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Choice of assembly software has a critical
impact on virome characterisation
Thomas D. S. Sutton1,2† , Adam G. Clooney1,2†, Feargal J. Ryan1,2,3†, R. Paul Ross1,2,4 and Colin Hill1,2*

Abstract

Background: The viral component of microbial communities plays a vital role in driving bacterial diversity, facilitating
nutrient turnover and shaping community composition. Despite their importance, the vast majority of viral sequences
are poorly annotated and share little or no homology to reference databases. As a result, investigation of the viral
metagenome (virome) relies heavily on de novo assembly of short sequencing reads to recover compositional and
functional information. Metagenomic assembly is particularly challenging for virome data, often resulting in
fragmented assemblies and poor recovery of viral community members. Despite the essential role of assembly in
virome analysis and difficulties posed by these data, current assembly comparisons have been limited to subsections
of virome studies or bacterial datasets.

Design: This study presents the most comprehensive virome assembly comparison to date, featuring 16 metagenomic
assembly approaches which have featured in human virome studies. Assemblers were assessed using four
independent virome datasets, namely, simulated reads, two mock communities, viromes spiked with a known phage
and human gut viromes.

Results: Assembly performance varied significantly across all test datasets, with SPAdes (meta) performing consistently
well. Performance of MIRA and VICUNA varied, highlighting the importance of using a range of datasets when comparing
assembly programs. It was also found that while some assemblers addressed the challenges of virome data better than
others, all assemblers had limitations. Low read coverage and genomic repeats resulted in assemblies with poor genome
recovery, high degrees of fragmentation and low-accuracy contigs across all assemblers. These limitations must be
considered when setting thresholds for downstream analysis and when drawing conclusions from virome data.
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Background
The rapid evolution of metagenomics and high through-
put sequencing technologies has revolutionised the study
of microbial communities, giving new insights into the
role and identity of the uncultivated microbes which ac-
count for the majority of metagenomic sequences [52].
However, the majority of microbial sequencing efforts
have focused on the characterisation of prokaryotic mi-
crobes. Viral metagenomes (viromes) are dominated by
novel sequences, often with up to 90% of sequences
sharing little to no homology to reference databases [2].

Bacteriophage, the most abundant member of viral com-
munities, play a key role in the shaping the composition
of microbial communities and facilitate horizontal gene
transfer [42]. Viromes have been shown to play a role in
global geochemical cycles [7] and have been studied in
varied ecosystems including the ocean [21]. Viromes of
the human body are of particular interest, where they
have been linked to disease status [39], maintaining
human health [31] and shaping the gut microbiome in
early life [26, 34]. Due to the predominance of uncharac-
terised viral sequences “viral dark matter” [45] and the
lack of a universal marker gene, virome studies rely on
database-independent analysis methods and depend
heavily on de novo assembly to resolve viral genomes
from metagenomic sequencing reads.
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Metagenomic assemblers typically use de Bruijn graph
(DBG) approaches to address the complexity and size of
metagenomic datasets in an accurate and efficient manner.
Microbial metagenomes pose significant challenges to
DBG assembly when compared to single genome assem-
blies often complicating the DBG and leading to fragmen-
tation and/or misassembly [41]. These challenges include
uneven sequencing coverage of organisms within the meta-
genome, the presence of conserved regions across different
species, repeat regions within genomes and the introduc-
tion of false k-mers by both closely related genomes at
differing abundances and sequencing errors at high read
coverage. This hampers the use of coverage statistics to re-
solve repeat regions between and within genomes [41].
A wide array of metagenomic assembly programs have

been employed, each addressing aspects of metagenomic
challenges to varying degrees. However, many of these
programs have been designed and optimised for bacterial
metagenomes, which share many assembly challenges of
viromes but to a lesser degree. Virome data is charac-
terised by high proportions of repeat regions within viral
genomes [36], hypervariable genomic regions associated
with host interaction [55] and high mutation rates which
lead to increased metagenomic complexity and strain
variation [44]. Low DNA yields also limit read coverage
and often require a multiple displacement amplification
(MDA) step which has been shown to preferentially
amplify small single-stranded DNA viruses [23]. Ex-
tremes in read coverage caused by MDA bias and dom-
inant viral taxa such as crAssphage, which can make up
large proportions of human gut viromes [10], sequester
sequencing resources and result in insufficient coverage
of low abundance viruses. These challenges result in
fragmented virome assemblies [14], limiting their use in
downstream analysis. Despite benchmarks of bacterial
metagenomes having highlighted failings and benefits of
particular assembly programs, many poorly performing
assemblers have featured in virome studies [12, 17, 19].
Accurate comparison of metagenomic assemblers is

complicated by the unknown composition of metage-
nomic datasets and the limited applicability of general as-
sembly statistics such as N50 [9, 54]. To address this, the
accuracy and efficacy of metagenomic assembly programs
are often evaluated using simulated datasets and mock
communities of known composition. Although these
simulated datasets are undergoing constant improvements
[13, 48], they have focused primarily on bacterial metagen-
omes and remain limited in their ability to accurately
replicate the challenges of true metagenomes. While some
virome-specific assembly benchmarks have been per-
formed, many have been limited to a small number of
assemblers, 454 pyrosequencing data or subsections of
virome studies which have exclusively used simulated data
[3, 14, 20, 44, 51, 53].

Here, we expand upon previous studies and present a
detailed investigation of assembly software for virome ana-
lysis which compares all those previously used in human
virome studies to date, as well as other popular or more re-
cently published assemblers (Table 1). We compare assem-
bly efficacy and accuracy using simulated viromes, mock
viral communities and human gut viromes spiked with a
known exogenous bacteriophage (Additional file 1;
Additional file 2; Additional file 3; Additional file 4).
Furthermore, we confirm these findings using human vir-
ome data from published datasets and assess computational
parameters such as runtime and RAM usage. We also in-
vestigate in detail the impact of sequencing coverage and
genomic repeats on assembly performance and highlight
important considerations for future virome studies.
Together, these data comprise most comprehensive virome
assembly benchmark to date.

Results
Simulated virome dataset
Normalised genome abundance of 572 members of a
published simulated community, (Fig. 1a) [20] the pro-
portion of genome recovered and the degree of fragmen-
tation were assessed by aligning the resulting contigs
from each assembler to the reference genomes (Fig. 1b).
MetaVelvet was not included in this analysis as it failed
to reach completion after 7 days. Approximately half of
the genomes in the community featured an average re-
covered genome fraction less than 75% and exhibited
higher degrees of fragmentation (> 10 contigs per gen-
ome on average) across all assemblers. For 87 of the 572
genomes, there was an average recovered genome frac-
tion of less than 20% across all assemblers (the low re-
covered genome fraction of VICUNA was excluded as
an outlier). Of these genomes, 84 were present at low
abundance (lowest 40% of all abundances normalised to
genome length). The remaining three genomes were
present at higher normalised abundances (50–80th per-
centile) but featured some of the highest proportions of
genomic repeats (70th–90th percentile).
Normalised genome abundance within the community

had a strong positive correlation with recovered genome
fraction across all assemblers (Additional file 5: Table
S1) and was verified using a linear model (Additional file
5: Table S2), with the exception of SOAPdenovo2, which
was negative. Normalised abundance also correlated
negatively with the degree of fragmentation (number of
contigs) across all assemblers except Velvet which was
positively correlated and Geneious which was not signifi-
cant (Additional file 5: Table S1). None of the genomes
in the lower 30th percentile of normalised abundance
featured an average recovered genome fraction greater
than 75%, further exemplifying the impact of low se-
quencing coverage. However, high abundance did not
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consistently improve genome recovery, and of the 172
genomes in the top 30% of normalised abundance, 20
featured an average genome fraction below 50%. The
distance of the log-transformed (due to extremes in
values) normalised abundances from the mean was
negatively correlated with recovered genome fraction
across all assemblers (correlation coefficient − 0.42,
p value < 2.2e−16). Of 171 genomes in the 40th–60th
percentile of normalised abundance, 29 featured an
average genome fraction below 50%. This indicates fac-
tors other than abundance may hamper genome recov-
ery. MIRA and Geneious both recovered a greater
fraction of low abundance genomes with fewer contigs
than other assemblers. However, MIRA assemblies of
13 of the most abundant genomes in the community
(highest 10%) exhibited the highest degree of fragmen-
tation in the study, generating between 401 and 2983
contigs per genome.
The proportion of inverted repeats, palindromic re-

peats, tandem repeats and a total proportion of genomic
repeats was calculated for each genome. The total per-
centage of repeat regions predicted in each genome was
positively correlated with the degree of fragmentation
observed in each assembly across all assemblers with the
exception of Ray Meta (Additional file 5: Table S3) and
negatively correlated with recovered genome fraction
across all assemblers except ABySS (k-mer 63/127), Gen-
eious and SOAPdenovo2. When this relationship be-
tween repeat regions and the recovered genome fraction
was assessed using a linear model, correlations were sig-
nificant for CLC, MIRA, Ray Meta, Velvet and all pa-
rameters of SPAdes (Additional file 5: Table S2). Both
the proportion of repeat regions in a genome and the
relative abundance of that genome contribute to the
variation in recovered genome fraction, though each

explains a separate aspect of this variation. No inter-
action was found between these two metrics.
VICUNA, Ray Meta, SOAPdenovo2, Geneious, ABySS

(both k-mer sizes) and Velvet recovered under 50% of
the total genome fraction (all genomes in the commu-
nity). VICUNA produced just four contigs in total with
high levels of mismatches (174 per 100 kb on average)
which could possibly be linked to the format of the arti-
ficial reads as this was not observed in real sequencing
data. The five assemblers which recovered the highest
genome fraction overall were SPAdes (default), MEGA-
HIT, SPAdes (single cell), SPAdes (single cell + careful)
and CLC. All assemblers achieving a minimum average
genome fraction of 50% were subjected to a ranking
system (Additional file 5: Table S4). To compare both re-
covery and fragmentation, assemblers were ordered from
best to worst based on genome recovery and number of
aligned contigs. The average rank resulted in SPAdes
(default) performing best, recovering 72.2% overall gen-
ome sequences with 8230 contigs. The remaining top
five assemblers of this combined rank were SPAdes
(meta) 68.2% with 7419 contigs, SPAdes (single cell)
68.9% with 9506 contigs, CLC 68.6% with 9152 contigs
and MEGAHIT 69.6% with 10,083 contigs. The number
of assemblies which recovered greater than 90% of the
target genome in one single contig was compared
(Fig. 2). SPAdes (default) performed best, recovering
210, and SPAdes (meta), SPAdes (single cell + careful),
CLC and SPAdes (single cell) each recovered 179, 168,
162 and 160 genomes, respectively.
The accuracy of assemblies was assessed by calculating

the average count of indels, mismatches and misassem-
blies per 100 kb across all genomes. These counts were
normalised to the number of genomes each assembler
recovered with a minimum genome fraction of 50%.

Table 1 A list of assemblers used in this study

Link Version used Reference

ABySS http://www.bcgsc.ca/downloads/abyss/ v2.0.2 [50]

CLC https://www.qiagenbioinformatics.com/products/clc-assembly-cell/ v5.0.5 https://www.qiagenbioinformatics.com/

Geneious https://www.geneious.com/features/assembly-mapping/ v11.0.3 [22]

IDBA UD https://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud v1.1.1 [43]

MEGAHIT https://github.com/voutcn/megahit v1.1.1-2 [25]

MetaVelvet https://metavelvet.dna.bio.keio.ac.jp/ v1.2.02 [38]

MIRA http://www.chevreux.org/mira_downloads.html v4.0.2 [14]

Ray Meta http://denovoassembler.sourceforge.net/ v2.3.0 [5]

SOAPdenovo2 http://soap.genomics.org.cn/soapdenovo.html v2.04 [29]

SPAdes http://cab.spbu.ru/software/spades/ v3.10.0 [4]

SPAdes meta http://cab.spbu.ru/software/spades/ (variation of SPAdes
applied with flag)

v3.10.0 [40]

Velvet https://www.ebi.ac.uk/~zerbino/velvet/ v1.2.10 [58]

VICUNA https://github.com/broadinstitute/mvicuna v1.3 [53]
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These were ranked according to their performance in all
three metrics (Additional file 5: Table S4), with assemblies
from Velvet having the lowest overall counts followed by
ABySS, IDBA UD, MEGAHIT and Ray Meta. With the
exception of Ray Meta and SOAPdenovo2, the number of
mismatches per 100 kb was negatively correlated with
both genome abundance and recovered genome fraction
across all assemblers (Additional file 5: Table S1).

The rate of false positive (no alignment to reference
genomes) and false negative (recovered genome fraction
of 0%) contigs assembled allowed for the determination
of sensitivity. A number of assemblers had a sensitivity
greater than 97%; however, each returned greater than
7000 contigs, inferring a high degree of fragmentation
(Table 2). MIRA assembled (partial or complete) 559 of
the genomes with a false positive count of just four.

Fig. 1 Relationship between percentage of each genome recovered (genome fraction), the number of contigs generated for each combination
of genome and assembler and the abundance and proportion of repeats for each genome. a, b Genomes are ordered by their average genome
fraction across all assemblers from high to low along the x-axis. a (main) Relative abundance, normalised by genome length is plotted along y-
axis with upper limit of 0.75% and colour of bars determined by proportion of repeat regions in each genome. Blue bars represent genomes with
a high proportion of genomic repeats (4th quartile of all genomes) and red represents all other genomes below this quartile. a (insert) Expanded
view of a without an upper limit of y value. b Percentage genome recovered is plotted along the y-axis. Points are coloured by assembler with
shape of the point is denoting number of contigs generated by each assembler for each genome
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However, this was achieved from more than 27,000 con-
tigs. ABySS (both k-mer sizes), Geneious, Ray Meta and
Velvet returned very few false positives but failed to de-
tect many of the genomes present. SPAdes (meta) per-
formed best with 558 of the 572 genomes detected and
only five false positives resulting from 7419 contigs.

Mock community dataset
Two mock viral communities were used to investigate the
impact of high and low abundance ssDNA viruses on as-
sembly performance. Mock A (Table 3a) contained 12
viral genomes, 10 of which were at equal abundance
(9.82% of the total community) and 2 ssDNA genomes
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Fig. 2 Number of contigs each assembler recovered to a minimum genome fraction of 90% in a single contig

Table 2 The number of false positive and false negative contigs generated by each assembler for the simulated community, together
with the sensitivity rates

False positives False negative True positives No. of contigs returneda Sensitivity

ABSS (k-mer 63) 0 111 461 7957 80.59

ABySS (k-mer 127) 1 123 449 7732 78.50

CLC 34 5 567 9152 99.13

Geneious 9 190 382 958 66.78

IDBA UD 25 9 563 8999 98.43

MEGAHIT 21 8 564 10,083 98.60

MetaVelvet N/A N/A N/A N/A N/A

MIRA 4 13 559 27,600 97.73

Ray Meta 0 213 359 4224 62.76

SOAPdenovo2 536 116 456 11,548 79.72

SPAdes 29 3 569 8230 99.48

SPAdes meta 5 14 558 7419 97.55

SPAdes sc 38 7 565 9506 98.78

SPAdes sc careful 40 6 566 9724 98.95

Velvet 1 65 507 6343 88.64

VICUNA 0 558 14 4 2.45
a572 in community
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(NC_001330 and NC_001422) at low abundance (0.92%).
Analysis of this community showed that although some
assemblers, namely CLC, Geneious, SPAdes (single cell)
and VICUNA, detected all 12 genomes, this was at the ex-
pense of a large number of false positives (1143, 53, 1513
and 4969, respectively). Velvet and MetaVelvet generated
no false positives but failed to assemble three genomes,
while ABySS (for both k-mers) generated a large number
of false positives and failed to assemble four and six

genomes, respectively. IDBA UD and Ray Meta outper-
formed the other assemblers with an equal number of
contigs to genomes (12), followed by MEGAHIT, SPAdes
(default) and SPAdes (meta) with 13, 14 and 14. Mock B
(Table 3b) also contained 12 genomes but with a higher
abundance of ssDNA genomes NC_001330 and
NC_001422 (32.47%). VICUNA assemblies of mock B im-
proved upon those from mock A as no false positives were
generated, while the false positive rate in the MIRA

Table 3 The number of false positive and false negative contigs generated by each assembler for (a) mock community A and (b)
mock community B along with the sensitivity rates for each

False positives False negative True positive No. of contigs returneda Sensitivity

A

ABySS (k-mer 63) 52 4 8 61 66.67

ABySS (k-mer 127) 50 6 6 56 50.00

CLC 1143 0 12 1299 100.00

Geneious 53 0 12 65 100.00

IDBA UD 0 0 12 12 100.00

MEGAHIT 0 0 12 13 100.00

MetaVelvet 0 3 9 26 75.00

MIRA 0 0 12 89 100.00

Ray Meta 0 0 12 12 100.00

SOAPdenovo2 2 0 12 23 100.00

SPAdes 0 0 12 14 100.00

SPAdes meta 0 0 12 14 100.00

SPAdes sc 1513 0 12 1527 100.00

SPAdes sc careful 0 0 12 15 100.00

Velvet 0 3 9 26 75.00

VICUNA 4969 0 12 5385 100.00

B

ABySS (k-mer 63) 60 4 8 69 66.67

ABySS (k-mer 127) 132 6 6 139 50.00

CLC 450 0 12 505 100.00

Geneious 14 0 12 30 100.00

IDBA UD 0 0 12 12 100.00

MEGAHIT 0 0 12 14 100.00

MetaVelvet 0 1 11 24 91.67

MIRA 94 1 11 157 91.67

Ray Meta 0 0 12 13 100.00

SOAPdenovo2 2 2 10 27 83.33

SPAdes 0 0 12 13 100.00

SPAdes meta 0 0 12 14 100.00

SPAdes sc 593 0 12 607 100.00

SPAdes sc careful 0 0 12 14 100.00

Velvet 0 1 11 24 91.67

VICUNA 0 0 12 15 100.00
a12 in community
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assembler increased from none to 94 in mock A. IDBA
UD performed best followed by SPAdes (default), Ray
Meta, MEGAHIT and SPAdes (meta) based on sensitivity
and number of contigs, while ABySS (both k-mer sizes)
and SOAPdenovo2 had the lowest sensitivity. Despite be-
ing a relatively simple community consisting of 12 mem-
bers, not all assemblers were able to recover all members
(Additional file 5: Tables S5-S6). A greater number of as-
semblers (six) failed to assemble all members of mock B
than mock A (four). ABySS(k-mer 63), ABySS(k-mer 127),
Velvet and MetaVelvet failed to assemble 6, 4, 3 and 3 ge-
nomes, respectively, in mock A and 6, 4,1 and 1 genomes,
respectively, in mock B. In addition, MIRA and SOAPde-
novo2 failed to assemble 1 and 2 genomes, respectively, in
mock B.
All but three VICUNA assemblies in mock A exhibited

a high level of fragmentation, generating 34.7 ± 35 (mean
± standard deviation) contigs per genome. Fragmentation
was also seen in MIRA assemblies to a lesser degree with
7.4 ± 10 contigs per genome on average. There was a high
rate of fragmentation in CLC with one community mem-
ber generating 144 contigs for genome KF302035. Average
recovered genome fraction of 85.4 ± 6.4% was skewed by
ABySS (k-mer 63), ABySS (k-mer 127), Velvet, MetaVelvet,
SOAPdenovo2 and VICUNA which recovered on average
49.5%, 66.6%, 73.8%, 73.8%, 29.7% and 76.6%, respectively.
All other assemblers recovered over 99% of each genome
in the community (Additional file 6: Figure S1).
Closer inspection of the two ssDNA genomes present

at lower relative abundance highlighted significant differ-
ences in the average number of indels across all assem-
blies of the NC_001330 and NC_001422 genomes versus
other members of the community (p value = 0.037).
These genomes exhibited an average of 41.7 ± 18.5 and
9.4 ± 20.4 indels per 100 kb, while all other genomes fea-
tured an average of 7.8 ± 18.9 indels per 100 kb. The low
abundant ssDNA genomes NC_001330 and NC_001422
also featured the highest average mismatches per 100 kb
at 148.7 ± 3 and 302.5 ± 10.7, respectively (Add-
itional file 6: Figure S1).
The degree of fragmentation observed by VICUNA and

MIRA in mock B was lower than in mock A with a mean
of 1.3 ± 0.89 and 5.3 ± 7.7 contigs per genome, respect-
ively. CLC fragmented genome KF302035 in mock B (44
contigs), but to a lesser degree than mock A (144 contigs).
MEGAHIT, which recovered at least 98% of all genomes
in mock A, also recovered over 98% of all genomes in
mock B except for the ssDNA genome NC_001422, of
which 56.5% was recovered in two contigs. The majority
of assemblies exhibited 147.9 ± 0 and 297 ± 1 mismatches
per 100 kb for NC_001330 and NC_001422 (high abun-
dance ssDNA), respectively, identical values to those mea-
sured in mock A. Velvet and MetaVelvet were exceptions
with 184.2 and 860.2 for genome NC_001422 and

NC_001330. A similar pattern of high values across a nar-
row range was also observed with the number of indels,
with 49.3 to 32.9 present in all assemblies NC_001330.
Genome NC_001422 featured 18.57 indels across all
SPAdes assemblies (all parameters) and 860.2 across both
Velvet and Metavelvet assemblies. All other assemblers
which successfully recovered this genome did not feature
any indels (Additional file 6: Figure S1).

Q33
Five assemblers failed to generate contigs which met
alignment thresholds and were subsequently excluded
from further analysis, namely ABySS (k-mer 63), ABySS
(k-mer 127), SOAPdenovo2, Velvet and MetaVelvet. All
remaining assemblers recovered over 90% of the spiked
Q33 genome with the exception of MIRA (8.5%). Six as-
semblers recovered over 99% of the Q33 genome in a
single contig—SPAdes (meta) 99.74%, MEGAHIT
(99.6%), VICUNA (99.6%), Ray Meta (99.6%), CLC
(99.5%) and Geneious (99.1) (Fig. 3). However, only
MEGAHIT assembled the Q33 genome with a contig
equal in length to the genome itself. SPAdes (meta) and
CLC generated assemblies shorter than the reference
genome by 86 and 141 bases. VICUNA (723), Geneious
(1765) and Ray Meta (9884) each generated assemblies
longer than the reference genome. SPAdes (default),
SPAdes (single cell), IDBA UD and SPAdes (single cell +
careful) each assembled Q33 in 2, 3, 4, 5 and 5 contigs,
respectively. Ray Meta and VICUNA assemblies had the
lowest number of mismatches and indels per 100 kb;
however, Ray Meta exhibited the highest rate of misas-
semblies (two relocations, one inversion). All assemblers
featured a minimum of one local misassembly with the
exception of SPAdes (meta) which did not feature any.
The six best assemblies of the Q33 genome and the gen-
ome itself are syntenic (although occasionally on the re-
verse strand), and the start and end point were not
conserved (Fig. 3).

Read depth analysis (time and RAM)
Assemblers were compared for practicality by measuring
the time to reach completion and maximum RAM usage
via four published healthy human gut viromes [31] and
various sequencing depths. It must be noted that all as-
sembly tasks were allocated five threads; however, speci-
fying the number of threads did not change the number
of threads used by certain programs. MetaVelvet was not
included in this analysis as it failed to reach completion
after running for 7 days. CLC and Geneious were per-
formed on a desktop computer and therefore excluded
from time and RAM analysis. Runtime is dependent
upon the number of reads, and this is largely linear in
scale with more reads leading to an increased assembly
time (Fig. 4a). MIRA and VICUNA (Fig. 4a insert) were
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the slowest with MIRA taking over 15 times longer than
the other software to assemble 3.5 million reads. SOAP-
denovo2 had the shortest completion time followed by
IDBA UD and Velvet. Most assemblers were consistent
across samples (observed via error bars) with the excep-
tion of MIRA and Ray Meta. MIRA, VICUNA and Vel-
vet (Fig. 4b insert) had the highest max RAM usage,
while the lowest was Ray Meta, IDBA UD and SPAdes
(meta) (Fig. 4b). The majority of assemblers observed a
linear scale pattern similar to that of runtime.

Read depth analysis N50 and longest contig length
For both the N50 (Fig. 4c) and the longest contig length
(Fig. 4d), there was a large amount of variation between
samples for the majority of assemblers. The longest con-
tig length showed a large increase at the final sequencing
depth. Particular assemblers, namely SPAdes (default),
SPAdes (meta), MEGAHIT and ABySS (k-mer 127),
produced longer contigs as the sequence depth was
increased.

Discussion
Many bacterial metagenomic assembly comparisons
have highlighted that the choice of assembler has a sig-
nificant impact on downstream analysis and the accur-
acy of the reconstructed metagenome [15, 28, 33, 54].
We have found this also to be true for viral metagen-
omes, where accurate and complete assembly are of par-
ticular importance given the lack of viral representation
in reference databases. Virome studies depend heavily
on the assembly step and possess many features which

are challenging to successful assembly. In this study, we
compared the performance of those assemblers used to
date in human viral metagenomics studies using datasets
of known and unknown composition and varying com-
plexity. These included a Q33-spiked virome, mock vir-
ome communities, a simulated virome and the “healthy
human gut phageome” [31]. Each dataset provided
unique attributes allowing for comparison of assembly
performance on a number of levels. The combination of
artificial and real viromes used in this study allows for
the comparison of various aspects of assembly perform-
ance across a range of datasets rather than depending on
simulated viromes alone, as is commonly carried out in
assembly comparisons [13, 33] .
The simulated dataset featured 572 viral genomes at

various relative abundances as published by Vázquez--
Castellanos and colleagues [53]. Fragmented assemblies
of individual genomes within microbial communities
hamper downstream analysis and limit the conclusions
which can be drawn from metagenomic data such as
taxonomic and functional profiles [11]. Consequently,
the percentage genome recovery and degree of fragmen-
tation were assessed across each assembler, with SPAdes
(default, meta and single cell) each performing well.
VICUNA performed very poorly, recovering only four
contigs with high numbers of mismatches and misas-
semblies, despite having performed well with other data-
sets and being designed to address challenges of
heterogeneous viral populations [57]. This failure may
reflect the computational challenges relating to the
format of the simulated reads, as benchmarks carried

Fig. 3 Mauve output of the Q33 reference genome (top) along with of the six assemblers which recovered > 99% of the genome with a single
contig. Assembly regions outside of locally collinear blocks which do not share homology to the reference genome are highlighted by a black
outline. Reverse complement of assemblies in the opposite orientation to the reference were plotted for visualisation purposes (VICUNA,
CLC, Geneious)
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out within the VICUNA study itself only include actual
sequencing reads [57]. However, similar poor perform-
ance has been previously observed in virome assembly
comparison using VICUNA and 454 reads [53]. For
those assemblers which could recover greater than 90%
of the reference genome in a single contig, SPAdes (de-
fault) outperformed SPAdes (meta). This may be ex-
plained by a lack of strain variants in the dataset and the
fact that SPAdes (meta) was optimised to combine strain
variants of each species to form consensus sequences.
A subset of genomes were poorly recovered (< 20% gen-

ome fraction) by nearly all assemblers. This observation
indicates that there are challenging aspects of viral ge-
nomes and metagenomes which cannot be overcome with
current assembly strategies. The strong positive correla-
tions between the relative abundance and genome fraction

suggest that a low abundance threshold applies to virome
assembly, below which assemblies will consist of small
fractions of the viral genome, and in most cases be highly
fragmented. This detrimental impact of low coverage has
been well established in previous assembly comparison
studies [13, 14, 44]. Highly abundant genomes also caused
similar recovery and fragmentation issues across all
assemblers, which is of particular importance due to the
prevalence of extremely high abundance genomes in viral
data (crAssphage, certain ssDNA viruses). As both abun-
dance extremes are common in virome data, their impact
must be considered when designing virome studies (i.e. se-
quencing depth). As relative abundance alone did not fully
explain the variation in genome fraction recovered, the
role of genomic repeats (a well-established assembly chal-
lenge [1]) was also investigated. However, genomic repeats
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could explain the variation in genome fraction recovered
to a lesser degree than relative abundance, suggesting
other factors contribute to poor genome recovery.
Compositional differences between final assemblies

and viromes themselves must be taken into account
when drawing conclusions about virome composition
and setting parameters for downstream analysis. Chal-
lenges such as genomic content and strain variation are
not currently addressed in human virome assembly
strategies and impact the reconstruction of certain mem-
bers of a virome. Hybrid sequencing, which uses both
long and short reads to resolve genomic regions associ-
ated with poor assembly [55], is a promising new tech-
nology which could address current virome assembly
challenges. Library preparation methods which may re-
duce the bias introduced by MDA steps include using
Swift Biosciences 1S Plus kit [46] and/or increasing over-
all sequencing depth or read length to improve recovery
of lowly abundant viral genomes will be key. Further-
more, utilising an assembler which can robustly deal
with ultra-high coverage genomes (> 1000× coverage) is
an important but often not appreciated aspect of virome
assembly analysis. While promising, these potential solu-
tions highlight a requirement for ongoing optimisation
and extermination of virome analysis protocols.
Performance of some assemblers in this study was

hampered by high coverage sequences (primarily overlap
consensus assemblers). VICUNA assemblies exhibited
the highest degree of fragmentation of all assemblers
with mock A, despite having resolved both high abun-
dance ssDNA genomes of mock B to a single contig.
MIRA also exhibited a high degree of fragmentation
with high abundance genomes in both simulated and
mock datasets. However, MIRA was least affected by
low abundance reads, recovering a greater genome frac-
tion of low abundance genomes than other assemblers
with fewer contigs. Performance of assemblers hampered
by high coverage sequences in viromes may potentially
be improved by sub-setting reads similar to the assembly
approach used by SLICEMBLER [37].
Multi-assembler approaches such as the use of Gen-

eious to generate consensus sequences from separate as-
semblers have been developed [9, 24, 47] but are not
commonly included in human virome studies using
short reads. MIRA assemblies of the Q33 genome and
some low abundance genomes in the simulated dataset
were improved using Geneious, resolving greater gen-
ome fractions with fewer contigs (despite Geneious re-
covering a lower genome fraction of the simulated
dataset overall). It is possible that using these ap-
proaches could address issues facing each assembler, i.e.
combine the assemblies of SPAdes (meta) which per-
forms well across all four datasets but struggles to re-
cover low abundant genomes, with MIRA assemblies

which are less affected by low abundance but have diffi-
culty resolving genomes of higher abundance. Compari-
son of multi-assembler approaches and combinations of
various assemblers were not within the scope of this
study, but should not be ruled out as a potential method
of improving virome assembly in cases where compos-
ition could be assessed and obvious assembly challenges
were known to be present.
Across all analysis methods in this study, SPAdes

(meta) performed consistently well and would be our
recommendation. It performed best in the simulated
data based on false positives, true positives and false
negatives, best assembled the Q33 genome (recovery,
fragmentation, misassemblies and genome size) and per-
formed well with both mock communities in recovering
all members accurately in one or two contigs. SPAdes
(meta) RAM usage was low and did not increase to the
same degree as other assemblers with increasing sequen-
cing depth. This recommendation is in agreement with
previous comparisons [54] which also suggested using
SPAdes (meta) due to its ability to accurately assemble
members of bacterial metagenomes. SPAdes (meta) is
less able to accurately reconstruct micro-diversity as it
generates a consensus assembly of “strain contigs” in a
metagenome, which means it is better equipped to ad-
dress the high mutation rates observed in virome data
[40]. This recommendation is also concurrent with a
previous study [44] which found IDBA UD, MEGAHIT
and SPAdes (meta) to perform equally well when
assessed using 14 simulated viromes. However, we found
that SPAdes (meta) outperformed IDBA UD and MEGA-
HIT in the Q33-spiked dataset, RAM usage in relation
to increasing sequencing depth, and in its ability to
recover members of the simulated virome in a single
contig. This recommendation contradicts two previous
assembly comparisons which found CLC [20] and Velvet
[56] to be best suited to virome data. However, SPAdes
(meta) was not included in either study. Though SPAdes
(meta) was outperformed by MIRA in the assembly of
low abundance genomes in the Simulated dataset, MIRA
has limited application to large datasets. MEGAHIT also
performed well across all datasets performing well in re-
lation to recovery, fragmentation and accuracy but en-
countered some recovery issues in mock datasets and
minor accuracy issues with the Q33 genome.
The higher levels of accuracy (low mismatch indel and

misassembly counts) of assemblers which performed
poorly in other metrics, namely velvet and ABySS (k-mer
63), highlight the trade-off between accuracy and contigu-
ity observed in previous assembly studies [16, 27]. How-
ever, both IDBA UD and MEGAHIT performed well for
accuracy, genome recovery and fragmentation. These as-
semblers may be worth considering if strain level detail is
of particular importance. The mock A and B datasets were
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used to assess the impact of amplification bias on assem-
bly performance. All ssDNA assemblies featured an equal
minimum number of mismatches across both mock A
and B. This may be caused by challenges in the genomes
themselves hampering accurate assembly, but is more
likely to reflect strain variation between genome sequence
featured in the original publication and the genome of the
phage used in the community itself.
The Q33-spiked virome consisted of pooled reads

from three healthy human faecal samples, each of which
having been spiked with 107 PFU ml−1 of lactococcal
phage Q33 prior to virome extraction. This allowed for
assembly comparison of one abundant member of a
challenging viral community. Despite the high relative
abundance of the Q33 genome, only 6 assemblers could
recover over 90% of the genome in a single contig, of
these SPAdes (meta) and MEGAHIT reconstructed the
Q33 genome accurately without the introduction foreign
or chimeric DNA. It was also noted that the genome
synteny was conserved across these six assemblies. This
may reflect circularization of the linear Q33 genome
during DNA extraction as the presence of cos sites has
been previously predicted [30].
The longest contigs of each assembler were only de-

tected at the highest sequencing depths and varied
across assemblers, which may indicate that high cover-
age is necessary to recover the largest viral genomes in a
community. However, it is also possible that these long
contigs may reflect misassemblies and duplication events
caused by read errors at high sequencing depths which
must be considered when analysing high coverage data.
At almost all sequencing depths, Geneious, VICUNA,
Ray Meta and ABySS (k-mer 127) exhibited the highest
N50 values, despite performing poorly in other metrics.
This further highlights the limitation of using N50 alone
as a metric of metagenomic assembly [54].
A further important consideration when performing

any metagenomic assembly is practicality, size of dataset,
computational resources, bioinformatic resources and
how much hands-on time is required from the end user.
Both CLC and Geneious are available as a GUI (albeit
requiring a licence fee) which widens their audience to
researchers with limited command-line experience (CLC
can also be run using the windows command line).
However, this limits their practicality for large scale vir-
ome studies as they are limited to the computational
power of desktop computers and are not suited to the
assembly of large numbers of samples. Despite the limi-
tations of computational power, CLC performed well in
all datasets in terms of genome recovery and fragmenta-
tion. Of the freely available open-source assemblers,
MIRA and VICUNA are the least efficient in terms of
RAM usage and assembly time, reflecting limitations of
the overlap consensus approach to assembly. This limits

their applicability to large virome datasets and further
increases the time required to carry out the Geneious as-
sembly approach which requires the output of both as-
semblers. Despite the long runtime, VICUNA did not
adhere to the number of cores specified, instead using
all available cores. All other assemblers had a similar
time requirements (with the exception of SOAPdenovo2
which performed poorly across all datasets). Of the as-
semblers which consistently performed well in terms of
accuracy, genome fraction recovered and fragmentation,
SPAdes (meta) was the most efficient in terms of RAM
usage, which did not increase to the same degree as
other assemblers with increasing sequencing depth.
MIRA stood out in terms of impracticality by generating
by far the largest intermediate files of any assembler, re-
quiring several gigabytes of storage space for intermedi-
ate files.
The combination of results from four datasets facili-

tates accurate comparison of assemblers as the limita-
tions of each individual dataset vary. Application of
Phi29 MDA to amplify virome DNA to sufficient quan-
tities for sequencing can introduce significant bias and
skew the original composition of the virome, making
quantitative viromics difficult [23, 46]. As a result, it is
likely that true diversity of viral metagenomes is not be-
ing accurately captured using current virome extraction
methods. However, as these procedures move away from
steps known to introduce bias, greater diversity will be
observed. In this sense, the level of complexity of the
Q33 dataset, which pooled three independent human
viromes, provides a useful testbed for metagenomic as-
semblers in future virome studies as extraction methods
improve. Additionally, Q33 was not present in the vir-
omes prior to spiking and assemblers were not chal-
lenged by the presence of native strain variations of Q33
genome. In this study, assemblers were compared with-
out individual optimisation to the specific dataset. Feasi-
bility dictates that this “straight out of the box”
approach to assembly is used by almost all metagenomic
assembly comparisons. Additionally, as the true compos-
ition of metagenomes is unknown, any impact of param-
eter optimisation must be estimated from general
assembly statistics such as N50 and longest contig which
have been highlighted to be of limited usefulness [3, 54].
Any parameter optimisation performed in the study (i.e.
ABySS k-mer lengths, SPAdes careful vs. single cell)
reflected parameters used in published virome studies
and was not analysed in greater depth. While it is pos-
sible that parameter optimisation could improve individ-
ual assemblers, we believe that the differences in
assembly algorithms are the primary drivers of assembly
performance.
This study describes the impact of a crucial analysis

step on virome characterisation and highlights the need
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for a standardised analysis protocol across future virome
studies. Such a protocol would allow for comparison across
studies and facilitate accurate meta and cross analyses. This
will be crucial should virome sequencing be utilised in diag-
nostic and clinical settings. However, it must be noted that
any workflow will be somewhat limited and biased to the
detection of particular viral taxa. Consequently, studies (e.g.
identifying novel viruses) may benefit from implementing
multiple assembly approaches due to the large number of
factors, both technical (read length, quality, paired-end in-
formation etc.) and biological (genetic complexity, evenness
etc.), which impact virome assembly.

Conclusions
Of all assembly programs used in human virome studies,
SPAdes (meta) addressed the challenges of virome data
most effectively. However, all assemblers have limitations
and are hampered by aspects of virome data. Low read
coverage and high genomic repeats lead to assemblies
with low recovered genome fraction and a higher degree
of fragmentation, with the assemblies themselves being
less accurate. This pattern was seen across all assemblers
used in this study.
As assembler choice has significant implications for vir-

ome composition and the conclusions which can be
drawn from a dataset, assemblers which performed poorly
in this study (i.e. low genome recovery or accuracy and
high degree of fragmentation) highlight a potential un-
tapped resource in the sequence data of previously con-
ducted virome studies. It is highly likely that many viral
sequences were poorly assembled and reanalysis using a
more effective assembler may yield new insights. Re-
searchers conducting meta-analysis of virome sequencing
studies should take particular care when evaluating viral
assemblies from different assembly programs. Design of
future virome studies should carefully consider the impact
of sequencing depth, as extremes in read coverage will
prevent the assembly and detection of viral genomes at
both high and low abundance.

Methods
Each assembler with the exception of Geneious and CLC
was run as per manual with default parameters (unless
stated) using a Lenovo x3650 M5 server with an intel
Xeon processor E5-2690 v3 and 512Gb RAM running
Ubuntu 14.04.5. Geneious assembly approach mirrored
that used in [31] by generating consensus sequences from
the assemblies of both MIRA and VICUNA. CLC and
Geneious were run on a 64-bit windows 10 computer with
an i5-4690 CPU and 16GB of RAM.

Data sources
Sequencing reads from mock communities A and B fea-
tured in [46], simulated Virome dataset featured in [20],

reads used to compare the impact of sequencing depth
on time and RAM usage featured in [31] and human vir-
omes spiked with 107 PFU of Lactococcal phage Q33
[30] and originated from [49] .

Read pre-processing
Raw read quality was assessed with FastQC v0.11.5, and
sequencing adapters were removed with cutadapt v1.9.1
[32] for the mock, spiked and healthy gut virome data
sets. Trimming and filtering were carried out with Trim-
momatic v0.36 [6] using parameters specific to each
dataset. A sliding window size of 4 with a minimum
Phred score of 30 and a minimum length of 60 bp was
used with reads from both mock communities. The lead-
ing 15 bp and trailing 60 bp were removed from “healthy
human gut phageome” reads, and a sliding window of 4
bp with a minimum Phred score of 20 was applied. The
leading 10 bp and trailing 100 bp were removed from the
Q33-spiked virome reads and a sliding window size of 4
bp with a minimum Phred score of 30. Filtered reads
shorter than 60 bp were removed.

Analysis methods
Quality filtered reads from the Q33-spiked dataset con-
sisted of three individual viromes which were pooled
and subsequently assembled. Contigs were aligned to the
published Q33 using Blastn with an e value cut-off of 1e
−20. Top hit alignments to the Q33 genome with a
minimum alignment length of 800 bases and which
shared 95% identity were included in further analysis
using QUAST (v. 4.4) [18] with “--unique mapping”
flag. Further comparison and visualisation of Q33 as-
semblies were carried out using Mauve (v. 20150226,
build 10) [8].
Alignment and comparison of assemblies from mock

and simulated data sets to reference genomes were car-
ried using MetaQUAST (v. 4.4) [35] with “--unique
mapping” flag and default parameters (minimum contig
length of 500 bp, minimum alignment length of 65 bp,
minimum identity threshold of 95%). Correlations were
carried out using Spearman’s method, and plots were
generated using the package ggplot2 (v 3.0.0) package in
R (v.3.4.3). These correlations were validated using a lin-
ear model in R base library. For data which was not nor-
mally distributed, log transformation was carried out.
Reads from the “healthy human gut phageome” were

analysed to compare the overall assembler efficiency and
the impact of sequencing depth. Reads were randomly
subset in pairs (both the forward and reverse read of a
pair were retained) to different depths using an in-house
python script. Samples were subset in increments of
300,000 reads to their respective maximum depth (2.7,
3.5, 3 and 3.3 million reads). GNU time was utilised to
measure the maximum RAM and length of time for
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each assembly to reach completion. All assemblers were
run using five threads where possible with the exception
of CLC, Geneious, Ray Meta, Velvet and VICUNA.
Ray Meta and Velvet were run with 10 one thread(s),
respectively. Ray Meta failed to run with five while
Velvet ran with one core despite five being allocated.
VICUNA was also allocated five threads, however
used upwards of 20. MetaVelvet was run, but after 7
days had failed to reach completion and was therefore
removed from the subsequent analysis of these
metrics. Contig statistics and filtering (contigs greater
than 1 kb retained) were performed using the
assembly-stats script (v1.0.1) from the Pathogen In-
formatics group at the Wellcome Sanger Institute
(https://github.com/sanger-pathogens/assembly-stats).

Additional files

Additional file 1: Simulated virome MetaQUAST output. (HTML 6369 kb)

Additional file 2: Mock virome A MetaQUAST output. (HTML 528 kb)

Additional file 3: Mock virome B MetaQUAST output. (HTML 528 kb)

Additional file 4: Q33-spiked virome QUAST output. (HTML 360 kb)

Additional file 5: Table S1. Spearman correlation values from the
relationships of indel, mismatch and misassembly counts, recovered
genome fraction, abundance and total proportion of genomic repeats
within the simulated virome. *GF–recovered genome fraction. Table S2.
Linear modelling correlation values comparing recovered genome fraction,
total proportion of genomic repeats and abundance for the Simulated
virome. Table S3. Spearman correlation values from the relationships of
inverted, tandem, palindromic and total repeats, abundance and the
number of contigs generated by each assembler for the Simulated virome.
Table S4. (A) Ranking table comparing recovered genome fraction and
contig numbers for assemblers which recovered at least 50% of the total
genome fraction. (B) Ranking table of indel, mismatch and misassembly
counts per 100 kb, normalised to the number of genomes recovered to at
least 50%. Table S5. Number of aligned and unaligned contigs generated
by each assembler for mock community A. Table S6. Number of aligned
and unaligned contigs generated by each assembler for mock community
B. (XLSX 33 kb)

Additional file 6: Figure S1. Analysis of recovered genome fraction and
indel/mismatch counts for mock communities A and B. Triangles represent N/
A values for mismatches and indels caused by assembly failures. (PDF 293 kb)
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