methanobacteriales were domin-
ant in rice soils, while the relative abundances of unidenti-
fied_SCG and unidentified SAGMCG-1 were significantly
higher in maize soils. In addition, Nitrososphaera and Nitro-
sotalea were the dominant soil archaeal genera in maize
fields, while Methanocella, Methanobacterium, Methano-
sarcina, Methanoregula, and Methanosaeta dominated the
rice fields.

To disentangle the drivers of archaeal f-diversity, we
first estimated the distance decay of archaeal community
similarity. Significant distance-decay relationships were
observed for both maize and rice soils (Fig. 2a), with the
former having a steeper slope (slope =-0.3837,
p<0.001) than the latter (slope = -0.3363, p<0.001).
Next, we explored the main environmental variables that
shaped the sampled archaeal communities. Constrained
analysis of principal coordinates suggested that soil pH
and MAT were the most important variables for ar-
chaeal assembly in maize and rice soils, respectively
(Fig. 2c¢ and d, Additional file 1: Tables S3 and S4).
Nevertheless, several other variables, including cation
exchange capacity (CEC), NHy, and AFe, also signifi-
cantly influenced the archaeal community of maize soils
while AS, nitrate-nitrogen (NO3), and total iron (TFe)
were more influential in rice soils.

The contribution of edaphic, geographic, and cli-
matic variables to archaeal community variation is il-
lustrated with a modified variation partitioning
diagram (Fig. 2b). All the variation partitioning frac-
tions were significant in an ANOVA permutation test
(p<0.01), and the complete set of all variables to-
gether explained 26.2% and 25.3% of the variation in
the archaeal communities of maize and rice soils, re-
spectively, with edaphic properties clearly contributing
most. Geographic factors contributed a larger propor-
tion of variation relative to edaphic factors to the ar-
chaeal f-diversity of rice soils (43.5%) than that of
maize soils (34.6%).

Those OTUs in the top 20% of relative abundance
(ie., highly abundant) and occurring in more than half
of all soil samples (ie., ubiquitous) were deemed dom-
inant archaeal taxa. This amounted to 339 OTUs, ac-
counting for 9.7% of all observed taxa. Nonetheless, on
average, these dominant taxa accounted for 93.1% of
the sequences. Given the distinct archaeal assembly pat-
terns between maize and rice fields, we determined the
ecological preferences of dominant archaeal taxa by fo-
cusing on whether they preferred a waterlogged envir-
onment. The dominant archaeal taxa were grouped into
two ecological clusters sharing habitat preferences for
(1) dryland and (2) paddy (Additional file 1: Table S5).
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We constructed spatial distribution maps of these two
ecological clusters of dominant archaeal taxa, finding that
the dryland cluster had a greater relative abundance in
northern than southern counterparts for either maize or
rice fields, whereas this trend was reversed in the paddy
cluster (Fig. 3a). Each of the ecological clusters identified
included taxa belonging to multiple genera. Thaumarchaeo-
tal Nitrososphaera and Nitrosotalea were abundant in
dryland clusters. By contrast, euryarchaeotal Methanocella,
Methanosaeta, Methanobacterium, Methanosarcina, and
Methanoregula preferred paddy environments. Moreover,
correlation network analyses were used to cross-validate
whether archaeal taxa sharing similar habitat preferences
tended to co-occur. Nodes within the same ecological clus-
ters were more connected and generated independent
modules; that is, dominant archaeal taxa sharing a particu-
lar habitat preference tend to co-occur with each other
(Fig. 3b). In addition, dominant archaeal taxa within the
same phyla tended to co-occur with each other (Fig. 3b).

Furthermore, we explored the environmental preferences
of the particular taxa within the abovementioned ecological
clusters, namely sub-ecological clusters. Given that soil pH
and MAT are the most important variables for respectively
predicting archaeal assembly in maize and rice fields, we se-
lected these two variables to identify the preferred sub-
ecological attributes of dominant archaeal taxa correspond-
ing to different ecological clusters. In total, the taxa were
grouped into four sub-ecological clusters sharing environ-
mental preferences, including (1) high pH and (2) low pH
for dryland cluster, and (3) high MAT and (4) low MAT for
paddy cluster (Additional file 1: Table S5). Our constructed
spatial distribution maps provided estimates where we
would expect the above clusters of dominant archaeal taxa
to be most abundant (Fig. 4a). As expected, the low and
high pH clusters were relatively abundant in known low
and high pH regions, respectively, and similarly, the low or
high MAT clusters were particularly abundant in areas
known for their low or high MAT soils, respectively. In
addition, strong relationships between environmental vari-
ables and relative abundances of corresponding ecological
clusters indicated that these were reasonably well-defined
ecological clusters (Fig. 4a). Going a step further, we
estimated habitat preferences of the archaeal functional
phylotypes. The ammonia-oxidizing Nitrososphaera and
Nitrosotalea were favored in high and low pH environ-
ments, respectively. Most methanogens, however, were
abundant in high MAT clusters. Methanosaeta, Methano-
cella, and Methanoregula were abundant in high MAT en-
vironments, while Methanoperedens was abundant in low
MAT clusters. In addition, Methanobacterium and Metha-
nosarcina had less specific habitat requirements, being
present in both high and low MAT environments. More-
over, in the cross-validation—this used the abovementioned
correlation network analysis for the co-occurrence of
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Fig. 2 Drivers of archaeal B-diversity in maize and rice soil samples. a Distance-decay curves of similarity for soil archaeal communities. Red lines
denote the ordinary least squares linear regression. Asterisks represent significance of correlation (***, p < 0.0001). b Variation partitioning analysis
of the relative contributions of edaphic, geographic, and climatic variables to variation in soil archaeal S-diversity. ¢ and d Constrained analysis of
principal coordinates (CAP) showing edaphic and climatic factors that influenced archaeal assembly. Sample points are colored according to soil
pH (left panel) and mean annual temperature (MAT; right panel). The color bar from red to blue represents values from small to large. CEC, cation
exchange capacity; NH,, ammonium-nitrogen; NOs, nitrate-nitrogen; TN, total nitrogen; AFe, available iron; TFe, total iron; and AS, available sulfur

taxa—the nodes within the same ecological clusters (e.g., We then correlated the dominant taxa to other soil
low MAT) were more connected; that is, dominant ar- nutrient properties and identified the major predictors
chaeal taxa sharing a particular habitat preference tended for each dominant taxon (Additional file 1: Table S5 and
to co-occur with each other (Fig. 4b). Figure S9). Spearman correlation analysis revealed that
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Fig. 3 Continental atlases and co-occurrence patterns of dominant soil archaea with shared habitat preferences in agricultural fields across
eastern China. Spearman correlations identified two ecological clusters of dominant taxa with shared habitat preferences, (1) dryland and (2)
paddy (a). The above two maps predicted the distributions of dominant archaeal taxa for each identified habitat preference across all sampling
fields. Taxonomic compositions at genera level for the two ecological clusters of dominant archaeal taxa were displayed at the left-bottom of
each graph. The following four maps show predicted distributions of dominant archaeal taxa for each identified habitat preference in maize and
rice fields, respectively. The cross-validation (“CV") of the maps based on Pearson correlation between the predicted and observed values in each
sampling site. Network diagrams with nodes (dominant archaeal taxa) colored by ecological clusters and phylum (b). The size of each node is
proportional to the relative abundance of the taxa; the thickness of each connection between two nodes (edge) is proportional to the value of
Spearman correlation coefficient

there were contrasting environmental associations on the relative abundance of OTUs assigned to Nitroso-

between methanogens and thaumarchaeotal genera
(Additional file 1: Figure S9), indicating their distinct en-
vironmental preferences. In addition, NH, and AS were
strong positive predictors for the distributions of most
methanogens whereas AFe had a strong negative effect

sphaera (Additional file 1: Figure S9). Furthermore, sev-
eral associations between phyla occurring at low
abundance and environmental variables were significant
(Spearman correlation, p<0.05; Fig. 5). In particular,
there were different association patterns between the
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Fig. 4 Continental atlases and co-occurrence patterns of dominant soil archaea with shared environmental preferences in agricultural fields
across eastern China. Environmental preferences of dominant archaeal taxa were identified by Spearman correlations between the relative
abundance of the taxa assigned to the two ecological clusters and their major environmental predictors, (1) high and (2) low pH for dryland
cluster; (3) high and (4) low mean annual temperature (MAT) for paddy cluster (a). The atlas maps predicted the distributions of dominant
archaeal taxa for each identified environmental preference across maize and rice fields, respectively. The cross-validation (“CV") of the maps based
on Pearson correlation between the predicted and observed values in each sampling site. Taxonomic compositions of dominant archaeal taxa at
the genus level for the four sub-ecological clusters are displayed at the left-bottom of each graph. Network diagram with nodes (dominant
archaeal taxa) colored by each sub-ecological cluster (b). The size of each node is proportional to the relative abundance of the taxa; the
thickness of each connection between two nodes (edge) is proportional to the value of Spearman correlation coefficient

120

maize and rice fields. For example, some taxa of Bath-
yarchaeota were positively correlated with TFe in rice
fields, but their correlation was not significant in maize
fields. Similarly, some lokiarchaeotal taxa were positively
correlated with organic matter (OM), AS, and AFe in
rice fields, yet not so in maize fields.

Discussion

The widespread distribution of archaea in terrestrial eco-
systems implies their potential participation and contri-
bution to global biogeochemical cycles [23]. A previous
study reported high variability in the general structure
and relative abundance of dominant archaeal communi-
ties inhabiting soils at the global scale [5]. Agricultural
soils are typically Anthrosols influenced by human activ-
ity, and their long-term tillage may alter the ecological
diversity patterns of soil archaea and the ecosystem pro-
cesses they sustain when compared with natural

ecosystems. We fulfilled our study objectives, in that (1)
environmental filtering plays a decisive role in driving
the archaeal assembly in contrasting agricultural ecosys-
tems; and (2) after identifying the dominant archaeal
taxa and their habitat preferences, we built a continental
atlas of soil archaeal communities that was distinct be-
tween dryland and wetland. These results could help us
to predict the archaeal responses of agricultural ecosys-
tems to anthropogenic disturbances and ongoing global
environmental change.

Compared with dryland soils on which maize crops
are cultivated, waterlogged paddy soils provide a rather
unique habitat due to the oxygen-limited conditions
generated there during frequent flooding events [24].
This management can sustain both aerobic and anaer-
obic taxa in alternating dry-wet paddy soils, leading to
the greater archaeal a-diversity we found in rice than
maize fields across eastern China. Several studies have
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shown that pH dominates the variation in archaeal di-
versity in forest and paddy soils [6, 12, 19]. However, we
did not observe any significant relationships between soil
pH and archaeal diversity, even though our soil samples
spanned a wide range of pH values (4.03-9.89). We did
find that archaeal diversity was negatively correlated
with MAT in both maize and rice fields, yet positively
correlated with the C:N ratio and AFe level in maize and
rice fields, respectively. On the one hand, previous study
has shown that microbial richness increased with
temperature [25], according to the metabolic theory of
ecology and latitudinal diversity gradient. On the other
hand, a recent study investigated the global topsoil from
natural terrestrial ecosystems, showing that bacterial di-
versity peaked at mid-latitudes and declined towards the
poles and the equator, which is contrary to the typical
latitudinal diversity gradient [26]. These contrary obser-
vations may be related to (1) the unique and more com-
plex environment in human-managed agricultural fields
compared with natural ecosystems and (2) the different
microbial life-history between archaea (anaerobic) and
bacteria (aerobic).

Earlier, we had observed marked differences in the
edaphic properties between our maize and rice soil sam-
ples, even though most of them were collected from
adjacent pairs of sites (in submission). This could help
to explain why the assembly of archaeal communities
differed considerably between maize and rice soils. We
also found that Nitrososphaera and Nitrosotalea

belonging to Thaumarchaeota, which are known as am-
monia oxidizers [27, 28], were mainly dominant in maize
soils. By contrast, we found that the Euryarchaeota,
which contains many methanogens, predominate in rice
soils; this result is consistent with the view that meth-
anogenic Euryarchaeota are restricted to mostly anoxic
environments [12, 29]. NH, was an important contribu-
tor to the distributions of both Thaumarchaeota and
Euryarchaeota. The negative correlations between Thau-
marchaeota and NH, could be due to high availability of
NH; to ammonia oxidizers in low-NH, environments.
By contrast, the positive correlations between Euryarch-
aeota and NH, indicate that members of this phylum
prefer environments with more available NH,-N. This
resource dependence is probable given that methano-
gens source their nitrogen mainly from ammonium [24,
30]. Furthermore, sulfur also contributed to the distribu-
tions of these two phyla in rice soils; a plausible explan-
ation for this result is that archaeal-driven ecosystem
processes are involved in biological electron transferring
in low-oxygen environments [14]. With regard to the
phyla occurring at low abundances, bathyarchaeotal taxa
were positively correlated with OM, TN, AN, and TFe in
rice soils, indicating their potential participation in car-
bon, nitrogen, and iron cycling in anoxic environments
[31]. Previous study has identified several syntenic genes
with homology to those involved in iron oxidation in
Parvarchaeota genomes and suggested their potential
role in iron cycling [32]; this lent support to our



Jiao et al. Microbiome (2019) 7:15

observation that some parvarchaeotal taxa were corre-
lated with TFe in rice and maize soils. The different
environmental association patterns between the maize
and rice fields indicate that despite low abundances,
these archaeal species might have evolved diverse meta-
bolic functions, enabling them to adapt to contrasting
environmental conditions.

Distance-decay relationships describe decreasing commu-
nity similarity with increasing geographic distance, and thus
provide a directional model of variation in S-diversity
across spatial scales [33, 34]. Importantly, the slopes of
these relationships across habitats can differ, reflecting vary-
ing rates of species turnover in their habitats [35]. In our
study, robust distance-decay relationships were established
for archaeal communities in wetland and dryland agricul-
tural ecosystems across a continental scale. The steeper
distance-decay slope of rice fields suggests that their turn-
over of archaeal communities was faster than in rice fields.
Since our pairwise adjacent sampling strategy covered simi-
lar spatial scales for both rice and maize fields, their differ-
ent distance-decay slopes may be strongly correlated with
environmental variability due to large spatial heterogeneity
[36]. Rice soils can form unique, ephemeral habitats across
local sites during long-term alternation of dry-wet condi-
tions [24], thus generating more spatially structured
archaeal communities across large scales. In addition,
edaphic factors evidently affected archaeal community simi-
larity in both maize and rice fields, suggesting the conse-
quential roles of deterministic processes in driving archaeal
community assembly. Geographic factors contributed a lar-
ger proportion of variation relative to edaphic factors in the
archaeal S-diversity of rice soils than maize soils, indicating
a stronger effect of stochastic processes in driving archaeal
B-diversity of rice fields. This result is partly explained by
the fact that frequent flooding management generates more
similar communities in sites nearer to each other than in
those further apart; this should enhance inherent stochastic
processes operating in rice fields, such as drift and dispersal
limitation.

A global inventory of dominant soil bacterial phylo-
types consisted of a small subset of phylotypes which
accounted for almost half of the 16S rRNA sequences
recovered from soils [22]. In the present study, the dom-
inant archaeal taxa (amounting ~10% of total taxa)
identified in maize and rice fields accounted for more
than 90% of the archaeal sequences. We also mapped
the spatial distributions of these dominant archaeal taxa
in the soil samples. These results suggest that, much like
soil bacteria in natural terrestrial ecosystems [22], there
are predictable environmental gradients and pockets for
dominant archaeal taxa in agricultural soils at the con-
tinental scale, so that their spatial distributions can be
predicted reliably by a continental atlas. Distinct spatial
distributions were generated for the two ecological
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clusters of dominant archaeal taxa, separated based on
their preferences of dry or waterlogged environments.
The dryland cluster dominated by thaumarchaeotal taxa
had a greater relative abundance in northern than south-
ern counterparts, whereas the dominant taxa that pre-
ferred waterlogged environments, mainly euryarchaeotal
OTUs, were more abundant in southern regions. Rice
fields are man-made methanogenic environments, har-
boring a variety of euryarchaeotal methanogens [37].
This distinct continental atlas implies the contrasting
habitat preferences and ecological assembly of dominant
soil archaeal taxa in wetland and dryland agricultural
ecosystems. In determining their habitat preferences,
our results suggest that the dominant archaeal taxa
tended to co-occur with others sharing the same habitat
requirements. These results imply that strong phylogen-
etic linkages, manifested as a cluster of robust co-
occurrence correlations, reflect complex associations
with the same ecological attributes.

Habitat preferences of dominant archaeal taxa are as-
sociated with their ecological characteristics, such as
physiological capabilities [38, 39]. By focusing on the
archaeal functional phylotypes—e.g., ammonia oxidizers
and methanogen—we were able to predict the environ-
mental conditions that favored them. For example, our
finding that Nitrososphaera and Nitrosotalea preferred
high-pH and low-pH environments, respectively, is sup-
ported by other works showing that these two genera
are correspondingly alkaliphilic [27] and acidophilic [28].
These consistent lines of evidence from other investiga-
tions strengthen the overall reliability of our predicted
environmental preferences for these dominant archaeal
taxa. We also observed that most methanogens preferred
to inhabit high temperature regions. Temperature was
proven to be an important factor affecting the structure
and function of soil methanogenic communities [40].
Our field study provides information to predict the pre-
ferred environmental conditions (e.g., low or high pH) of
desired archaeal taxa and to enrich particular dominant
taxa in vitro, thereby increasing our ability to success-
fully cultivate them.

Conclusions

This empirical study provides a detailed and systematic
survey of soil archaeal communities in maize and rice
fields across eastern China. The results indicate that en-
vironmental filtering plays a decisive role in driving the
distinct continental atlases of soil archaeal communities’
wetland and dryland agricultural ecosystems. Thau-
marchaeota and Euryarchaeota phyla dominated the
maize and rice cultivated fields, respectively, indicating
the existence of distinct archaeal-driven ecosystem pro-
cesses within these two agricultural ecosystems. By iden-
tifying the dominant archaeal taxa along with their
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habitat preferences, we built a robust continental atlas of
soil archaeal spatial distribution and ecological diversity,
thus improving our ability to predict the responses of
agricultural ecosystems to anthropogenic disturbances.
Overall, our study implies that instead of considering
tens of thousands of members, future research ought to
narrow its focus upon the few hundred dominant taxa in
soil microbial communities. This approach is also critical
for quickly and accurately forecasting the ecological con-
sequences of ongoing global environmental change.

Methods

Soil sampling

A total of 132 locations were selected from agricultural
fields under long-term cultivation with maize and rice
across eastern China. These included 117 paired sites, 8
maize-only, and 7 rice-only sites, amounting to 125
maize and 124 rice soil samples (Additional file 1: Figure
S1). Each paired site consisted of a maize field adjacent
to a rice field (less than 5 km apart). The soils at all the
sites were sampled during the planting season (July—
September 2017). Three plots (each 100 m?) at each site
were randomly selected, from which five soil cores per
plot were taken at a depth of 0-15cm and combined.
These plot-level samples were sieved through a 2.0-mm
mesh to remove plant debris and rocks and then mixed
thoroughly for the three plots on a per site basis to gen-
erate the final composite soil samples.

Standard soil testing procedures were followed to measure
soil pH, CEC, and nutrient factors—namely, OM, dissolved
organic carbon (DOC), total nitrogen (TN), available nitro-
gen (AN), nitrate-nitrogen (NOj), ammonium-nitrogen
(NHy), total phosphorus (TP), available phosphorus (AP),
total potassium (TK), available potassium (AK), microbial
biomass carbon (MBC), and microbial biomass nitrogen
(MBN)—as well as a few factors involved in biological elec-
tron transfers, such as TFe, AFe, TS, and AS, according to
the literature [15, 41]. Climatic variables, including MAT and
mean annual precipitation (MAP), for each sampling site
were obtained using its coordinates from the WorldClim
database (www.worldclim.org).

lllumina sequencing of the 16S rRNA gene

Total genomic DNA was extracted from each soil sam-
ple using the MP FastDNA SPIN Kit [for soil] (MP Bio-
medicals, Solon) as per the manufacturer’s instructions.
The archaeal 16S rRNA gene was PCR-amplified using
the primers Arch519F (CAGCCGCCGCGGTAA) /
Arch915R (GTGCTCCCCCGCCAATTCCT) that were
combined with adapter sequences and barcode se-
quences. Purified amplicons were sequenced on a
HiSeq2500 platform (Illumina Inc., San Diego, USA).
Paired-end reads were first merged using FLASH soft-
ware and then quality filtered according to the
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procedure described by Caporaso et al. [42]. Chimera
detection and removal was accomplished using the
USEARCH tool in the UCHIME algorithm [43].
Sequences were split into groups according to taxonomy
and assigned to OTUs at a 3% dissimilarity level (ie.,
97% similarity) using the UPARSE pipeline [43]. Those
OTUs lacking more than two sequences were removed;
representative sequences of the remaining OTUs were
classified using the SILVA database release 128.

Statistical analyses

All statistical analyses were conducted in the R environ-
ment (v3.5.1; http://www.r-project.org/) using “vegan” [44],
“igraph” [45], “Hmisc” [46], “automap” [47] “ggplot2” [48],
and “gplots” [49] packages, unless otherwise indicated.

After removing the bacterial and unknown OTUs, the
samples were subsampled to a minimum number of
sequences (36,880) to control the sampling effort. The
a-diversity (expressed as OTU richness and Shannon
index) of each sample was calculated, and the -diversity
was estimated (based on Bray-Curtis distances between
samples). The geographical distances among the sampling
sites were calculated from the sampling coordinates. To
visualize the relationships of archaeal communities from
maize and rice soils, NMDS analysis was performed based
on Bray-Curtis distances by using the “metaMDS” func-
tion of the “vegan” package [44]. To determine signifi-
cant differences in archaeal S-diversity between the
maize and rice fields, ANOSIM and ADONIS were
carried out using the “anosim” and “adonis” function
of the “vegan” package [44].

Distance-decay relationships were calculated as the
linear least-squares regression relationships between
geographic distance and community similarity (based on
1 - [dissimilarity of the Bray-Curtis distance metric]).
To disentangle the relative importance of edaphic, geo-
graphic, and climatic variables for archaeal community
assembly, a variation-partitioning analysis was per-
formed using “varpart” function of the “vegan” package
[44]. To limit co-linearity effects between variables, vari-
able clustering was used to assess the redundancy of
environmental variables. The analysis was performed
and plotted using “varclus” in “Hmisc” R package [46].
Geographic variables were derived from spatial coordi-
nates by using the principal coordinates of neighbor
matrices (PCNM) procedure to capture all the detectable
spatial scales in the dataset [50], conducted by “pcnm”
function of the “vegan” package [44]. Then, a distance-
based linear model and forward selection procedure
based on the Bray-Curtis distance matrix was used to
select the respective subsets of edaphic, climatic, and
geographic variables [51, 52]. The forward selection was
stopped if an insignificant alpha level (p value > 0.05)
was reached, or if there was no model improvement
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seen in the variation being explained (R?) after adding
any additional variables. The statistical significance of
each group of explanatory variables via partitioning was
evaluated with a permutation test. Variation partitioning
was performed with adjusted R* values to determine the
proportion of variation in the archaeal communities ex-
plained by the fitted model. Additionally, the results for
the selected edaphic variables were displayed by a con-
strained analysis of principal coordinates based on
Bray-Curtis distances using the “capscale” function of the
“vegan” package [44].

The most common and ubiquitous archaeal taxa across
the agricultural fields were identified using the criteria of
Delgado-Baquerizo et al. [22] with slight modifications: (1)
selecting only highly abundant OTUs, i.e., those with rela-
tive abundance that ranked in the top 20% across all sam-
ples; and (2) keeping those OTUs occurring in more than
half (> 50%) of all the 249 soil samples. Hence, with these
two criteria, the OTUs that were abundant and widely
present across soil samples were considered. Given the
distinct archaeal assembly patterns between maize and
rice fields, we determined the ecological preferences of
dominant archaeal taxa by focusing on whether they pre-
ferred a waterlogged environment. Spearman correlations
identified the groups of dominant taxa with shared habitat
preferences. The dominant archaeal taxa were grouped
into two ecological clusters sharing habitat preferences for
(1) dryland and (2) paddy. Furthermore, since soil pH and
MAT are the most important variables for respectively
predicting archaeal assembly in maize and rice fields, we
selected on these two variables to identify the preferred
sub-ecological attributes of the dominant archaeal taxa
corresponding to different ecological clusters. In total, the
taxa were grouped into four sub-ecological clusters shar-
ing environmental preferences via Spearman correlations,
including (1) high pH and (2) low pH for dryland cluster,
and (3) high MAT and (4) low MAT for paddy cluster. To
build predictive maps of the spatial distributions of the
core bacterial taxa, we used a kriging interpolation
method to estimate the relative abundance of each eco-
logical cluster in maize and rice fields, respectively. This
analysis was performed in the “automap” package [47],
which automates the interpolation process by automatic-
ally estimating a semivariogram and performing kriging
interpolation. We cross-validated our maps using “auto-
Krige.cv” in “automap” package [47]. The predicted rela-
tive abundances of each cluster were extracted for the
selected soil samples and then correlated to the observed
values in the corresponding sites based on Pearson correl-
ation analysis. The Pearson correlation coefficient and p
value were shown in the map. Co-occurrence networks
were constructed to evaluate whether dominant archaeal
taxa within a particular ecological cluster co-occurred
more often. To do this, robust Spearman correlations
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between any two dominant OTUs were used (defined as
those with rho coefficients >0.6 and FDR-corrected p
values <0.01). This formed a correlation network, in
which each node represents one OTU, and each edge rep-
resents a strong and significant correlation between two
nodes. Networks were visualized using the interactive
Gephi platform [53].

Additional file

Additional file 1: Figure S1. Geographical location of the sampling
sites for agricultural soils across eastern China, including 117 paired, 8
maize-only, and 7 rice-only sites. Figure S2. Variation in the archaeal
a-diversity indices [operational taxonomic unit (OTU) richness and
Shannon index] between maize and rice soils. Figure S3. Relationships
between archaeal Shannon index and environmental variables in each
pair of maize (A and B) and rice (C and D) soils, estimated by linear least-
squares regression. Figure S4. Variation in the relative abundance of ar-
chaeal phyla between maize and rice soils. Figure S5. Predicted spatial
distributions of Euryachaeota and Thaumarchaeota in maize and rice soils.
Figure S6. Variation in the relative abundance of archaeal orders be-
tween maize and rice soils. Figure S7. Variation in the relative abundance
of archaeal genera between maize and rice soils. Figure S8. Cluster ana-
lysis of the measured environmental variables in maize and rice fields.
Figure S9. Environmental contributions to the distributions of dominant
archaeal taxa in maize and rice soils. Table S1. Variation explained by en-
vironmental variables in the regression models for archaeal Shannon
index in maize and rice fields across eastern China.

Table S2. Variation explained by environmental variables in the
regression models for the relative abundance of Euryarchaeota and
Thaumarchaeota in maize and rice fields. Table S4. ANOVA of environ-
mental factors correlated with archaeal B-diversity in rice soil.

Table S5. List of soil dominant archaeal taxa in agricultural fields across
eastern China. (ZIP 5765 kb)
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